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ABSTRACT

A model of steady-state tangential discontinuities
has been developed using the kinetic theory of
multi-components collisionless plasmas, In the
momenta plane the velocity distribution functions
are combined step functions of two anisotropic
displaced Maxwellians whose first moments are
identical with the actual asymptotic moments., We
consider the magnetopause layer and the inner
edge of the plasma boundary layer as regions
where two different hydrogen plasmas are inter-
penetrated and the model is used to describe their
microstructures, Large field-aligned currents are
generated at the magnetopause and may constitute
a part of the field-aligned currents observed in
the cusps, A stability study shows that the
electron layers are nearly always unstable, The
thickness of stable ion layers increases with
iniregsing values of the temperature ratio

(T /T ) and/or with decreasing density variationms.
This thjckness represents also 2,5 ion gyroradii
when (T /T ) becomes larger than 5. A minimum
magnetopause thickness is found equal to 100 km,

Key words : Vlasov plasmas, tangential discontinu-
ities, modified two-stream instability, magneto-
pause, low latitude plasma boundary layer,

1, INTRODUCTION

Cosmic plasmas are generally observed to divide
themselves into distinct regions of different
densities, temperatures, magnetizations and flow
regimes, The boundaries of these regions are
often stable transition layers with very high
lifetimes, consisting of interpenetrated plasmas
from the adjacent zones (Ref, 1), Most of these
transitions contain electric sheet currents which
change the orientation and the intensity of the
magnetic field, Their observed thickness are
generally of the order of a few ion Larmor gyro-
radii, In the Earth's environment, the neutral
sheet, the magnetopause layer and the plasma
boundary layer or even the filamentary structure
of the solar wind are some of the most pertaining
examples,

In this paper we shall use the kinetic theory of
collisionless plasmas to describe the micro-
structure of a family of these boundary layers,

i,e., tangential discontinuities, In Vlasov

plasmas these types of layers have been studied g
by a number of authors, In this domain the work |
of Sestero (Ref, 2-3) is a pioneer one. This
author considered tangential discontinuities in a
magnetized hydrogen plasma with equal ion and
electron temperatures, In this model the magnitude
of the magnetic induction changes while the
direction does not, Subsequently other models have
been developed, some of them with the aim of
describing the magnetopause structure Alpers
(Ref. 4) and Kan (Ref. 5) considered only exactly
charge neutral sheet models, but included multi-
directional currents in the plane of the
discontinuity, Like Sestero the inclusion of a
normal electric field has been investigated by
Roth (Ref, 6) in a description of the plasmapause
structure, by Lemaire and Burlaga (Ref, 7) in
studies of tangential discontinuities in the solar
wind, by Roth (Ref.8) and more recently by Lee

and Kan (Ref. 9) in descriptions of the magnetopause
structure, All these latter models are generaliza-
tions of Sestero theory., They differ from one
another in the choice of the analytical forms

used to represent the velocity distribution
functions, This choice and the boundary conditions
determine with uniqueness the microstructure of
the boundary layers.

The model used in thispaper is described in section 2.
It allows the presence of a multi-components
plasma and includes boundary conditions which
permit plasma flows in the discontinuity plane

and temperature anisotropies on both sides of

the sheath, It differs only slightly from the
previous model of Roth (Ref., 8) by inclusion of
different mean velocities for the plasma cons¢itu-
ents. In particular, two types of boundary layers
can be derived compatibly with the presence of
convection and charge separation electric fields,
The first type includes layers in which the plasma
bulk velocity on both sides is unchanged., In these
layers the magnetic induction varies both in
intensity and direction, The second type of layers
includes structures in which the magnetic induction
is everywhere oriented along a given direction,

In these layers the magnetic induction varies only
in intensity but the flow velocity changes both

in intensity and direction.

In section 3 and 4 these two types of boundary

layers are successively applied to the description
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of the microstructure of the magnetopause layer
and inner edge of the plasma boundary layer. The
role of ordinary and modified two-stream instabil-
ities on the microstability and thickness of these
current layers are analyzed in section 5 in the
case of a hydrogen plasma, Main conclusions are
given in section 6,

2, THEORY

2.1, Description of the model

In a collisionless plasma, a tangential discontinu-
ity in the magnetic field is described by a kinetic
theory based on the Vlasov-Maxwell equations, In
this model the plasma contains p components of
different characteristics, each of them being
identified with the superscript v, The corresponding
elementary particles have a mass m'Y’/ and a charge
Z\V’e, (Here e is the proton charge). The plane of
the discontindity is parallel to the (y, z) plane
and all the variables are assumed to depend on the
x coordinate only, The plasma characteristics on
opposite sides of the transition (at x = - = and

X = + », identified with subscripts 1 and 2) are
the main moments of the actual veloci%y)distzi?u-
tion functions : number densi%ies (Ny Y2 gy Py
mean velocity components (Vy v)’ vy (V) "and v, (V%
Vz (v)), perpendicular (TLI(V , Tp(9)) and
parallel (T); V), THZ(v ) temperatures, Unlike
components may be constituted of the same
elementary particles, This can occur when two
hydrogen plasmas (p = 4) of different energies

and flow velocities are interpenetrated on both
sides of the discontinuity,

Considering that there is no mass transfer across
the transition and that the parallel conductivity
is very large, the electric field is everywhere
oriented along the x axis, Furthermore, the

normal component of the magnetic field (Bx) is
assumed to vanish since we do not consider
rotational discontinuities, Therefore, the
potentials of the electromagnetic field are
inferred to be of the form (0, a,(x), a,(x)) for
the vector potential and¢(x) for the electrical
potential,

