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ABSTRACT 

The coupling between a climate model giving rise to an oscillatory behavior and an external 
periodic forcing is analyzed. It is shown that under appropriate resonance conditions, phase 
locking takes place leading to a well-defined value of the phase of the oscillator, contrary to the 
erratic behavior characterizing the phase in the unforced case. The implications of the results for 
the problem of predictability and the interpretation of the climatic records are pointed out. It is 
suggested that one of the mechanisms ensuring sharp periodicities in the climatic record is the 
interaction between an autonomous oscillator and an external periodic forcing, under conditions 
offundamental or harmonic resonance. 

1. Introduction 

Climate models predicting self-oscillations are 
attracting an increasing amount of attention in view 
of their potential importance in the interpretation of 
the cyclic character of many known climatic 
changes. In recent publications (Nicolis, 1983, 
1984) we have analyzed two typical families of 
such models and arrived at the conclusion that an 
autonomous oscillator subject to its own internal 
fluctuations or to a noisy environment is bound to 
behave eventually in an erratic way. Specifically, its 
dynamics can be decomposed into a "radial" and 
an "angular" part. The radial variable has strong 
stability properties and tends for long times to a 
well-defined stable limiting value. In contrast, the 
phase variable does not reach any well-defined limit 
and for this reason it becomes completely deregu
lated by the fluctuations. A destructive phase 
interference will thus result which will wipe out any 
trace of oscillatory behavior after a sufficiently long 
lapse of time. We have pointed out that this quite 
general property may be at the origin of a 
progressive loss of predictability, and we illustrated 
the general ideas using Saltzman's oscillator (coup
ling between sea-ice and mean ocean surface 
temperature (Saltzman, 1978; Saltzman et a!., 
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1982)) and Ghil's oscillator (coupling between 
land-ice and mean planetary surface temperature 
(Ghil and Tavantzis, 1983; Kiillen et aI., 1979». 

Yet, many climatic episodes show a c1earcut 
average periodicity, as revealed for instance by the 
ice core and deep ocean core data of quaternary 
glaciations (see for instance Berger (1981) and 
references therein). Somehow, in the course of these 
changes, the climatic system has therefore been 
capable of fixing 'its phase in a more-or-Iess sharp 
and predictable fashion. One is tempted to correlate 
this with the fact that in all known examples of 
pronounced cyclic changes, the climatic system 
was submitted to systematic external forcings 
acting on the same time scale. It is the purpose 
of the present work to show that the coupling 
of an oscillator with an external forcing can 
indeed, under certain conditions, lead to a sharply 
defined, stable value of its phase relative to the 
phase of the forcing, thus ensuring predictable 
behavior. We have already expressed this con
jecture recently (Nicolis, 1983), but here we go 
much further and analyze in detail the mechanisms 
by which phase locking and concomitantly, pre
dictability, can be ensured. 
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In Section 2 we recall, using the Saltzman 
oscillator as illustrative example, the basic ideas of 
the theory of normal forms, which allows one to 
cast the dynamics of an oscillator in a universal 
form from which the different roles of "radial" and 
"angular" variables becomes transparent. We also 
show how an external periodic forcing can be 
accommodated in the description. 

In Section 3 we undertake a qualitative explora
tion of the various regimes that can be expected 
from the oscillator-forcing coupling by means of a 
straightforward perturbation expansion of the 
solution in powers of the strength of the forcing 
(frequently referred to in applied mathematics as 
"the outer expansion", see e.g. Cole (1968)). We 
show that phase locking and pr~dictability cannot 
be expected, unless certain appropriate resonance 
conditions are satisfied. 

A more quantitative approach is outlined in 
Section 4 in the range of parameter values for 
which there is resonance. We use a singular 
perturbation technique, frequently referred to as 
"the inner expansion" (Rosen blat and Cohen, 
1981) and derive a set of equations for both the 
amplitude and the phase of the oscillator. For 
Saltzman's model, we find that, depending on the 
parameters, the response can be periodic (entrain
ment) or quasi-periodic, and that there may even be 
coexistence between two different stable regimes. 
These predictions are compared to the results of 
numerical simulations in Section 5. 

The implications of the results on the problem of 
predictability and the possible effect of more 
complex external forcings are discussed in Section 
6. 

