
f/met. Space Sci. Vol. 29, No. 8, pp. 843-849, 1981 
Printed in Great Britain. 

0032-0633/S l/OSOS43~7$~2.~/0 
Pergamon Press Ltd. 

DIFFERENCES BETWEEN SOLAR WIND PLASMOIDS AND IDEAL 
MAGNETOHYDRODYNAMIC FILAMENTS 

J. LEMAIRE and M. ROTH 

Institut d’A&onomie Spatiale de Belgique, 3, avenue Circulaire, B-l 180 Bruxelles, Belgium 

(Receiued 26 dunce 1981) 

Abstract-Plasma irregularities present in the solar wind are plasmoids, i.e. plasma-magnetic field 
entities. These actual plasmoids differ from ideal magnetohydrodynamic (MHD) iiiaments. Indeed, 
(I) their “skin” is not infinitely thin but has a physical thickness which is determined by the 
gyromotion of the thermal ions and electrons, (2) they are of finite extent and their magnetic flux is 
interconnected with the interplanetary magnetic flux, (3) when they penetrate into the magnetosphere 
their magnetic field lines become rooted in the ionosphere (i.e. in a medium with finite transverse 
conductivity), (4) the external Lorentz force acting on their boundary surface depends on the 
orientation of their magnetic moment with respect to the external magnetic field, (5) when their 
mechanical equilibrium is disturbed, hydromagnetic oscillations can be generated. It is also suggested 
that the front side of all solar wind plasmoids which have penetrated into the magnetosphere is the 
inner edge of the magnetospheric boundary layer while the magnetopause is considered to be the 
surface where the magnetospheric plasma ceases to have a trapped pitch angle distribution. 

1. INTRODUCTION 

It was suggested in 1976, at the European Geo- 
physical Society symposium on the “Mag- 
netopause regions”, that the solar wind plasma 
carries small scale filamentary density irreguiari- 
ties which penetrate impulsively into the mag- 
netosphere (Lemaire and Roth, 1978). These irre- 
gularities are piasmoids (i.e. plasma-magnetic field 
entities) according to the definition given by Bostik 
(1956). 

Contrary to steady-state interaction models, this 
time-dependent penetration mechanism explains a 
wider range of magnetospheri~ events which are 
typically impulsive phenomena (Lemaire, 1977). 
Lemaire et al. (1979) suggested also that the direc- 
tion of the interplanetary magnetic field controls 
the impulsive penetration of small scale mag- 
netosheath plasma irregularities into the mag- 
netosphere. 

In this paper we elaborate further on this time- 
dependent impulsive penetration model, and 
emphasize in which respects it differs from ideal 
magnetohydrodynamic (MHD) models. It is in- 
dicated in Section 2 that piasmoids of finite extent 
produce a magnetic field distribution which can 
interconnect with any external magnetic field, even 
though such a magnetic coupling does not exist in 
the case of infinitely conducting MHD filaments. 
The total Lorentz force acting on the surface of 
a plasma element has been decomposed into an in- 
ternal force and an external force (Section 3). The 

external Lorentz force, as well as the “entry con- 
dition”, depends on the orientation of the magnetic 
moment of the piasmoid or of the current layer 
with respect to the external magnetic field. The 
mechanical equilibrium condition for a piasmoid is 
discussed in Section 4. In the absence of 
mechanical equilibrium the front edge of a plasma 
element intrudes into the region of closed 
geomagnetic field lines. The inner edge of the 
magnetospheric “plasma boundary layer” is then 
defined in Section 5 as the envelope of ail these 
plasma fronts. The outer edge of this transition 
region, which corresponds also to the “mag- 
netopause”, is defined in ternis of characteristic 
plasma properties instead of magnetic field sig- 
natures. 