2.2, Basic equations

In the rationalized MKSA units the Maxwell
equations become

2
s : (v)
—21 =-u, L g (1
dx v=1 y

2
d a P

= -k E o )
dx ° y=1 z

2
d ¢ e p

- =-— = vy V) (3)
dx & v=1

o
where € and b, are respectively the permittivity

and the permeability of vacuum, j v) and | v)
are the y and z components of the current density

(}(V)) carried by, the charged particles of the
v- species, and n(\J is the corresponding number
density. The electric field (E, o, o) and the
magnetic induction (0, B, B,) derived from the
electromagnetic potentiays are given by

d¢
E=- — (4)
dx
da
B = - —2 (5)
y dx
da
B = —L (6)
z
dx

The velocity distribution functions must satisfy
Vlasov equation whose most general solution is
any function depending only on the constants of
particle motion, These constants are the kinetic
energy (H) and the y and z components of the
generalized momentum (p)

1

H = F-2" a5y
(v)
2m
p = m(V) v+ Z(v) e a (8)
y ¥y y
p = m(v) v+ Z(v) e a 9)
z z z

Here H is also the Hamiltonian of the particle
while v. and v are the y and z components of
the pargicle vglocity,
The structure of the transition is determined by
solving the system of differential equations 1 to
6. This can be achieved by numerical methods when
the current and number densities are expressed in
terms of a_, a_ and ¢, The numerical integration
is made possible by a method of predicator-
corrector type (Ref, 10).
The electrical potential ¢ (x) satisfies Poisson
equation 3, Its determination is greatly
simplified by using the quasi-neutrality
approximation

P

5 Z(v) n(v) -

1

0 (10)
v

A self-consistent electric field is_then obtained
whenever the charge density - £ ( ) obtained
by calculating the second derivative 9X of the
potential is much smaller than the charge

density associated with the positive (or negative)
charged particles, This condition being realized
in most cases supports a priori the validity of
approximation 10. To solve Eq. 10 we use Newton
method of successive iterations,

2.3, The velocity distribution functions

From the previous paragraph it follows that the
velocity distribution functions are any functions
of H, p, and P,. In the present work we have
generalized Sestero functions (Ref. 2-3) by using
the following distributions
2
(v) v)
F =
(1, Py P, g (Py, p) .
i=1
(v)
0. H, py, pz) (11)

i
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(v)

where 1 are anisotropic displaced Maxwellians
which will be later on stated while ggv are
discontinuous functions in the plane of the
generalized momentum components, These latter
functions take constant values C;¥/ (k) (& 0) in
each quadrant Ep(k = 1, 2, 3, 4) dividi?g)this
p%a?e in four from a finite origin p,, V) For
2V’ > 0, these quadrants are defined in the
following way :

_ (v) (v)
B =1-o, b Txlop, s Foall
1 1
- (v) (v
E, [ P, , +oo [ x [ Poz. , +oo [
1 1
_ (v) (v)
E3 = ] ~ oo, Poyi ] x ] - o0, pOZi ]
_ (v) (v)
E4 = [ POyi , ool x ] - o pOZi ]

For Z(v) < 0, quadrants E;, E, and E,, Ej are

permuted, This is illustrated in Figure 1 which
shows that the asymptotic domains of quadrants Ey
are related to the asymptotic values of the vector
potential components located in the quadrants E&

of the (a,, a,) plane., This can be easily seen

from Eqs. 8-9 defining the generalized momentum
components,
In what follows we shall always take
W oy n (12)
C2 Ve 0
(v)
= 1
¢, (kz) 0 (13)
(v) _
C1 (kl) 3 (14)
Across the transition, from x = - w (i = 1) to

X =+ (i = 2) the extremity of the vector
potential describes a curve in the (ay, a,) plane
starting in an asymptotic domain of a quadrant Eﬁ
and ending in an asymptotic domain of another
quadrant Eﬁz, Egqs., 11 to 14 then show that the
v?£9city distribution function F Y/ changes from
1] at x = - to Cév) (ky) nzv at x = + o, These
asymptotic functions must have the same first order
moments as the actual velocity distribution
functions on each side, A simple description of
these functions is given by anisotropic displaced
Maxwellians of the form

m(v) 3/2 1
) (v)
ng . (G, B, p) =N < v _(» 172
2k Tie "m
exp {.' ; .} exp {>‘ : ( L o
(v) : ) | i
kTJ_i kTLi 2
(v)
2 \7‘“)]} o Y = e il
i : ™) Ti\.))
1
{sin Gi (Py = m(V) Vi:))

2
- cos 6; (p, - o vz(i")) + d§") }}‘ (15)

E; E}

E p, E2 E, T E;
f Bi_op
Ki_ ‘2 Y
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Ej E, E; E

Ze>0 Ze<0

Figure 1 - Definition of the quadrants E, .
For v=1, ..., pand 1 =1, 2
quadrants divide the generalized
momenta plane (py, p.) in four from
a finite origin BOi%V), Quadrants Eqp,
E, and E,, E3 are permuted for charged
particles of opposite signs as dis-
played by the figure, In this way, the
asymptotic domains of quadrants E,
dividing the (a_,, a_) plane are related
to the asymptotic domains of the
corresponding quadrants E, . This can be
seen from the definition of the
generalized momentum : P = mv + Z e 4,
For example, the corresponding as-
ymptotic domains of quadrants E] and
E, are indicated by arrows, When the
vector potential curve starts in an
asymptotic domain of a quadrant Eé
(x = - =) and ends in an asymptotid
domain of another quadrant Ej, (x = +oo),
the velocity distribution functions
change from their starting asymptotic
forms in quadrants Eg; to their final
asymptotic forms in quadrants Ekz’ as
defined by Eqs. 11 to 14,

these

£}

where Aiv) and dgV)are constants defined by
T(v)
v)_ i
Ay o) (16)
T,
i
v) _ )
di = z eay (17)