2. Normal form of a periodically forced 
oscillator. Illustration on Saltzman's 
model 

According to the qualitative theory of ordinary 
differential equations (Arnold, 1980), a dynamical 
system operating in the vicinity of a Hopf bifurca
tion, leading from a stable steady state to a 
self-oscillation of the limit cycle type, can be cast in 
a universal, normalform: 

(1) 

Here t is a dimensionless time, z a suitable linear 
(generally complex-valued) combination of the 
initial variables, p the bifurcation parameter, Wo the 
frequency of the linearized motion, and c = u + iv a 
combination of the other parameters occurring in 
the initial equations. Switching to radial and 
angular variables through 

(2) 

we can separate the evolution into a radial and an 
angular part, 

dr 
- = pr - ur3, 
dt 

(3a) 

(3b) 

The first equation describes a relaxation of r 
towards a well-defined steady state, which is ro = 0 
(i.e. the steady state) if P/u < 0, and ro = (P/U)ll2 
(i.e. the limit cycle) if pju > O. The second equation 
on the other hand does not yield a well-defined limit 
for the phase, as it determines a whole family of 
solutions differing from each other by an arbitrary 
constant. 

In a previous work (Nicolis, 1984) we illustrated 
the process of reduction to a normal form in 
Saltzman's model oscillator (Saltzman, 1978; 
Saltzman et al., 1982) describing the interaction 
between sea-ice extent and mean ocean surface 
temperature: 

(4) 

Here ¢i' lfIi are positive parameters, 11 IS the 
deviation of the sine of the latitude of the sea-ice 
extent from the steady state and B is the excess 
mean ocean surface temperature. By performing 
the scaling transformation 

_ ( ¢2 )112 
11= - 11, 

1f13 

_ 1 
t=-t, 

¢2 
(5) 
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we can cast eqs. (4) in a form displaying two 
dimensionless parameters: 

(6a) 

dO 
dt = -al/ + bB- 1/20, (6b) 

with 

The procedure transforming eqs. (6) to the 
normal form can now be outlined. We first compute 
the characteristic roots of the linearized stability 
problem. Straightforward algebra gives: 

/1 ± iwo = !{b - 1 ± [(b - 1)2 

-4(a-b)jII2}. (7a) 

We next perform a transformation to a new 
representation diagonalizing the linear part of eqs. 
(6). The transformation matrix turns out to be: 

( 

1 
T= 

/1 + iwo + 1 
(7b) 

We thus obtain, to the dominant order in /1, the 
following equation for the transformed variable z: 

dz i 
- = (/1 + iwo) z + -
dt 2wo 

(3 + iwo)zlzI2, (8a) 

giving rise to a radial and angular part of the form 
(3a) and (3b) respectively, with u = ! and v = 

-3/2wo- The new variable z is related to the original 
ones, 1/, 0 through 

1/= 2 Rez, 

0= 2 [Re z - Wo 1m zJ. (8b) 

We now want to extend this procedure to include 
an external periodic forcing. Within the range of 
validity of eq. (8a), /1/wo ~ 1, and Izl is relatively 
small. The most important contributions of the 
coupling to the external forcing in the right-hand 
side of eq. (1) will therefore be of the form 

qfl (t) + PZf2(t), 

with fi(t) = fi(t + Te), Te being the external 
periodicity. 
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In what follows we shall restrict ourselves to the 
additive part. The reason is that according to 
recent work by Saltzman et al. (1983), the forcing 
arising from changes in the solar constant caused 
by orbital variations is to be incorporated in the 
original eqs. (4) in an additive fashion. In the simple 
case of a sinusoidal forcing one thus has 

d~ _ _ __ 
-=-921/ +910+A"coswet , 
dt 

dB _ _ _ 
--=- = -1111 ~ + 1112 0 - IIIJ~20 + A8 cos wet, 
dt 

or, in our dimensionless variables: 

dl/ 
- = - 1/ + 0 + q cos wet 
dt " 

dO 
- = -al/ + bO - ,,20 + q8 COS wet, 
dt 

with 

(9) 

(10a) 

(10b) 

By applying the same procedure as used before to 
get eq. (8a), we can now obtain the normal form of 
the Saltzman oscillator in the presence of the 
orbital forcing. After some manipulations we get: 

dz i 
-= (/1+ iwo)z + - (3 + iwo)zlzl2 
dt 2wo 

i 
+ - [(/1 - iwo + 1) q" - q8J cos wet. (11) 

2wo 

The analysis of this equation in various types of 
regimes constitutes the main theme of the present 
article. 

