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Resume : Les principa1es approximations hydrodynamiques des equa­

tions generales de transport sont presentees avec 1eurs1imites 

de va1idite. 11 est montre que ces approximations ne sont app1i­

cables a l'etude du vent solaire que jusqu'a une distance radiale 

de 5 a 10 rayons solaires. Au-de1a de cette distance, dans l'exo­

sphere ionique du Solei1, des approximations cinetiques sont pre­

conisees. Un exemp1e de modele cinetique (exospherique) du vent 

solaire est discute. Bien qu'un certain nombre de moments ca1-

cu1es dans ce modele cinetique correspondent aux va1eurs observees 

a 1 UA, 1e desaccord constate pour l'anisotropie de 1a tempera­

ture nous suggere de considerer des mode1es cinetiques plus e1a­

bores ou l'effet des collisions Cou10nbiennes serait traite connne 

une correction du premier ordre de 1a fonction de distribution 

des vitesses. 

Introduction. Alternative points of view and lively controversies 

are met in Physics, as well as in other human activities. Indeed from 

the fields of Quantum ~-1echanics to Cosmology there is quite a number 

of well known controversies which have focused interest of a wide 

audience upon certain crucial scientific questions. The opposition 

betvleen the proponents of hydrodynamic solar wind models and kinetic 

solar wind models is just one more example which is still alive in 

our memories so that it is unnecessary to recall more historical 

details. Nearly tHO decade after the rise of this controversy we have 

tried to reconsider in a different perspective the two alternative 

points of view, emphasizing the complementary more than the contra­

dictory aspects of both theoretical approaches. 
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The Hydrodynamic approximations. Let us first recall how the hydro­

dynamic approximations are derived from the general Boltzmann equation 

which describes the evolution of the particle velocity distribution 

function, f(c,t). Taking velocity moments of Boltzmann's equation, a 

straightforward procedure determines an infinite set of Moments Equations 

of which the five first are the transport equations governing the densi­

ty (zero order moment), the components of the bulk velocity (first order 

moment), and the temperature (a second order moment) of a neutral or 

ionized gas. 

The equation governing the bulk velocity contains components of 

the pressure or stress tensors. The equation governing second order 

moments contains third order moments, etc •. There are a number of 

approaches to limiting the number of Moments Equations, and to obtaining 

a closed set of differential equations which can then be integrated for 

given boundary conditions. 

In fig. 1 different approaches leading to different hydrodynamic 

approximations are listed. A very comprehensive discussion of all these 

hydrodynamic approximations has been given by Schunk (1977) and should 

not be repeated here. An impressive number of solar wind models are 

based on these different hydrodynamic approximations. A comparative 

analysis of the various hydrodynamic solutions has been given by 

Hundhausen (1972). 

Limitations of the hydrodynamic approximations. Although it is unneces­

sary to repeat a detailed analysis of the limitations of hydrodynamic 

approximations, however, it is worth recalling here that the Euler, 

Navier-Stokes, or Burnett approximations of the general transport 

equations have been established exclusively for collision-dominated 

gases : i.e. when the interaction force between particles is well 

determined, and, when the velocity distribution is not too far from the 

maxwellian equilibrium function as the result of collisions. 



The latter condition implies. for steady state flow regimes, that 

the mean free path (m.f.p.) of the interacting particles is small 

with respect to D, the dimension of the system. In the solar wind 

the characteristic dimension of the system is the density scale height 

dR.n n 
-1 

H = (1) 
dr 

The curve 2 in figure 2 shows the value of the scale height (H) derived 

from an observed coronal electron density distribution (n ) which is 
e 

given by the curve 1. 

For a fully ionized gas the collision mean free path to be consi­

dered is that given by Spitzer (1956) for binary Coulomb interactions. 