The constancy of df“) is easily deduced from Egs,

SKQ).In Eq. 15, k'is the Boltzman constant and

N is a constant which will be shown related

to the asymptotic number density at x = - «, The

parameters 6; are the constant angles between the
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z axis and the magnetic induction direction at

X = T o, However, some conditions on the parameters
entering into the definition of the asymptotic
velocity distribution function given by Eq, 15
must be fulfilled to obtain charge neutrality and
uniformity at x = F . These conditions will be
considered in the next section,

Finally, it could be shown that the velocity
distribution functions defined in this paragraph
have analytical moments of any order (Ref, 11),
Their determination is purely algebrical but rather
lengthy and will therefore not be considered here,

2.4, Boundary conditions

2.4,1, Initial conditions, We start the integration
with large initial values of the vector potential
components situated in an asymptotic domain of
quadrant Ep,. For these initial values the vy
velocity distribution functions reduce to 13

We also give initial values for the electrical
potential and the magnetic induction components
and assign an arbitrary negative value x_ for the
n?r al distance x. The constants C}¥/ (k,),

1 (), cf¥) (ky) and c{V) (k,) are suitably
chosen to maEe the vector potential extremity
describe a curve beginning and ending in prescribed
quadrants Eil and Ey,. This can be realized if the
kinetic pressures associated with the asymptotic
domains of quadrants E,, and E,, are larger than
the initial total pressure (kinetic + magnetic)
associated with quadrant Ep,. This procedure
together with appropriate initial values of the
vector potential components permits arbitrary
rotations of the magnetic induction B,

&

.2. Constraints on the boundary conditions. At
T = the plasma and field parameters must
become uniform_aThis implies some constraints on
the parameters V;¥/ and N}Y/, Indeed, the plasma
must asymptotically be charge neutral and the
total current density (J) must vanish, This leads
to the following conditions

2.
X

P

s 2 g 2 (18)
i

v=1

P (v =(v)

> 2 N, v, = @ (19)

=1 1 1

For different asymptotic mean velocities of
plasma components the bulk velocity Ei is
defined by

. P
2T s 29 %)y o
gl 1 v=1 -

and the corresponding convection electric field
is given by

E, =c,A B, (21)
1 1 1

Egqs. 4 to 6 and Eq, 21 show that the asymptotic
potentials take the following analytical forms

¢, =a, . +¢_ (22)
i i i oi
a =B X + a
Yy z; oy, (23)
a =-B X + a (24)
z y. oz
i i ;i

where ¢ .45 8oy; and a,,, are constants which are
generally differet for i = 1 and i = 2,

We can determine the partial number densities
and current densities at x = - » (i = 1) and

X =+ o (i = 2) by calculating the first moments
ofv§he asymptotic velocity distributions

C:

i Cky) ni(v). This gives the following results:
(v) - =(v)
) () [ 2 e @y = el
N, =¢C, (k,) N exp1‘~
i i i (v)
k Tli

(25)

B e PR (26)
i i i

Taking account of Eqs, 22 to 24, the dependence
of Eq. 25 upon the electrical potential takes
the following form :

o, -5 . vV -
1 1 1
[ -VNA B x+a. . @ -3 44
i 3 i"x oi L i oi
27

For the plasma to remain uniform, it is therefore
essential that

=(v) _ v) =
Vi Ume may Bi/Bi (28)
where a?v) a

r% constants which must satisfy Eqgs.
19-20. When V ) are given by Eq, 28 the depen-
dence of Eq. 25 upon the electrical potential
reduces to :

v
i

Z(v)e (¢i _ ;i . gEv)) - aFv) dfv) % Z(v)

e¢

i i oi

(29)
In this paper we shall analyze a class of transi-
tions for which

St _ pled

1 9 (30)
A A (31)
1 1

Eq. 30 indicatesthat the mean velocity of any
plasma component is unchanged on both sides of
the transition while Eq. 31 shows that the
asymptotic densities are given by

Z(v)e

v) _ _(v) (v) oi
Ni =& (ki) N exp < - > (32)
k Tli
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In a frame of reference moving with the velocity
?1 we normalize the electrical potential to zero,
i.e.,

¢ =0 (33)

(v)

Taking account of Eq. 14 the constants N are
then seen equal to the number densities at

X = -0, i, €.,

NiV) -2 (34)

In a frame of reference moving with the bulk
velocity of the plasma the electrical potential
difference ¢02 is deduced from Eq, 32

@ e
%o, ™ - <1§2 e [ D J (35)
2 Z c2 (kz) N1

The superscript (1) identifies an arbitrary first
plasma constituent, From eq ?5, it is seen that
the value of the constant C21 (k,) determines

the electrical potential difference ¢02. The other
constants Cév (ky) are given by

(v)

C2 (kz) =
Z(v) TLEI)
- (1) _(v)
N(v) e Z Ty,
5| m—m J (353
N1 C2 (kz) N1

When the quantitiesié1 CKV)(k'), j=l,..., 4 are
equal to unity and ngv =19 W, the corresponding
velocity distribution function remains a full
Maxwellian throughout the transition and the
temperatures and mean velocity of this constituent
remain constant from x = - © to X = + o, When
electron (resp. ion) constituents remain Maxwellian
distributed the ions (resp. electrons) alone
contribute to the variation of the magnetic
induction, As Sestero [Ref, 2] we have called this
type of transitions 'ion (resp. electron) layers'
Notwithstanding this distinction the class of
transitions defined by Eqs. 30-31 can be split up
into two categories which will be described in the
two next sections,