3. Qualitative approach 

We first explore some general properties of the 
solutions of eq. (11), assuming that the amplitude 
of the periodic forcing is small. We express this by 
the scaling 

e ~ 1, (12) 
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and seek for solutions of eq. (II) of the form 

(13) 

Two cases can now be considered. 

3.1. The system operates below the bifurcation 
pOint (damped oscillations) 

In the absence of the forcing, we have a unique 
stable solution, Zo = 0, representing the steady-state 
regime. From eqs. (13) and (II), we thus obtain to 
the first order in 8 the following simple result: 

dz I . _ 

- = (P + two) z I + q cos w/' 
dt 

where we have set 

i 
q=-[(P-iwo + l)q~-q6J, 

2wo 

(14) 

(I5) 

and considered that the bifurcation parameter P has 
a fixed negative value independent of 8. 

A particular solution of eq. (14) is easily found 

to be 

q 
Zip =-

2 

_____ e--1f..A.kt. I . } 
i(we + wo) + P 

This solution is well-behaved for all values of we 
provided that P *' O. If, however. the bifurcation 
point is approached, P ... O. the amplitude of z Ir will 

grow unboundedly when Wo ... we' This is the 
phenomenon of resonance. It is easy to show that 
the higher-order terms in the expansion of eq. (13) 
give a similar result; they remain bounded. except 
when P ... 0 and Wo tends to some harmonic of the 
forcing. Wo ... kwe • Obviously. the response of the 
system to the forcing will be enhanced at the point 
of resonance with the fundamental and. to a lesser 
extent at the points of resonance with the har
monics of the forcing. At the same time, however, 
the perturbative method we use will break down. 
We therefore exclude resonance for the time being, 
postponing a deeper analysis until Section 4. 

The general solution of eq. (I4) is given by the 
particular solution (eq. 16)), to which the general 
solution of the homogeneous equation is added. As 
the homogeneous solution is simply the damped 
oscillator problem, we finally obtain: 

Z I = K e({J+iw")' + Zir' 

where K is an undertermined constant. In the limit 
of long times, the first term on the right-hand side 
will vanish (P < 0), and therefore the indeter
minacy of K will become irrelevant. In other words. 
we obtain to the dominant order: 

Z = 8 Z I = 8 ~ { I eiwel 
r 2 i(we - wo) - P 

- i(we + ~o) + P e-
iwc

} 
(I 7) 

This solution represents a regime of entrainment of 
the system by the forcing. The phase of the 
response is perfectly well-defined, and the question 
of predictability simply does not arise. 

3.2. The system operates above the bifurcation 
(sustained oscillations) 

In the absence of the forcing we have a unique 
stable limit cycle, 

where ro' ¢o are given from eqs. (3a). (3b) and (8a): 

d¢o 3 
-=wo+-r~. 
df 2wo 

(I8) 

To study the effect of perturbation on this new 
reference state, we express (II) in the radial and 
angular variables rand ¢: 

(
dr . d¢) . . - + 1 - r e'</> = (P + iw ) r e'~ 
dt dt 0 

1 (3i ) + - - - I r) ei~ + 8 q cos We t. 
2 Wo 

Separating real and imaginary parts after setting 
(cf. eq. (15)) 

( 19) 

we obtain 

dr I 
- = pr - - r) + 8 (J cos wet COS (¢' - ¢), 
dt 2 

d¢ 3 (J 

- = (tJo + - r2 + 8 - COS wet sin (¢' - ¢). (20) 
dt 2wo r 
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We can now expand r around ro in a way similar to 
eq. (13). We obtain, to leading order in e: 

d~o 

dl 

The second eq. (21) is easily integrated to yield: 

~o ~o(O)+ (wo + ~}. 
Substituting into the first equation we obtain: 

dr 1 

dt 

(21) 

(22) 

Thirdly, and most importantly, both the phase (eq. 
(22» and the amplitude (eq. (24» of the response 
contain an undetermined phase ~o(O). In other 
words, the problem of unpredictability of the phase 
of the free oscillator is not solved by applying the 
external forcing. 

