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Abstract. The effect of fluctuations on a simple energy balance model is examined. A new, long 
characteristic time scale referring to the passage between different stable climatic states is identified. It 
is shown that a weak external forcing whose period is comparable to this scale enables the system to 
switch between different states with a high probability. The connection with glaciation cycles is pointed 
out. 

1. Introduction - The Importance of Fluctuations 

The most  important  single element  affecting the energy budget  of the Eal:th- 

a tmosphere  system is, without any doubt, the solar output. It has been recognized 

for a long t ime that the response to this output  is far f rom being a passive one, 

obeying to a simple proport ionali ty law (see e.g., North et al., 1981). Rather,  it 

reflects the existence of numerous  feedbacks related to the inherently nonlinear 

dynamics ot~ the Ear th -a tmosphere  system, such as the  ice-albedo feedback, the 

effect of clouds, and so forth. 

As well known, nonlinear dynamical systems may give rise to a variety of 

instability and transition phenomena .  (Nicolis and Prigogine, 1977). In the last 

decade numerous  authors pointed out that this possibility may be at the origin of 

the climatic transitions that have occurred in the past. A detailed analysis of several 

climatic models has substantiated this conjecture to the extent that it has established 

the existence of bifurcations on such models.  It has however  left open the answer 

to two most  important  questions: (i) how can the system transit between the states 

available through l~ifurcation? In the usual analysis the various stable states are 

fairly far apart ,  and the passage between them requires giant perturbat ions which 

are difficult to conceive. (ii) What  is the t ime scale of climatic change? The general 

t rend of models available so far is to predict scales which are far too short as 

compared  to the scales of major  climatic episodes such as, say, the Quaternary  

glaciations. Especially crucial in this latter context, is the inability to reproduce the 

100 000 yr dominant  periodicity of glaciation cycles. 

The purpose of this paper  is to show that the answer to these questions rests in 

the variability of both the solar output  and the internal dynamics  o f  the Earth-  

atmosphere system. It  is hardly necessary to insist, in a meet ing like this, on the 

justification of the variability of the first kind. As regards the internal variability, 

the main idea is that in a complex system like the Ear th -a tmosphere  one there are 
continuous imbalances between the rates of the various processes going on. Such 

imbalances are perceived by the system as a noise around the deterministic evolution 
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and are called fluctuations. An individual fluctuation is, typically, a localized small 
amplitude event. Yet in a potentially unstable system even small random disturb- 
ances associated with fluctuations will sooner or later drive the system to a new 

regime. In principle therefore,  we expect that the analysis of fluctuations-should 
provide the answer to questions (i) and (ii) raised above. 

In Section 2 we outline the formalism of Markovian processes, appropriate for 
the study of fluctuations. Section 3 is devoted to a brief representation of the major  
results. 

2. Stochastic Formulation 

Let  s denote  a set of climatic variables obeying to a closed equation of evolution. 
A typical example is the surface temperature  T averaged over space coordinates, 

within the framework of a 'zero-dimensional '  (0-d) climate model. In the absence 
of fluctuations s is supposed to obey to the following equation of evolution: 

ds 
~-7 =f (2 ,  h, t)=fo(2,/~)-}-8fl(:~,/~, t). (2.1) 

Here  f is an appropriate nonlinear rate function, and h stands for a set of characteris- 
tic parameters such as mean annual solar influx, albedo and so forth. This function 
is decomposed into a part, )Co, corresponding to an autonomous evolution and a 

part, f l ,  describing the effect of some external forcing proportional to e. An 
interesting example of the latter is the variation of insolation associated with the 
variation of eccentricity of the Earth 's  orbit. 

Of special interest for our work are cases where the steady-state solutions of 
Equation (2.1) in the absence of forcing, e = 0, 

f0(s A) = 0 (2.2) 

are multiple and see their stability properties change as the parameters a take 
different values. 

As discussed in the introduction, the deterministic description must often be 
supplemented with information concerning the fluctuations. We denote their effect 

by a random force F(t)  and assume the latter to be x- independent  and define a 
white noise (Wax, 1954): 

(F(t))  = O, 

(F(t)F(t ' ) )  = q 2 3 ( t -  t') , (2.3) 

where the average is taken over the appropriate statistical ensemble. Conditions 
(2.3) are expected to be reasonable because of the local character of fluctuations, 
as a result of which the system should rapidly loose the memory of the past states. 
Equation (2.1) is now to be replaced by the stochastic differential equation 

d x ,  = f ( x t ,  A, t )+F( t )  dt .  (2.4) 
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As well known Equations (2.3)-(2.4) are equivalent to a Fokker - Planck equation 
with nonlinear friction (drift) coefficient and constant diffusion coefficient: 

OP(x, t) 0 q2 02p(x, t) 
Ot - Ox f (x ,h ,  t)P(x, t)+ 2 Ox 2 , (2.5) 

where P(x, t) is the probability density for having the value(s) x of the state 
variable(s) at time t. 

In the sequel we illustrate the application of Equation (2.5) to the global (0-d) 
energy balance model. In this case x is the surface temperature, f the energy budget 
divided by the heat capacity (yr 1 K). The variance q2 is then to be measured in 
(yr -I K2). 