2.5. Transitions for which ¢, = c,, B, # 5
B, # B2)
(v) _ . o g

If ®g = 0,Eq. 31 is satisfied and Eq. 28

indicates that at x = T « all the plasma components
move with the same mean velocity equal to the bulk
velocity, Furthermore, Eq. 30 states that the bulk
velocity must remain unchanged at x = - o and

X = 4 o,
1f dﬁv) £ O (aiV) = ), the initial parallel

component of the vector potential is not vanishing,
A large series of computations has shown that the
value of a;,; is a parameter controlling the
total rotation (A8) of the magnetic induction,
However, arbitrary rotation of B can be made
possible principally by choosing suitable starting
(E'kl) and ending (E'k,) quadrants and suitable
values of the constants C3¥/(kg) and C&V)(kA) as
described in section 2,4,1, With this procedure
A6 can take arbitrary values in any quadrant
between O and 2m, Subsequently, the value of 401
controls the rotation in this quadrant, For these
transitions, parallel currents are generated
since the magnetic induction changes direction,
When the magnetic induction is rotating throughout
the transition its final orientation is not known
a priori and we restrict the model to isotropic
temperatures at x = + o (i.e,, sz = 1), This
reduces to unity the last exponential term of

1 V) defined in Eq. 15 and avoid tedio?s itera-
tions to determine the true value of d2V)

(or 8“2).

'3 3 s d d
2.6, Transitions for which C # c2 (c1 # CZ) s
BZ & 1

These transitions allow a variation in intensity
and direction of the plasma bulk velocity while
the magnetic induction remains everywhere
oriented along a given direction, This category
of boundary layers are constructed by taking
dgv) =0, e, ay) = a0 =(8) In this case
Eq., 31 is satisfied even if &j # 0. The vector
potential will everywhere remain perpendicular
to B and no net parallel current will be gener~
ated if the velocity distribution functions in
the (py, pZ) plane are symmetrical with respect
to the line corresponding,in the (a az) plane,
to the vector ajp. ~(v) .

As we consider transitions for which Vlv = VéV)
(Eq. 30), the plasma bulk velocity will vary in
direction only when more than two plasma compon-
ents are present in the layer, In this case the
constants aiV differ from zero but must satisfy
Eqs. 19-20. Taking account of the charge neutral-
ity condition (Eq, 18) it is deduced from Eqs,
19-20 that the constants a;¥’/ must satisfy the
following relation

%, o (el N(V) =
@O ay B

y?

0 (37)

where the summation is extended to plasma
components characterized by the same elementary
particles, This kind of transition can be
encountered when two hydrogen plasmas are inter-
penetrated on both sides of the discontinuity,
In this case the two populations of electrons
(or ions) have generally not the same number
densities, temperatures and mean velocities,

It is important Eo)note that the perpendicular
components of Vi V' and VY7 are equal, This is
a consequence of Eq, 28, Furthermore,Eq., 30 shows
that this perpendicular component is unchanged
on both sides of the transition.
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Ffv the foregoing it is concluded that ng),
N
i

, ¢4 and By are not independent quantities
but are connected between themselves through Egs,
18-28-30 and 37, Physically this means that the
plasma must be asymptotically charge neutral and
uniform, Furthermore, the constancy of the
perpendicular components of Viv is simply the
result of the common electric drift imposed to all
charged particles, Indeed, when the plasma and
fields are uniform, the only perpendicular drift
is the electric drift,

3. A MICROSCOPIC DESCRIPTION OF THE MAGNETOPAUSE
STRUCTURE

Observations show that the magnetopause is a
transition layer through which the magnetic field
shifts its direction, In general no significant
changes in electron density or energy spectra are
observed at the magnetopause (Ref, 12-13)., In this
section we consider the magnetopause as a current
layer in which two hydrogen plasmas are inter-
penetrated, It is a transition of the type
analyzed in section 2.5, We define i = 1 (x = - o)
as the magnetosheath side and i = 2 (x = + ) as
the magnetospheric side (or more exactly the
plasma boundary layer side). The four plasma
components are numbered v = 1 for the solar wind
originating electrons, 2 for the magnetosphere
originating electrons, = 3 for the solar wind
originating ions and v 4 for the magnetosphere
originating ions,

The following typical boundary conditions have
been used (for simplicity we co?s}der isgtropic
temperatures on both sides) = n(3) =

[}

< <

25 en™>, N§2)= 8 = 10379 em™3, N;l = N;3) =

20 cm_3, NéZ) = NEQ) = 1 qm_3, T;l) = Tél) =

5 x IOSK, Tizg = 3 % 106K, T§3) = T§3) =3 x 106K,
4 _ )7 7

T1 = =4 %x 10K, For 1 =1, 2 and v =
Iy wums % viv) = cy, = 320 km/s and ng) =cgy =
320 km/s., TK% initial magnetic induction compon-

ents are : By = - 35,45 nT and B, = 6.25 nT.

o=

We also define k., = 3, k=4, k 1, k, = 2 and
1 2 (v3 4

take the following constants C; )(k3)= 1

cMay =1, My =1, cMVw) =1

| (v)A . (v)2 3 2 4

Po1 = Po, =0, for v =1, ., 4. Finally,

from Eq. 36,7 k) = 1, ¢P ) =1, Pk, =

w2 2 2 2 3. S°g
0.77, ¢.* (k) = 0.96.