One way out of this difficulty could be that the 
procedure leading to the above results breaks 
down. This is exactly what happens near the 
bifurcation and resonance points (including points 
of resonance with higher harmonics of the forc
ing). In Section 4, we analyze in detail the regime of 
resonance and show how predictability, in this 
case, can be secured through a phase-locking 
phenomenon. 

4. Resonance as a mechanism of phase 
(23) locking and predictability 

As in Subsection 3.1, the general solution of this 
equation will be the sum of a particular solution 
and of the general solution of the homogeneous 
equation. As P > O. the latter will simply be a 
decaying exponential. K e-ilt, whose influence will 
vanish as I --> oo. We are thus left with the particular 
solution. After a straightforward integration of eq. 
(23) we obtain, for t "" 00: 

x exp (i[~' MO) + (we Wo 3Plwo)tJ} 

1 

!(We + Wo + 3Plwo) 2P 

X exp {il?' ~0(0) (We + Wo + 3Plwo)tl! 

+ complex conjugate J. (24) 

Several conclusions follow straightforwardly 
from this result. Firstly, as in Subsection 3.1, the 
response remains bounded unless the system is near 
bifurcation (P --> 0) and near resonance (wo --> wJ. 
Secondly. the response shows two independent 
freq uencies, 

3P n_ = we - Wo - - (slow modulation), 
Wo 

3P n_ = we + Wo + - (fast motion). 
Wo 

Tellus 36A (1984), 3 

In view of the subtleties arising in the handling of 
the phase, it will be convenient to work with the 
equations for the real and imaginary parts of our 
variable z. Setting 

z x + 'y, 
we obtain from eq. (11): 

dx 

dt 

! 3) 
x I>' -. x + eqy cos WeI, 

\ :no, 
(25) 

where we have set 

q~ 
-, 
2 

(26) 

In order to avoid the Singular denominators 
arising near resonance in the standard perturba
tion approach of Section 3, we perform here an 
altogether different expansion of the solutions. The 
main point is that near resonance a new, slow time 
scale, related to the inverse of the difference we -

wO' appears in the system, in addition to the scale 
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defined by the period of the external forcing. We 
express this fact by scaling the distance from 
resonance by a suitable power of the smallness 
parameter e: 

U> o. (27a) 

The existence of the fast scale, T wet and the 
slow one, r will then imply a decomposition of the 
time derivative as follows: 

d d d 
-=W +eU 

dt C dT dr 
(27b) 

Finally, the smallness of the distance from bifurca
tion will be introduced by the scaling of P, 

pe". y> O. (27c) 

Eqs. (25) become: 

8 O. 
~ x+~ x=P~+~~ ~~ 

iJT or 

8 a 
we y + eU 

oT 

-!(x 2 + y2) [Y - 3 _ a x] 
W c - We 

+ eqyCOS T. (28) 

We now have to expand the solution (x, y) in 
terms of e. The choice of the expansion will be 
guided by the requirement that one avoid secular 
terms, which arise frequently in this context (see 
below). and incorporate all relevant terms in the 
first few orders of the perturbation. The following 
development satisfies these requirements (Rosen
blat and Cohen, 1981): 

x ellJ x, + eLI} x 2 + ex} + ... , 

y eli} y I + e2i.1 Y2 + ey} + ... . (29a) 

with the choice 

U= Y (29b) 

Substituting into eqs. (28). we obtain, to order ell}, 

a homogeneous system of equations: 

- t' oT --, I' 
°YI 

aT 
(30) 

The solution of this problem is the harmonic 
oscillator: 

XI A(r) cos T + B(r) sin T, 

YI = A(r) sin T - B(r) cos T. (31 ) 

The coefficients A, B remain undetermined at 
this stage and are expected to depend, in general, 
on the slow time scale r which has not entered in 
eqs. (30). 

The next order, leads to equations 
identical to (30), and therefore adds nothing new. 
To the order e, on the other hand, we obtain: 

I, ox] ) w,. +y, 
\ oT '. 

oy} )\ 
Wn -Xl . oT . 