2. MHD AND NON-MHD FILAMENT MODELS 

The plasma irregularities considered by Lemaire 
and Roth (1978) have dimensions which are 
smaller than the diameter of the magnetosphere. 
Furthermore, the finite volume does not neces- 
sarily coincide with a magnetic flux tube; their 
whole surface is not a tangential discontinuity as it 
is for the ideal MHD models recently studied 
by Schindier (1979). 

Figure i(a) represents a finite plasma element 
with a sketch of the magnetic field line topology 
associated with such a density irregularity. By 
contrast, Fig. l(b) shows an ideal MHD filament 
confined within a cylindrical magnetic flux tube of 
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FIG. 1 (a). REPRESENTATIONOFACOLLISIONLESSPLASMOID. 
The diamagnetic currents (Jd) circulating at the edge of the 
plasma element produce a magnetic field inside as well as 
outside its volume, which has dipole as well as multipole 
components. The current sheet is at least a few ion 
gyro-radii thick. The magnetic polarization M of the 
plasmoid is related to the total current density (K = 
r J, dN = M x N). The magnetic field lines traverse the 
surface of the cloud of particles. The magnetic field has a 
non-zero component in the direction of N, the normal to 
this surface; this surface is not everywhere a tangential 
discontinuity. Thermoelectric charge separation produce 
electrostatic potential differences across the surface of the 
plasmoid. These polarization electric fields have com- 
ponents perpendicular and parallel to the magnetic field 
direction. When the external kinetic and magnetic pres- 
sures are too small, the volume of the plasma element 

expands with a velocity v parallel to N. 

infinite length. In this MHD filament, plasma par- 
ticles drift along (and “with”) magnetic field lines 
which are equipotential lines as a consequence of 
the following assumed MHD conditions: (1) 
infinite parallel conductivity (a,, = m, with the 
consequence that E * B = 0), (2) vanishingly small 
transverse Pedersen conductivity everywhere 
along the magnetic field lines (a1 = 0). Strictly 
speaking these MHD conditions are almost never 
satisfied except in collisionless magnetized plas- 
mas that have either infinite extent, or are sur- 
rounded by insulating walls. 

In ideal MHD models the lateral plasma boun- 
daries are tangential discontinuities. Indeed, if this 
were not so, field lines would dip across the sur- 
face of the plasma cloud (as, for instance, in the 
case of classical double layers, oblique electros- 
tatic shocks or rotational discontinuities). Along 
the magnetic field lines the high-speed plasma 
electrons would be able to run away out of the 

“( MAGNETOPAUSE 

FIG. I(b). REPRESENTATION OF AN IDEAL MHD AND IN- 
FINITELY LONG PLASMA FILAMENT. 

It is assumed that all magnetic field lines are parallel to the 
cylindrical filament surface. The magnetic field has no 
component perpendicular to this surface, and con- 
sequently there can exist no coupling or interconnection 
between the magnetic flux inside and outside the filament. 
This model filament can be compared to an infinitely long 

and superconducting solenoid (after Schindler, 1979). 

plasma element, unless there was a parallel electric 
potential barrier preventing these electrons from 
diffusing outward faster than the thermal ions. 
Obviously, a parallel potential difference implies a 
parallel charge separation electric field, and non- 
equipotential magnetic field lines; but since this 
would violate one of the MHD conditions (E . B = 
0), it is concluded that in the ideal MHD models 
the magnetic field lines must indeed be parallel to 
the plasma boundaries. 

On the contrary, for irregularities like that illus- 
trated in Fig. l(a), the magnetic field lines are not 
equipotential lines, nor are they everywhere 
parallel to the plasma surface. ConsequentIy, the 
filament model of Lemaire et al. (1979) is fun- 
damentally different from the ideal MHD.models. 