From theése a%ove values of the constant C it can
be deduced that the kinetic pressures associated
with quadrant Ey, and quadrant E are both larger
than the total pressure (kinetic + magnetic)
associated with quadrant Ej . 'This will allow the
extremity of the vector potential to describe a
curve ending in the prescribed quadrant E'y,.
Furthermore the layer will neither be an ion layer
nor an electron layer but an intermediate layer
with electron and ion current components (see the
end of section 2.4),

Integration has been started with a ¥ = - 539 and
a, = - 2540 where 2 " is a dimensionless vector
potential Etye vector potential unit is

'« TH11 ]llz/e)_ These initial conditions

MAGNETIC INDUCTION (nT)

correspond to a 88° angle between a and E and
have been chosen to produce a rotation A6 between
90° and 180°, After the integration has been
performed a new system of coordinates has been
chosen, In this system the direction of*the new

z axis coincides with the direction of B,., In the
following part of this section, all the results
are given in this new system of coordinates, This
system is very useful because in all computations
of the magnetopause structure the z axis now
coincides with the magnetospheric magnetic
induction,

40
20
0
-20
-40 1 1 1 1 1
-300 -200  -100 0 100 200 300
X (km)

Figure 2 - Variations of the magnetic induction
components (By, B,) and intensity (B)
across the magnetopause from the
magnetosheath (large negative values
of x) to the magnetosphere (large
positive values of x).

The hodogram on the left hand side
shows that the magnetic induction has
rotated through an angle of 136°, The
length of the y axis represents 20 nT,
The intensity has a dip at 23 nT near
the center of the transition but does
not change appreciably on both sides
of the magnetopause,

Figure 2 shows the B_ and B, components of the
magnetic induction, 8n the left hand side a
hodogram shows that A6 = 136°, The thickness of
this transition is about 200 km, The intensity
(B) changes from By ~ 36 nT in the magnetosheath
to By, ~ 44 nT in the magnetosphere with a dip at
23 nT near x = 0, A three-dimensional illustration
of this magnetic induction variation is also
displayed in Figure 3,

The current density responsible for the field
variation is displayed in Figures 4 and 5,
Corresponding hodograms are shown on the left
hand sides of these figures, It can be seen that
this current is highly field-aligned, The
integrated part of this parallel current density
is more than twice the integrated part of the
perpendicular component, The maximum intensity
attains 7.5 x 107/ A/m? at the center of the
transition, These field-aligned currents at the
magnetopause may constitute a part of the
parallel currents observed in the cusps (Ref,
14-15), They can transfer plasma, momentum and
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Figure 3 -

A three dimensional representation of
the magnetic induction displayed in
figure 2 illustrating the spatial
variation of the B vectors,

The length of the x axis represents
1075 km while the lengths of the y and
z axes both represent 45 nT,

o N N oo o
TETEYT T

CURRENT DENSITY (10°A/md)

P |

Pl |

Figure 4 -

300

Intensity (J), y component (J ) and z
component (J, ) of the total current
density across the magnetopause,

The maximum intensity attains7.5 x 10
A/m2 near the center of the transition,
A corresponding hodogram is shown in
the left corner of this figure, Its

y axis represents 5 x 10-7 A/mz, This
current density produces the magnetic
induction variation displayed in
figures 2 and 3,

7

CURRENT DENSITY (107A/m3)

0
-2
-4
1 | ] 1 1
-300 -200 -100 0 100 200 300
X (km)

Figure 5 - The current density displayed in
figure 4 is represented in this
figure by its parallel (J;,) and
perpendicular (J|) components, The J
curve still represents the correspon-
ding vector intensity, The hodogram
in the left upper corner refers to a
local frame of reference whose z axis
is orientated along the local g
induction, J, has the same orientation
as the local y axis so that x, J| and
Jy form a right-hand system, The
length of the y axis represents
5 x 1077 A/mz, The current density at
the magnetopause is highly field-
aligned since J; is everywhere larger
than J| .

energy between the magnetosheath and magneto-
sphere, or vice versa (Ref,16),

Figure 6 displays the components (c_ and cz), the
intensity (c) and the parallel (c¢j;)” and perpendic-
ular (c;) components of the flow velocity. This
bulk velocity is unchanged on both sides

(450 km/s) but increases at the center (~ 600 km/d
while changing slightly its orientation as shown
by,the hodogram on the left hand side, In the
magnetosphere the bulk velocity is highly field-
aligned (cj, = 444 km/s) with a small perpendic-
ular component (c; 5 = - 88 km/s).

Electric field (E), electrical potential (¢) and
charge separation (An/n) are illustrated in
Figure 7. The potential ¢ is deduced from the
charge neutrality approximation given by Eq. 10,
The asymptotic values of the electric field
correspond to the convection electric field due
to the plasma motion across the field lines, As
the magnetic field direction is nearly reversed
while the flow velocity keeps the same orientation
on both sides of the transition, this electric
field changes sign when passing through x = 0,

In the magnetosheath, the bulk velocity has a
significant perpendicular component (see Figure 6)
and produces a convection electric field of

- 13 mV/m. However, the bulk velocity in the
magnetosphere is nearly field-aligned (see

Figure 6) and produces a convection electric
field of only + 3 mV/m, The charge separation



302

8

&
]
I

g

o

-200

FLOW VELOCITY (km/s)

Figure 6 - Intensity (c), y component (c,) and
z component (cz) of the flow velocity
across the magnetopause, The dotted
curves represent the parallel (cj) and
perpendicular (c;) components of this
flow velocity, The hodogram displayed
on the left hand side of this figure
shows that the flow velocity changes
slightly its orientation near x = O
where the intensity (c) attains a
maximum value of nearly 600 km/s.
However, this flow velocity remains un-
changed on both sides of the magneto-
pause current layer where the mean
velocities of the plasma constituents
are ali equg} go the flow velocity, i.e,
Cgy = Cp = st i th The length of
the y axis represents 200 km/s. Because
of the large B rotation displayed in
figures 2 and 3, the parallel (cy) and
perpendicular (c;) components exhibit
significant variations. In the magneto-
sphere ( x = +.), the flow becomes
highly field-aligned (CHZ = 444 km/s)
with a small perpendicular component
(c;p = - 88 km/s)

displayed in the bottom panel of Figure 7 is
everywhere negligible, being everywhere less than
6 x 10°7. This supports a priori the charge
neutrality approximation (Eq. 10) used for solving
Poisson equation (Eq. 3).