The angular deflections mean free path of a thermal proton in the solar 

corona and in the solar wind is approximately given (in km) by 

T 2 
= 0.072 .....E..­

n p 
(2) 

o -3 where T and n are the proton temperature.{ K) and density (em ), p p 
respectively. 
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For the plasma density illustrated by curve 1 in figure 2, .the pro­

ton mean free path can be determined as a function of the radial distance 

(r) or as a function of height (h) above the solar limb. The larger 

the proton temperature (T ), the larger the m.f.p. and the smaller is the 
p 

exobase altitude (h ) where (R.D) equals the density scale height (H). 
o p 

This is shown by the dashed curve 3 in figure 2 giving the altitudes of 

the proton exobase for a continuous set of proton temperatures ranging 

between T = 5 x 105K and T = 2 x 106K• The dashed curve 4 in figure 2 
p p 
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gives the exobase altitude for the thermal electrons as a function of the 

electron temperature T (h ). 
e 0 

Above these altitudes in the solar corona, Coulomb collisions with 

impact parameters smaller than the Debye length are infrequent and they 

play a secondary role only in the evolution of the velocity distribution 

function. In this region of the solar atmosphere, called the ion-exosphere, 

the m.f.p. is larger than the scale height, and the hydrodynamic approxi­

mations deduced from Chapman-Enskog's or Grad's approaches are difficult 

to justify. Indeed these particular approximations of the most general 

transport equations are based on the assumption that the Knudsen Number 

(t/D) is much smaller than unity. Obviously this is not the case in the 

ion-exosphere i.e. above an altitude of 6.3 Sun radii when T - 9 x 105K 
6 P 

and T - 1.4 x 10 K (Lemaire and Scherer, 1971a, 1973). e 

Below the exobase altitude, only, can a hydrodynamic approximation 

confidently be used to determine the density, bulk velocity and temperature 

distributions in the solar corona. Although the general Moments Equations 

must be satisfied everywhere (even in the ion-exosphere), the hydrodyna­

mic approximations depending on special closing procedures of these 

Moments Equations, however, are questionable under certain physical con­

ditions like those in the distant solar wind plasma. Even when the velo­

city distribution happens to be close to a maxwellian (i.e. with relative­

ly small first order correction terms) in a Knudsen gas (i.e. when t/H > 

1), can an hydrodynamic approximation not be justified; for instance, 

in a Knudsen gas, the heat flow cannot be assumed proportional to the 

temperature gradient (Shizga1, 1977). 

The possibility to replace particle collisions by wave-partic1e 

interactions has sometimes been invoked to justifying the relevance of 

the hydrodynamic approximations beyond the exobase altitude. This would 
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imply for wave-particle interactions to have similar effects on the velo­

city distribution as Coulomb collisions. Furthermore, assuming the Navier­

Stokes approximation is applicable to a collisionless plasma when wave­

particle i~teractions are important, would imply that the stress tensor 

and heat flow can still be expressed in terms of the lower order moments 

of the velocity distribution function as for a gas dominated by particle 

collisions (i.e. stress tensor being determined by velocity shears; the 

heat flow being proportional to the gradient of the gas temperature) ! 

Furthermore, even if these assumptions could be proven, eventually, to 

be correct for certain types of wave-particle interactions it remains to 

be demonstrated that the proportionality factors (i.e. the viscosity 

coefficients; the thermal conductivity coefficient) have still the usually 

infered T5/ 2 temperature dependence as for Coulomb interactions. There­

fore, some reservations must be made when the conductivity and viscosity 

coefficients are simply modified by an ad-hoc factor to account for wave­

particle interactions in hydrodynamic solar wind models. 

Hydrodynamic solar wind models. The first hydrodynamic solar wind model was 

based on Euler approximation, assuming an isotropic pressure tensor and 

isothermal temperature distribution (Parker, 1958). Later on, Navier-Stokes 

equations were extensively used to model the solar wind expansion. This 

mathematical improvement did not change drastically the density and bulk 

flow distribution in the corona itself (i.e. within 4 - 6 solar radii) 

where the application of the hydrodynamic approximations is not question­

nable. The discrepancies between hydrodynamic models generally appear at 

larger radial distances (for instance at 1 AU). Therefore we can limit 

the following discussion to the most simple expansion model of the solar 

corona: i.e. the isothermal model. 

Figures 3 and 4 are distributions of bulk velocities (w) and plasma 

densities (n) for five hydrodynamic models. The temperature of the elec­

trons and protons are both assumed to be lo6K• At the reference altitude 



346 

h f. 0.5 Sun radius~ the electron and proton densities are equal to 
re -3 

107 cm ; this is a value taken from Pottash (1960). These boundary 

conditions which are in the range of observed values, are identical for 

all models considered in figures 3 and 4. However, the bulk velocity at 

the reference level is different in each case. The curve £ corresponds 

to the well known critical solution of the Euler hydrodynamic equations. 