(32) 

This is an inhomogeneous system of equations for 
Xl' YJ' It admits a solution only if a solvability 
condition expressing the absence of terms growing 
unbounded1y in time, is satisfied. Such terms may 
arise by the following mechanism. To obtain (x}, 
Yl)' we have to "divide" the right-hand side of eqs. 
(32) by the differential matrix operator 

aT (33) 

but this is precisely the operator appearing in eqs. 
(30). According to this latter equation and eqs. 
(31), it possesses a non-trivial null space, that is, 
non-trivial eigenvectors corresponding to a zero 
eigenvalue. By dividing with such an operator, one 
may therefore introduce singularities, if the right
hand sides of eqs. (32) contain contributions lying in 
this nul space. The solvability condition (Sattinger, 
1973) allows one to rule out this possibility, by 
requiring that the right-hand sides of eqs. (32), 
viewed as a vector, be orthogonal to the eigen-

Tellus 36A (1984), 3 
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vectors of the operator (33). The latter are (cf. eq. 
(31»: 

(cos T, sin T) and (sin T, - cos T). (34) 

The scalar product to be used is the conventional 
scalar product of vector analysis, supplemented by 
an averaging over T. The point is that we will 
dispose of two solvability conditions which will 
provide us with two equations for the coefficients 
A (r), B( r) appearing in the first order of the 
perturbative development (eqs. (31 ». After a 
lengthy calculation one finds 

dA _ ( 3) q, -=(lA-ivB _·J:(A2+B2) A--B +---.:..., 
dr we 2 

- = {lB + ivA - ! (A 2 + B2) B + - A _-2. dB _ ( 3)' q 
dr We 2 

(35) 

Let us discuss, successively, the steady state 
solutions of these equations and their stability 
properties. Note that, in view of eqs. (31), the 
steady states of (35) correspond to periodic 
solutions of the original problem, that is, solutions 
entrained to the periodicity of the external forcing. 

4.1 Steady states 

Introducing a transformation to (R, '1') through 

A =R cos '1', B =R sin '1', (36) 

we obtain 

1 3 {l- qx qy . 
1 R - R = 2 cos 'I' - 2 sm '1', 

3 3 - q x. qy (3 ) - R - wR = - - sm 'I' - - cos '1'. 7 
2~ 2 2 

Taking the sum of the squares of these two 
relations one can eliminate 'I' and obtain a closed 
equation 

(38a) 
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where 

(38b) 

Fig. 1 describes the result of the numerical solution 
of eq. (38a) as a function of the distance from 
resonance, iv, obtained for 1J = I, q; + q:, = I, 
and a typical value of Wo - we = 2.32 (Saltzman et 
aI., 1982, 1983). We see that we have two regions 
of unique solution interrupted by a region of three 
solutions, associated with the appearance of an 
isolated branch of states limited by two folds 
(points Q and Q'). This phenomenon is referred to 
in bifurcation theory as isola formation. Note that 
by varying the forcing amplitude f. (while keeping it 
small) we obtain a set of diagrams which differ 
from each other only through the scaling given by 
eqs. (27) and (29). In other words the results 
reported in Fig. 1 are not tied to specific parameter 
values: they apply to whole classes of situations, 
among which the values used by Saltzman et al. 
(1982, 1983) constitute a particular example. 

4.2 Stability 

To check the stability of the above states, we 
linearize eqs. (35) successively around each of the 
solutions and study the roots of the characteristic 
equation, whose form is 

(39) 

15 

". 

J.//" . r -----------------------------
I , , 

0.5 .5 

Fig. 1. Stationary solution branches of eqs. (35) as given 
by numerical solution of eq. (38a). Full and dotted lines 
represent stable and unstable states, respectively. Notice 
the occurrence of the isolated branch limited by the two 
folds Q and Q'. Parameter values used /J = 1, Wo = 2.32 
and p2 =!. 
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with 

a22 =.B - HA~ + B~) - Bo (Bo + ~e AO). (40) 

The results are indicated again in Fig. 1, where full 
and dotted lines represent stable and unstable 
solutions, respectively. In all cases; the states on the 
lower branch turn out to be unstable (Re A. > 0 on 
these states, and for most of the parameter values 
considered, the perturbations around them grow in 
an oscillatory fashion (Im A. =I=- 0). On the other 
hand the upper part of the isola branch corresponds 
to stable states (Re A. < 0), whereas the lowest 
one behaves like a saddle point (two real roots A. 
of opposite sign). 