Figures 8 and 9 illustrate the number densities
and mean temperatures variations across the
transition, The number densities nl. represent the
electron (-) or ion (+) number densities from solar
wind (sw) origin for which v = 1 (electrons) or

v = 3 (ions), In the same way nj are the number
densities from magnetospheric (m) origin for which
v = 2 (electrons) or v = 4 (ions), A similar
notation is used for the temperatures on both
sides, In Figure 9, < T > and < T~ > are the mean
temperatures of ions and electrons defined by

T 5

+ + + 4 +
<T">=(> 1> +n- 1-)/(n- + n) (38)
SW  SW m m sw m

where 1T are the temperatures across the

transition,
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Figure 7 - Electrical potential (¢) and electric

field (E) across the magnetopause are
displayed in the upper panel of this
figure, The potential ¢ is deduced
from the charge neutrality condition,
The electric field is normal to the
plane of the discontinuity, As a
consequence of plasma motion across
field lines this electric field on
both sides becomes a convection
electric field, The relative charge
separation (An/n) is shown in the lower
panel, Here n 1is the total ion number
density 3 + a®))and 0~ is the
total electron number density

(n + nf2 ).

It can be seen that the densities have a peak
near x = 0 but their variations are not important,
It is interesting to note that ions and electrons
fram the same origin have not exactly the same
concentrations although the plasma remains
locally charge neutral, The temperatures dis-
played in Figure 9 exhibit small amplitude
variations but have a tendency to increase when
going from the magnetosheath to the magnetosphere.

4, A MICROSCOPIC DESCRIPTION OF THE INNER EDGE OF
THE PLASMA BOUNDARY LAYER

The plasma boundary layer (Ref, 17 to 21) is a
region of magnetosheath-like plasma located
immediately earthward of the magnetopause layer,
This layer is located inside the magnetosphere,
Its thickness is generally much larger than the
thickness of the magnetopause layer, At its inner
edge ,towards the Earth, variations in bulk
velocity and plasma parameters are often observed
while the direction of the magnetic induction
remains unchanged, This inner edge constitutes a
transition of the type analyzed in section 2,6,
Here i = 1 defines the plasma boundary layer side
(x = - ») and i = 2 denotes the magnetosphere
side (x = + »), The four plasma components are
numbered as in section 3,
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Figure 8 - Number densities across the magneto-
pause, "
In the upper panel, n and “sw are
respectively the ion ?v = 3) and
electron (v = 1) number densities of
solar wind origin, In the lower panel,
n$ and ny are respectively the ion
(v = 4) and electron (v = 2) number
densities of magnetospheric origin, It
can be seen that ions and electrons
from the same origin have not exactly
the same concentrations, although the
plasma remains locally quasi-neutral,

With isotropic temperatures the follow%ng typ1ca1
boundary conditions have been used : N = N(

1
10 cm-3, N§2) = Nia) =1 cm_3, N;l) (3) I.SCﬁ?
NEZ) - 0.7289 cm'3, Til) ;1) 5 x 105K
SCH I ) B ) R - - T(4)
1 T2 B | 2 3
Tél*) =4x 10K, Forv=1, ..., 4 vg,‘l’) = v;;)—

- = 17 km/s while v“) = v 189,277 kb
(2) y2(2) 1 52 @) ’
e =9, - 308.744 km/s, V, =V, =
L 2 W @ E p
189.277 km/s, V" =V, = - 308.774 kn/s, ¢, =
144 km/s, c,, = 26.4 km/s. The magnetic induction

z7

components are Byl = 0 nT and le &

=3 k

80 nT. We also

define k., =1, k, = 2 = 4 and adopt the

1 > 79 > 3 4
constants C(v (k) = ( )(k Y (V)(k y = g,
(v) a(%) Q(V)
(k) ‘1) pol "POZ = 0, forv:l, a5 4,
Flnally,from Eq. 36, Cél)(k ) =1, C(Z)(k y =

(3) (%)

(k ) =0.109, C (k ) = 0.712. The 1ntegrat1on
has been started w1th a*¥ = - 1500 and a* =0, i.e.,
with 4.B = 0. These above conditions have been
chosen to satisfy Eqs. 18-28-30 and 37. No

rotation of the magnetic
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Figure 9 - Mean ion and electron temperatures
are respectively displayed in the
upper and lower panels as a function
of the distance normal to the magneto-
pause, The temperatures of the diff-
erent plasma components are unchanged
on both sides of the transition and
their values are recalled in the left
upper corner of each panel, In the
upper panel Tgy and Tgy are
respectively the asymptotic ion
(v =3;1i=1, 2) and electron (v = 1;

, 2) temperatures of the solar

wind particles, In the lower panel

T$ and T, are respectively the

asymptotic ion (v = 4; i = 1, 2) and

electron (v = 2; i = 1, 2) temperatures

of the magnetospheric particles,

i=1

induction is allowed for since the welocity distribu-
tion functions are symmetrical with respect to
the p_ axis, Furthermore, the above temperatures
and values of constants C;V/(k,), C(“)(k ) and
C(V)(kz) for v =1, 2 1nd1cate that we have an
ion layer as descrlbed in the last paragraph of
section 2.4,
Figure 10 is an illustration of the bulk velocity
variation, A small perpendicular component (cy =
17 km/s) is applied on both sides of the transi-
tion while a substantial parallel component
(cyq = 144 km/s) is allowed for on the plasma
boundary layer side,
Across the transition the parallel component
decreases monotonously while the perpendicular
component has a peak of nearly 400 km/s near