Furthermore, in ideal MHD models, it is 
assumed that the magnetic field vector changes 
abruptly direction and/or intensity from a constant 
value (BF) inside the filament, to some different 
value (B,) outside the filament. However, actual 
tangential discontinuities always have a finite 
thickness. A more realistic picture is then one 
where the magnetic field changes gradually over 
several ion gyro-radii as described in papers by 
Lemaire and Burlaga (1976). Roth (1976, 1978, 
1979, 1980) and more recentiy by Lee and Kan 
(1979, 1980). In other words, the “skin” of the 
plasma cloud is not infinitely thin but has a physical 
thickness, in the direction perpendicular to B, 
which is determined by the gyromotion of the 
thermal ions and electrons. 
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The difference between ideal MHD filaments 
and non-MHD plasma clouds is best illustrated by 
the comparison between, on the one hand, “an 
infinitely long and infinitely conducting solenoid (or 
magnetized rod)” and, on the other hand, “a 
solenoid (or a magnetic bar) of finite length”. 
Indeed, like the solenoid of finite length, a 
diamagnetic plasma cloud produces a dipole-like 
magnetic field outside its surface (see Fig. la). The 
magnetic flux through any cross-section of the 
plasma element is coupled to (i.e. interconnected) 
and equal in magnitude to the total flux outside the 
plasma cloud. The magnetic field vector has, in 
general, a component normal to the surface of the 
plasma irregularity; magnetic field lines run across 
the plasma boundaries. However, when this 
plasma element is stretched out infinitely in the 
magnetic field direction, the field intensity tends to 
zero outside the element, as for an infinitely long 
solenoid. Furthermore, the field inside infinitely 
long MHD filaments or solenoid is uniform; the 
magnetic field lines are everywhere parallel to 
their surface. As for an infinitely long supercon- 
ducting solenoid brought into an external field, there 
is no magnetic connection (or coupling) bet- 
ween the inside and the outside of the ideal MHD 
filament. When the infinitely long and supercon- 
ducting solenoid is introduced into an external 
magnetic field, the total magnetic energy of the 
system does not depend on its orientation with 
respect to the external field. This is not the case 
for a solenoid of finite length which can be either 
accelerated or decelerated in an external dipole 
magnetic field, depending on the relative orien- 
tation of their respective magnetic moments. This 
classical example indicates that modelling 3-D 
systems in terms of idealized 2-D or I-D solutions 
is not always appropriate. 

Finally, it would not be realistic to consider that 
the Pedersen conductivity ((TV) is nearly zero 
everywhere along geomagnetic field lines. Indeed, 
magnetic field lines are usually rooted in the ion- 
osphere (i.e. in a medium with finite transverse 
conductivity), and hence the second MHD con- 
dition is not satisfied: 

C,, = /,uL dh = 0. 

Because of these fundamental differences, it 
seems difficult to draw valid conclusions about the 
motion of non-MHD and finite plasma filaments in 
an external magnetic field, from theoretical cal- 
culations based on ideal MHD models of infinitely 

long filaments. Similarly, it is not obvious that a 
stationary solution (usually proposed for con- 
venience because of its mathematical simplicity) is 
appropriate to describe a physical mechanism 
which is inherently based on time-dependent pro- 
cesses. 

Falthammar et al. (1978) describe many other 
situations in geophysical and astrophysical plas- 
mas where such remarks can directly be applied. 

3. LORENTZ FORCE ON PLASMOIDS 

Let us first consider an unmagnetized cloud of 
plasma in a vacuum devoid of any external mag- 
netic field. The plasma pressure inside the cloud is 
unbalanced since there is neither kinetic nor mag- 
netic pressure outside the filament, hence the 
pressure gradient force pushes the plasma front 
outwards, the volume occupied by the plasma 
expands indefinitely and its density tends to zero. 
An electric potential drop extending over a dis- 
tance of a few Debye lengths across the moving 
boundary maintains local and global quasi-neu- 
trality in the whole plasma blob. The height of this 
potential barrier is a few times kT/e, where T is 
the electron temperature. This electric potential is 
produced by thermoelectric charge separation at 
the front of the plasma density element. 