These results imply the following behaviour for 
the full non-linear eqs. (35). In the region beyond 
the two limit points of the isola, there is no stable 
steady-state regime, and the system is expected to 
evolve to a periodic solution of the limit cycle type. 
This is indeed verified by numerical solution of eqs. 
(35) in this range. On the other hand, in the region 
between the two limit points, the system should be 
able to reach the stable steady state on the isola 
branch, thereby enhancing its response to the 
forcing. Again, numerical solution of eqs. (35) 
confirms this trend. 

Translated in terms of the original Saltzman 
model (eqs. (25), (lOa) or (9» these results mean 
that in the above-mentioned two regions, the 
system should exhibit quasi-periodic behavior and 
periodic behavior, respectively. According to eqs. 
(35), in the quasi-periodic case, one of the two 
dominant frequencies should be the frequency of 
the external forcing, whereas the other should be 
the intrinsic frequency of the oscillator described by 
eqs. (31). The latter is equal to e3/2 W, plus 
corrections related to the distance from the 
bifurcation, and corresponds therefore to a slow 
modulation of the oscillation imposed by the 
external forcing. On the other hand, in the periodic 
case, A and B are constant in eqs. (31) and as a 

result the system is completely entrained by the 
external periodicity. 

Obviously, the periodic regime is characterized 
by a well·defined value of the phase, since it is free 
of any indeterminacy in the values of the ampli
tudes A and B. It should be therefore qualified as 
"predictable". In fact, it is a regime of complete 
phase locking, in which the phase difference of the 
system with respect to the forcing is fixed. On the 
other hand, in the quasi-periodic case, the phase 
difference is a complicated function of time giving 
rise to a rather loose predictability. 

The analysis of this section was limited to the 
case of resonance with the fundamental frequency 
of the forcing. A similar, though technically more 
involved calculation, can be carried out for reson
ances with higher harmonics, following a pro
cedure recently developed by Rosenblat and 
Cohen (1981). We do not pursue this matter 
further in the present paper. 

s. Numerical simulations 

Let us now confront these theoretical predic
tions with the numerical simulations of the full 
forced Saltzman equations, (eqs. (10». We first 
choose the strength of the forcing e in such a way 
that the parameters in the original equations are 
those determined by Saltzman et al. (1982, 1983). 
Thus, keeping a = 6.4, choosing .B = 1 in the 
calculations of Section 4 and requiring that the 
distance from bifurcation be equal to p = 0.5 
(corresponding to b = 2), we obtain from eq. (27c) 
and (29b), e2/J = 0.5, or e = 0.35. Under these 
conditions we - Wo = 0.5 w. Moreover, choosing 
p = 1/2 in eq. (38) and requiring a ratio of forcing 
amplitudes q8/q~ between about 10 and 80 as in 
Saltzman et al. (1983), we arrive, taking for instance 
q8/q~ - 24, at the values q~ = 0.07, qe = 1.7. 
In view of the comment made after eq. (38b), Fig. 1 
should still qualitatively describe the behavior of 
the system is this range. Quantitatively, we do 
expect some deformation, arising from the fact that 
the value of e is not very small, as it should be in a 
perturbative calculation. 

We now describe the results of the numerical 
integration of eqs. (10) for different values of the 
distance from resonance, w. Fig. 2 gives two typical 
time series obtained for w = 1 and w = -0.1. We 
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observe, periodic and aperiodic behavior, respect
ively, in agreement with the theoretical predictions 
summarized in Fig. I. It would therefore appear 
that a strict resonance condition is not indispen
sable for the validity of the general results of 
Section 4. 

Fig. 3 represents the power spectra correspond
ing to the two cases. As expected, in the periodic 
case, we obtain a sharp peak at a single preferred 
frequency and its harmonics (the latter are not 
visible in the range of values considered in the 
figure). In the aperiodic case, on the other hand, we 
detect two preferred frequencies, as well as less 
important peaks centered on their linear combina-

5 

8 0 

-5 

25 75 

t 

(a) 

125 

tions. It therefore seems that the aperiodic regime is 
of the quasi-periodic type with two incommen
surate frequencies. 