= 0. The hodogram displayed on the left hand
side of Figure 10 shows that the rotation of the
bulk velocity is larger than 180°., This variation
of the bulk velocity is also represented in
three-dimensions in Figure 11,
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Figure 10 - Intensity (c), y component (c,) and

z component (cz) of the flow velocity
across the inner edge of the plasma
boundary layer from the plasma
boundary layer (large negative values
of x) to the magnetosphere (large
positive values of x)., The hodogram

in the left lower corner shows that
the flow velocity has rotated through
an angle of more than 180°, The length
of the y axis represents 150 km/s. The
parallel component (c,) decreases
monotonously from 144 km/s to 26.4 km/s,
while the perpendicular component has
a peak of nearly 400 km/s near x = 0
due to the intense ion current density,
All the plasma components have the
same asymptotic perpendicular mean
velocities equal to 17 km/s,
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Figure 11 - A three-dimensional representation of

the flow velocity displayed in

figure 10, illustrating the spatial
variation of the € vectors, The length
of the x axis represents 205 km, while
the lengths of the y and z axes
represent respectively 125 km/s and
175 km/s,
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Figure 12 - Total current density (J,) and
magnetic induction (B,) variations
across the inner edge of the plasma
boundary layer, The magnetic
induction remains aligned-along the
z axis while the total current
density is always oriented along the
y axis, i.e., J.E = 0 and there is
no field-aligned current,

The peak in the perpendicular velocity is due to
the displacement of ions from their mean positions
in a frame of reference moving with the bulk
velocity of electrons, This ion displacement
across the field lines generate the current
density, As the number density jump from one side
to the other is relatively important in this
example, it is reasonable that the current
density and the perpendicular bulk velocity
become intense, This is rarely observed in the
plasma boundary layer but this could happen at
the inner edge when the density jump becomes
sharp as assumed in this example,

The magnetic induction (B_) and current density
(J) are displayed in Figure 12, These two vectors
are perpendicular and no field-aligned current
can be generated, The amplitude of the magnetic
induction variation is relatively small (~ 8 nT)
and the peak current intensity attains

3.5 x 1077 A/m?. The thickness of the tramsition
is about 100 km which represents half of the
magnetopause thickness evaluated in section 3,
Electric field (E), electrical potential (¢) and
charge separation (An/n) are illustrated in
Figure 13, On both sides the electric field is
negative and equal to the convection electric
field ¢ A B, In the center of the transition the
electric field has a positive peak of 4 mV/m due
to the charge separation displayed in the bottom
panel of Figure 13, This charge separation
(At/n) remains quite small and less than

1.25 x 1077,

Finally, figures 14 and 15 show the number
densities and the mean temperatures as given

by Eq. 38. The notations are similar to those

of Figures 8 and 9 displayed in section 3. It
can be seen that the number densities decrease
monotonously towards the magnetosphere interior
while the reverse variation is seen in the
temperature profiles, In fact, these types of
variation are characteristic of the low latitude
plasma boundary layer (Ref, 12-13),




MICROSCOPIC DESCRIPTION OF INTERPENETRATED PLASMA REGIONS 305

1 1 1
T & 100 &
E M
- 9
£ o
o o
=
w v
o b
o e
o o=,
5 B
z 2
o -2F H-2003
5x10) =+ t !
0 *
1= An/n
L. ¥
l"-5x10'6" -
C
]
5
’c -1x10 I~ =
1 1 I
100 -50 0 50 100
X (km)

Figure 13 - Electrical potential (¢) and electric
field (E) across the inner edge of the
plasma boundary layer are displayed in
the upper panel of this figure, The
potential ¢ is deduced from the charge
neutrality condition, Theelectric
field is normal to the plane of the
discontinuity, As a consequence of
charge separation into the layer, a
peak electric field is set up near
the center of the tranmsition, Its
intensity grows up to nearly 4 mV/m,
The relative charge separation (An/n)
is shown in the lower panel, Here nt
is the to%a} ion number density
(n(3 + n 4 Yand n~ is the total
electron number density (n(l) + n(Z)),

5. STABILITY AND THICKNESS OF A VLASOV-MAXWELL
TANGENTIAL DISCONTINUITY

The stability of structures analyzed in this paper
represents a difficult problem, Nevertheless

(Ref., 11) some results have been found in the
special case of a two components hydrogen plasma
whose current carriers are either the electrons

or the ions, (The so-called electron layers or

ion layers in Sestero theory, Ref, 2). In such
layers the temperatures and mean velocities of

the two plasma constituents are unchanged on both
sides of the transition, In this section we shall
summarize the principal results,

Figures 16 and 17 illustrate the stability of
electron and ion layers with respect to ordinary
(0) and modified (M) two-stream instabilities
(Ref. 22). Curves labeled (0) and (M) are the
locations in the (u, n2) plane where the threshold
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Figure 14 - Number densities across the inner
edge of the plasma boundary layer,
In the upper panel, n;w and n;w
represent respectively the ion (v = 3)
and electron (v = 1) number densities
of solar wind origin, In the lower
panel n; and n_ represent respect-
ively the ion (v = 4) and electron
(v = 2) number densities of magneto-
spheric origin, It can be seen that
ions and electrons from the same
origin have not exactly the same
concentrations, although the plasma
remains locally quasi-neutral,