Cosmic plasma clouds are usually magnetized. 
The magnetic flux through a cross-section of a 
plasma irregularity depends on the intensity of the 
magnetic field in the source region in which the 
plasma has been formed by ionization of the ori- 
ginal neutral gases. 

The magnetic field distribution (B) inside and in 
the vicinity of the ionized cloud is generated by 
magnetization currents, gradient B and curvature 
currents (Jd) circulating at the surface of the col- 
lisionless plasma element as illustrated in Fig. l(a). 
Such a plasma-magnetic field entity has been 
called “plasmoid” by Bostik (1956). 

The net force (F) acting on the matter contained 
in a volume element (V) is the sum of the “pres- 
sure gradient force, the Lorentz force, and the 
electric force”. 

F=- 
I 

divPdV+ (JdXB) dV+ qEdV, 
” I ” I ” 

(1) 

where P is the kinetic pressure tensor for the 
electrons and ions; E is the electric field and q is 
the electric charge density satisfying Poisson’s 
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equation 

div E = q. 

From this, and from Maxwell’s equation 

(2) 

Jd = i curl B, (3) 

eqn. (1) becomes 

F=-/vdiv [P+(g+TE”)I--t_EE 

-fOBB 
I 

d V. (4) 

Charge separation electric fields E can be 
large at the edges of the plasmoid. They determine 
the distributions of the electrons and ions 
separately near the plasma surface. But, since the 
net charge density (4) is extremely small, the 
electrostatic force on the whole plasma 
(electrons+ ions) contributes little to F. In other 
terms 

B2 
&,E2+--&, 

or, what is equivalent, the electric drift velocity 
(v) is much smaller than the speed of light in a 
vacuum (c): 

; = u & (/LO&J’ = c. 

Using Stokes’ theorem, eqn. (4) can then be 
written as a surface integral: 

F=- 

where N is the unit vector normal to the surface 
(S) of the plasmoid. This equation has been used 
by Schindler (1979) to show that there is a force 
acting on a curved MHD filament which tends to 
reduce the curvature of the magnetic field lines 
and to straighten them. 

Equation (5) can, for instance, be used to 
evaluate the net force acting on the surface of a 
planar directional discontinuity. If B. and Bi are the 
magnetic field intensities on both sides of the 
discontinuity, it can be shown that the force acting 

on a cylindrical mass element, with a unit cross- 
section in the vicinity of this surface, is given by: 

- i N . Bo(Bi - B,). (6) 

To obtain this equation, we have taken into ac- 
count the fact that the normal component of B is 
continuous across the surface of discontinuity, i.e. 
N. Bo=N. Bi. If PN denotes the component of 
pressure component parallel to N, the normal 
component of F is equal to 

N.F=PiN-PON+~(BZ-BU2). (7) 

The magnetic effect of the surface current with a 
density 

(8) 

is equivalent to that of a magnetized medium 
whose magnetic polarization is zero outside the 
plasmoid, and equal to M inside the plasma ele- 
ment such that 

K=MxN. (9) 

Integrating the three components of eqn. (3) along 
the normal direction N, one obtains 

K=i(Bi-Bg)XN. (10) 

Therefore, we define the magnetic polarization 
inside the plasmoid as 

M=h(Bi-Bo). (11) 

Since the normal components of Bi and B. are 
equal, it results that Mi is parallel to the surface of 
discontinuity. Equation (7) can also be written as 

N.F=(PiN-PoN)+FM2+M*B0. (12) 

The first term in eqn. (12) corresponds to the 
excess of perpendicular kinetic pressure inside the 
plasmoid, while the second term is the internal 
Lorentz force produced by the plasma currents 
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(Jd) on themselves: 

I 
J&B-Bo)dV=y&fZN. (13) 

V 

Like surface tension acting on a droplet of 
water, this internal electromagnetic force main- 
tains the cohesion of the plasma filament as an 
entity. This force normal to the surface of the 
plasma irregularity does not depend on the direc- 
tion of the vector M. 