3. Results 

A .  A U T O N O M O U S  E V O L U T I O N  

We first discuss the behavior of Equation (2.5) in the absence of external forcing, 
e = 0. As the coefficients become then time-independent the equation admits a 
steady-state solution of the form (Nicolis and Nicolis, 1981): 

f0  xexpI-  exp[-  o X, 1 
This expression features the climatic potential Uo(x) defined through the relation 

i 
x 

Uo(x, h) = - dsr fo(s r h ) .  (3.2) 

The lower limit in the integral is immaterial, as it corresponds to the addition of 
an arbitrary constant to Uo(x) which cancels in Equation (3.1) anyway. 

For typical values of the parameters h, the underlying 0-d deterministic model 
admits three steady-state solutions (Crafoord and K~ill~n, 1978): two stable states 
T+, T_ corresponding respectively to the present-day and to a deep-freeze climate, 
and an unstable state, To, separating the first two ones. This property is reflected 
by the existence of two minima and one maximum of the climatic potential Uo(x). 
A sensitivity analysis of U0 in parameter space further reveals that the depth of 
the minima can be changed. According to Equation (3.1), the deepest minimum 
will correspond to the most probable state. It is therefore legitimate to consider 
such a state as the dominant climatic regime. We have defined the conditions under 
which the present-day or the deep-freeze climate will dominate. These two situations 
are separated by a coexistence region corresponding to specific relations between 
parameter values in which these two climates are equally dominant. Figure 1 
represents qualitatively the probability function in this region. 
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Steady-state probability distribution Ps(x) for three representative cases. Note that, in the 
second case where Ps(x) is a two-hump distribution, the two climates T+ and T_ are equally dominant. 

The next question to be asked concerns the transition between different stable 

climatic states. In the presence of fluctuations such transitions can occur spon- 

taneously at any instant, but typically they will require a long t ime period because 

the system will have to overcome the barrier corresponding to the unstable state 

To. In terms of the potential  Uo(x) this barr ier  is measured by the difference 

A Uo• = Uo( To, h)  - Uo( T• h ) . (3.3) 

The mean  transition t ime z has been evaluated using a method similar to Kramers '  
evaluation of chemical reaction rates (Nicolis and Nicolis, 1981). For a transition 

over  the barrier  starting f rom T§ the result is 

~- -  7 r ( -  U0 (To, h )U0  (T+, 1)) -1/2 exp 2 AU0+(A) . (3.4) 

For small values of the variance q2 compared  to the height of the potential  barrier  

A Uo§ this t ime becomes exceeding long. We have explored systematically the 
pa ramete r  space and found values of q~ and I for which z can become of the order 
of 104 and l0  s yr, which is precisely in the range of characteristic times of glaciations. 

B. E F F E C T  O F  S O L A R  V A R I A B I L I T Y  

We now consider the case where the autonomous  evolution is per turbed by a small 
external forcing. One example is the effect of sunspot cycle which, despite an 
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inherent noise, shows an approximate 11-yr periodicity. Another example is the 
slight change in the mean annual energy influx (-0.1%) arising from the variation 
of the eccentricity of the Earth's orbit with a periodicity of about 105 yr (e.g. see 
Imbrie and Imbrie, 1980). In either case, to simplify the analysis as much as possible 
we describe these nearly periodic variations in the form 

O - O0(1 + e sin wt). (3.5) 

The unperturbed solar constant is taken to be Q0 = 340 Wm -2. 
We have analyzed the deterministic and the stochastic response of the Earth- 

atmosphere system to the forcing described by Equation (3.5), at the level of a 0-d 
energy balance model. For a small value of e, typically 0.001, the deterministic 
response is negligible. In contrast, the stochastic response can be dramatically 
amplified, provided that the transition time scale (Equation (3.4)) matches the time 
scale of the external periodicity, 2zr/o). Under these conditions the probability 
density at the most probable value varies as (Nicolis, 1981) 

P(T+, t) =/V+ sin (~ot + ~b) +No+, (3.6) 

where 

, 1 (3.7) 
N+ ~ (1 + ~o:r:) 1/e G(A) 
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Fig. 2. Curve (a): Time dependence  of the potential  difference U(t)  = U(T+,  t ) -  U(To,  t), subject  to 
a periodic forcing with ~o = 2zr/10 s and e = 0.001, simulating the variation of the eccentricity of the 
Ear th ' s  orbit. Curve (b): Time evolution of the difference of the probabilities of the two stable states 
divided by their common  steady-state value P, = P(T§ = P(7"_), in the presence of the forcing represented 

in curve (a). 
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and 

~b - - arctg (~o~-). (3.8) 

The function G(A) turns out to be exponentially small in all cases, except when 

the two states 7"+ and T_ are equally dominant  (referred to as 'coexistence'  in 

Section 3A). On the other hand, the factor multiplying this function is usually very 

small since as we ment ioned in the previous subsection, ~- tends to be very large. 

Typically therefore the ampli tude of the stochastic response iV+ is negligible, 

compared  to the steady-state level No§ There  is however  an exception to this rule, 

namely when the two characteristic times ~- and 2~-/~o are comparable.  In that case 

the factor multiplying G(A) is of order 1 and the stochastic response to the periodic 
forcing becomes comparable  to the steady state value No§ 

Figure 2 provides an illustration of these results in the case of a forcing having 

a very long periodicity ( - 1 0  5 yr). We have found therefore a mechanism enabling 

the system to capture such long period signals and use them to lower the value of 

the potential  barr ier  and per form a transition to another  state with an appreciable 

probability. The connection between these results and the glaciation cycles is 
tempting. 
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