for instability is attained somewhere in the
transition, The absciss u represents the tem-
perature ratio Tt/T~ while the ordinate ny
represents the asymptotic number density ratio
N,/Nj. (It is assumed that the value of the
number density is the largest on side 1), For
the two-stream instabilities the shaded areas
represent the stable domains of the (u, n,) plane.
From Figure 16, it can be seen that the electron
layers are nearly always unstable with respect
to the modified two-stream instability, Indeed,
these layers can only support a very small
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Figure 15 - Mean ion and electron temperatures are
respectively displayed in the upper
and lower panels as a function of the
distance normal to the inner edge of
the plasma boundary layer, The tem-
peratures of the different plasma
constituents are unchanged on both
sides of the transition and their
values are recalled in the left upper
corner of each panel, In the upper
panel T:w and Tg, are respectively
the asymptotic ion (v = 3; i =1, 2)
and electron (v = 1; i = 1, 2) tem-
peratures of the solar wind particles.
In the lower panel T$ and T are
respectively the asymptotic ion
(v =4; i =1, 2) and electron (v = 2;
i = 1, 2) temperatures of the magneto-
spheric particles,

density variation when the temperature ratio is
not too different from unity,

However ion layers can be stable in a large frac-
tion of the (u, n,) plane as shown in Figure 17.
At the magnetopause, u = 10 (Ref, 13) and the
maximum allowed variation of the number density
is 90% (i.e,, ny = 0.1) for an ion layer. Larger
variations would make these transitions unstable
with respect to the modified two-stream instabil-
ity.

A definition of the transition thickness is given

by Figure 18 for a monotonously decreasing density,

For ion layers this thickness is shown in
Figure 19 in unit of the ion gyro-radius measured
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Figure 16 - Stability of an electron layer with
respect to the ordinary (0) and
modified (M) two-stream instabilities,
The curves are the locations in the
(u, n,) plane where the threshold for
instability is attained somewhere
into the transition., Shaded area shows
the stable domain of the (u, “2) plam

at the center of the transition, It is given as

a function of the ratio u., The value of BI (ratio
of the electron kinetic pressure to the magnetic
pressure on side 1) has been assumed equal to 1.5.
It can be seen from Figure 19 that for u > 5, the
thickness tends to become equal to 2,5 ion gyro-
radii whatever the value of n, (> 0.1) may be.
The absolute value of the ion layer thickness is
displayed in Figure 20, The unit is now the
electron inertial length (Ref. 23 to 26) which is
inversely proportional to the square root of the
electron density on side 1, For a typical magneto-
sheath density of 10 cm'3 this unit represents

1 km, i.e., the classical Ferraro magnetopause
thickness (Ref, 23). Figure 20 shows that the
measured thickness of an ion layer increases with
u., For u values larger than 1 the thickness is
also increasing with n,. But for u smaller than
0.1 the thickness is decreasing when n, is
increasing,

For u = 10 the magnetopause thickness is expected
to be about 100 km (N1 ~ 10 em™3) for n, = 0.2,
But this thickness increases substantia%ly when
the density variation decreases (i.e,, when

By = 1),
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Figure 17 - Stability of an ion layer with respect

to ordinary (0) and modified (M) two-
stream instabilities., The curves are
the locations in the (u, n,) plane
where the threshold for instability

is attained somewhere into the
transition, Shaded area showsthe stable
domain of the (u, nz) plane,
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Figure 18 - Definition of the transition

thickness D,

The number density normalized to
unity at x = - oo is assumed to
decrease monotonously towards n, at

X = + o, The thickness (D) is between
the points of intersection of the
tangent to the slope at the point of
inflexion with lines parallel to the
asymptotic densities,
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Figure 19 - Thickness of an ion layer in unit
of the ion gyroradius as a function
of the temperature ratio TT/T~ for
different values of the density
ratio NZ/NI when B8] = 1.5.
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Figure 20 -~ Thickness of an ion layer in unit of

the electron inertial length as a
function of the temperature ratio
TY/T~ for different values of the
density ratio N2/N1 when GI = 1.5,
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These results explain pretty well why the magneto-
pause is rarely observed with thickness smaller
than 100 km , The minimum magnetopause thickness
is therefore close to the Parker magnetopause
thickness (Ref. 27) rather than close to the
Ferraro magnetopause thickness,

6. CONCLUSIONS

The kinetic model of tangential discontinuities
described in this paper has been used to represent
the magnetopause and inner edge of the plasma boundary
layer. In the former case, the magnetic induction
changes orientation in an arbitrary way while the
bulk velocity remains unchanged on both sides, In
the latter case the plasma bulk velocity is able
to vary both in intensity and direction while the
magnetic induction remains oriented along a given
direction, The variation of the plasma bulk
velocity is made compatible with the presence of
different convection electric fields on both sides
of the transition,

At the magnetopause high field-aligned currents
can be generated, These parallel currents may
constitute a part of the field-aligned currents
observed in the cusps and can transfer plasma,
momentum and energy between the magnetosheath and
magnetosphere,

Ordinary and modified two-stream instabilities
play an important role on the microstability of
the current sheets analyzed in this paper. It has
been shown that for a hydrogen plasma, electron
layers are nearly always unstable, but ion layers
can be stable for conditions pertaining to the
magnetopause or to the plasma boundary layer (i.e.,
u =TT  ~ 10, ny = N,/N; > 0.1). It is also
shown that the thickness of these ion layers

are at least equal to 2.5 ion gyro-radii

evaluated at the center of the transition, However, ,

the absolute thickness increases when the ratio
Tt/T~ increases and/or when the density variation
decreases,

For the magnetopause (u = 10), we have deduced a
minimum thickness of 100 km , This minimum
thickness is attained when the density variation
through the sheath becomes equal to 80% (n, = 0.2),
i.e., when the density ratio N2/N1 becomes close
to the threshold value for the modified two-stream
instability,
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