The third term of eqn. (12) corresponds to the 
normal component of the “external Lorentz 
force”: 

I vJ~xB~dV=N(M,B~)-M(N,~). (14) 

Note that eqn. (14) is identical to eqn. (5) of 
Lemaire et al. (1979). This external Lorentz force 
results from the interaction between the external 
magnetic field B0 and the local plasma currents Jd, 
while the normal component of this force (i.e. 
M - Bo) corresponds to the third term in eqn. (12). 
Note that the last terms in eqns. (14) and (6) are 
identical and that these terms, M (N - Bo), differ 
from zero only when B,, has a non-zero component 
perpendicular to the plasma boundary; for in- 
stance, in the case of a rotational discontinuity, 
when N - B0 f 0. For tangential discontinuities, 

N*Bo=N*Bi=O, 

and hence the last terms are zero. 

(15) 

In the case of finite plasmoids the internal and 
external Lorentz forces contain additional multi- 
polar terms depending upon the magnetic field 
gradients parallel to the surface of the plasma 
elements. The contribution of these terms will be 
studied in a forthcoming paper. 

From eqn. (12), it can be concluded that the 
normal component of the total Lorentz force is the 
sum of an internal force (13) independent of the 
direction of M, and an external force (14) which 
depends on the angle between the vector M and 
the external magnetic field BO. Consequently, for 
fixed values of /Ml and IB,/, the normal com- 
ponents of the external Lorentz force and of the 
total Lorentz force are maximum when M and B0 
are parallel. Note, however, that the normal com- 
ponent of the total Lorentz force does not change 
when the magnetic field inside the plasma filament 
is changed from + Bi to - B+ This result can easily 
be seen from eqn. (7), and it has been used by 

Schindler (1979) to show that the motion of an 
ideal MHD filament is the same whether the fields 
inside and outside are parallel or antiparallel. This 
may appear to contradict the previous conclusion, 
but this is not so, because changing B, into - Bi is 
not equivalent to changing M into -M. 

4. CONDITION FOR MECHANICAL EQUILIBRIUM 

When the condition 

PiN-PoN +&(BF-Hz)=0 (16) 

is satisfied or, what is equivalent, when 

PiN-P~N+~BOM2+M’BO=0, (17) 

it can be seen, from eqn. (7) or eqn. (f2), that the 
normal component of F is equal to zero as is also 
the acceleration of the plasma boundary. The 
plasma element is then in mechanical equilibrium. 
These equilibrium conditions (16) or (17) can never 
be satisfied when the external magnetic field B. 
and the kinetic pressure PoN at large radial dis- 
tance outside the piasmoid are both equal to zero, 
as in a vacuum. In this case, the magnetized 
plasma cloud will expand adiabatically: the larger 
its magnetic pressure, the larger its expansion rate. 
In general, however, the plasmoid is not in a 
vacuum and it will expand until the kinetic and 
magnetic pressures inside the plasma cloud 
reach the values required to satisfy the equili- 
brium conditions (16) or (17), i.e. until the total 
pressures on both sides of the plasma surface are 
balanced. During this process, the cloud boundary 
will move outwards and its volume will increase, 
while its density, magnetic pressure and per- 
pendicular kinetic pressure witl all decrease so as 
to reduce the total pressure unbalance. It can 
easily be envisaged that overshooting due to the 
inertia of the mass element can lead to over- 
expansion and to subsequent contraction and 
expansion phases of the plasma element. As a 
result, hydromagnetic oscillations can be 
generated and propagate in the externai plasma as 
Alfven waves; continuous geomagnetic pulsations 
often occurring as a train of separate PC 3-4 wave 
packets like those recently analysed by Mier- 
Iedrzejowicz and Hughes (1980) can be initiated 
by impulsive penetrations of separate solar wind 
plasmoids in the dayside magnetosphere. 
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5. A TIME-DEPRNDENT AND IRREGULAR MAGNETOPAUSE 