Perhaps the most unambiguous way to 
characterize the type of regime displayed by ,a 
dynamical system is to perform a Poincare surface 
of section (Baesens and Nicolis, 1983). Remember 
that we are dealing with a forced system involving 
the two variables " and e. Effectively, such a 
dynamics takes place in a three-dimensional space, 
since one can always express the forcing through 
q cos Xe, dx.ldt = OJe, thereby introducing its phase 
Xe as a third variable. One can now map the 
original continuous dynamical system into a 

5 

8 0 

-5 

25 75 

t 

(b) 

125 

Fig. 2. Time evolution of temperature () in the forced Saltzman oscillator. (a) Periodic behavior obtained for OJ = 1. 
(b) Quasi-periodic behavior obtained for OJ = -0.1. 
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Fig. 3. Power spectra corresponding to cases (a) and (b) of Fig. 2. 
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discrete time system by following the points at 
which the trajectories cross (with a slope of 
prescribed sign) the plane cos Xe = C, corres
ponding to a given value of the forcing. One obtains 
in this way a Poincare map, (Fig. 4), that is to say, 
a recurrence relation 

11" + I = I( 11", On)' 

On+ I g(I1", On)' 

where n labels the successive intersections. 

(41) 

Suppose now that the trajectories of the contin
uous time flow tend, as t ~ 00, to an asymptotic 
regime. In the three-dimensional state space, this 
regime will be characterized by an invariant object, 
the attractor. The signature of this object on the 
surface of the section will obviously be an attractor 
of the discrete dynamical system, eq. (41). Con· 
versely. from the existence of an attractor on the 
surface of the section, we can infer the properties of 
the underlying continuous time flow. 

We have studied the Poincare surface of section 
of eqs. (10) generated by the sequence Xe = 2nn, at 
which the forcing takes its maximum value (cos Xc 

1). A typical result in the range of parameter 
values for which the theory predicts aperiodic 
solutions is given in Fig. 5. We obtain a closed 
curve and, remembering that such a curve is the 
section of the attractor of the initial system by the 

cos w .. t 

Fig. 4. Schematic representation of a Poincare map for a 
forced system. As the system evolves, a representative 
trajectory cuts a plane of section C at discrete times t". 
The study of the dynamics on the surface of the section 
gives valuable information of the qualitative behavior of 
the initial system. 

1] 0 

-1 
...... 

-2 

-4 -2 o 2 4 6 

9 
Fig. 5. Poincare map of the forced Saltzman oscillator 
obtained with the parameters used in Fig. 2b and Fig. 3b. 

plane cos Xe 1, we conclude that the attractor 
should be a two-dimensional toroidal sur/ace. This 
proves that the behavior is quasi-periodic with two 
incommensurate frequencies. 

6. Discussion 

We have seen that self-oscillations in climate 
dynamics can display predictable behavior asso
ciated with the existence of a well-defined phase, as 
a result of resonant coupling with an external 
periodic forcing. Depending on the parameters two 
types of behavior were found: a perfect phase lock
ing leading to a periodic response; and a complex 
phase variation, leading to a quasi-periodic res
ponse. Moreover, the coupling with the forcing 
could lead to an enhancement of the response 
through a mechanism of jumps between two 
different branches of solution (d. Fig. 1). These 
theoretical predictions are in complete agreement 
with the results of numerical simulations of 
Saltzman's forced oscillator. 

In view of these results, it is tempting to suggest 
that one of the origins of the periodicities found in 
the climatic record is in the non-linear interaction 
of an underlying autonomous oscillator of the limit 
cycle type and an external oscillatory forcing. 
Moreover, these two oscillators should interact 
under conditions close to fundamental or harmonic 
resonance. 

A forced oscillator can in principle give rise to 
even more complicated regimes, such as higher 
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order quasi-periodic solutions or even chaotic 
dynamics. It should be possible to find such 
behaviors by changing such parameters as a, b etc. 
in the model. Moreover, a stochastic analysis 
incorporating the effect of both fluctuations and 
external periodic forcing, would provide a better 
understanding of the mechanism of phase locking 
and predictability. 

Throughout this paper, we restricted ourselves to 
a sinusoidal external forcing. A more realistic case 
arising, for instance in astronomical forcing, is 
the superposition of several nearly periodic distur
bances of different periods. The analysis of Sub
section 3.2 applies straightforwardly to this case 

and leads to an equation of a form similar to (24). 
Again, to ensure phase locking and predictability, a 
resonance condition with at least one of the 
external frequencies is required. However, the 
detailed quantitative treatment of the resonant 
region along the lines of Section 4 appears to be 
now much subtler. We intend to report on this 
problem in future work. 
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