SURFACE 

The plasma and field on both sides of a steady- 
state magnetopause in mechanical equilibrium 
satisfy the equilibrium conditions (16) or (17) until 
the instant when the magnetosheath plasma pres- 
sure and momentum density are suddenly 
enhanced by the arrival of some new plasma cloud 
reaching the magnetopause region. Only solar 
wind plasma irregularities with an excess momen- 
tum are able to make their way through the mag- 
netosheath and to reach the average magnetopause 
position (Lemaire and Roth, 1978). Because of the 
excess momentum and also because of the ad- 
ditional plasma pressure, the surface separating 
magnetosheath plasma and magnetospheric plasma 
moves towards the Earth. Magnetospheric plasma 
can also be pushed ahead towards the Earth by 
this magnetosheath plasma front acting as a piston. 
But small-scale solar wind irregularities intruding 
into the magnetosphere become permeated by 
closed geomagnetic field lines, and trapped parti- 
cles of magneotospheric origin drift into these 
plasma clouds. 

The admixture of magnetosheath-like and mag- 
netospheri~-fike particfe populations is typical of 
the “boundary layer plasma” found at the outer- 
most fringes of the magnetosphere (Eastman and 
Hones, 1979). The front side of this intruding 
plasma element is part of the inner edge of the 
“plasma boundary layer”, while the outer edge of 
the so-called “plasma boundary layer” is the 
magnetopause per se. Every time an intruding 
plasma element disturbs the focal geomagnetic 
field distribution, the field lines which were ori- 
ginally closed eventually become interconnected 
with those of the solar wind. Similarly, the inner 
edge of the “plasma boundary layer” is formed by 
the front sides of all the solar wind plasma irre- 
gularities that have sufficient momentum to 
penetrate into the closed magnetic field fines 
region. This excess of momentum is transferred to 
the dayside cusp ionosphere as described by 
Lemaire (1979). The excess kinetic energy of the 
intruding plasma is dissipated by Joule heating of 
the ionospheric plasma in the cleft regions 
(Lemaire, 1977) where Titheridge (1976) has 
detected a large temperature peak from 400 up to 
1000 km altitude. Every time a new plasma density 
irregularity reaches the average magnetopause 
position and increases the plasma momentum and 
pressure in the magnetosheath, new solar wind 
plasma breaks into the geomagnetic field fike an 
ocean wave breaking on a sandy beach. The 

plasma boundary layer can be compared to the 
thin transition layer where air bubbles are engulfed 
below the surface of an ocean disturbed by a gusty 
air flow (Lemaire, 1978). 

In the impulsive penetration model, the mag- 
netopause is not a smooth stationary surface, but a 
rather irregular and time-varying boundary be- 
tween plasma of different origins. Furthermore, in 
disagreement with conventional interaction 
models, not all the solar wind particles impinge on 
a stationary and sharply defined magnetopause 
surface; indeed, plasma elements traversing the 
bow shock with a momentum density smaller than 
the average will not reach the magnetopause 
region, but will be deflected sideways at a greater 
distance from the Earth and will slip around the 
flanks of the magnetosphere in the outermost 
layers of the magnetosheath. 

Finally, in the impulsive penetration model, the 
magnetopause is defined as the surface where the 
magnetospheric plasma ceases to have a trapped 
pitch angle distribution, Thus this surface 
separates the closed geomagnetic field lines from 
those that have at feast one “foot” in the inter- 
planetary medium. This definition of the mag- 
netopause is based on the difference between the 
plasma properties found on the two sides, and not 
on the observed magnetic field signatures. Indeed, 
the type of magnetic field fines can change from 
“closed” to “open” (inter~onne~ted~ without a 
sharp variation in either the intensity or the direc- 
tion of the magnetic field. 
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