(w f - 3.996 km/sec at the reference level). The curves a and b re-re : 
present subcritica1 (or subsonic) solutions of the hydrodynamic equations; 

the curves ~ and ~ correspond to Parker's supercritica1 solutions. For 

these latter models the density (n) as well as the scale height (H, de­

fined by eq. 1) drop rapidly to zero at an altitude below the "critical 

point". The "critical point" is illustrated by a square dot in figures 

3 and 4. 

The distributions of mean free paths of thermal protons have beeh 

calculated by Brasseur and Lemaire (1977) for each of the five models. 

The solid curves in figures 3 and 4 correspond to the portion of the 

models where the mean free paths are smaller than the local scale heights. 

The dashed curves correspond to the extension of the hydrodynamic solu­

tions in the co11ision1ess region of the solar corona. The exobase for 

each model is indicated by a solid dot. The locus of exobase altitudes 

is illustrated by a dotted curve. 

From these results it can be deduced that the exobase altitude 

(where the validity of hydrodynamic models break down) is generally below 

the "critical point" where the flow velocity becomes supersonic. The bulk 

velocity at the exobase (where the Knudsen number becomes equal to unity), 

is still smaller than the thermal velocity of the protons. Consequently, 

the critical point is located in the col1ision1ess region of the solar 

corona (Brasseur and Lemaire, 1977). For the co11ision1ess region 

Chamberlain (1960), Jockers (1970), Lemaire and Scherer (1971), Eviatar 



and Schulz (1975) and others suggest using exospheric approaches i.e. 

kinetic approximations to model the solar wind expansion. 
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A kinetic solar wind model. When the polarisation electrostatic field 

distribution is determined to maintaining local quasi-neutrality and zero 

parallel electric currents in the coronal plasma, an exospheric theory 

of the solar wind expansion can account for the actual acceleration of 

positively charged particle to supersonic velocities at 1 AU. 

A review of the early developments of kinetic solar wind models has 

been given by Lemaire and Scherer (1973). It is unnecessary to repeat 

these details, but it might be useful to recall the assumptions and limi­

tations of kinetic models presently available. 

Although the collision frequency 1S not strictly zero, it is con­

sidered that the particle trajectories are determined only by the gravi­

tational field, electrostatic field and magnetic field distributions. The 

adiabatic moment is also supposed to be invariant. A convenient function, 

F(c), of the particle velocities (C) is then choosen at the exobase as 

a boundary condition for the collisionless Boltzmann-Vlasov equation. A 

linear combination of truncated Maxwellian distribution functions 
-+ ..... 2 

(N. exp (- m(~k~ Uj ) ) is usually taken. The parameters N., T. and U. 
J j J J J 

characterising the displaced Maxwellians are adjusted to fit the actual 

density (n), temperature (T) and bulk speed (w) observed or calculated at 

the exobase altitude. Righer order moments of FCC) can also be adjusted 

by adapting the parameters of F(c) to fit the corresponding moments of 

the actual velocity distribution. Hence, in the exospheric models intro­

duced by Lemaire and Scherer (197la) there is no zero-order discontinuity 

for the lower order moments of the particle velocity distribution at the 

exobase. 



348 

since any function of the constants of motion is a solution of the 

co11ision1ess Bo1tzmann-V1asov equation, the values of F(C) and of its 

moments at any point in the exosphere can easily be obtained from their 

corresponding values at the exobase. Detailed analytical expressions of 

the lower order moments as a function of the gravitational and electric 

potential have been given by Lemaire and Scherer (1971b, 1972d) for 

different boundary conditions and different magnetic field geometries. 

Figure 5 shows the density, bulk velocity perpendicular temperature and 

average temperature in a kinetic solar wind model calculated by Lemaire 

and Scherer (1972b). The parameters N., U. and T. have been adjusted to 
. J J-3 J 5 

obtain respectively n • n 
6 e p 

= 3.1 x 104 cm ,T - 9.84 x 10 K, T = P e 
radial distance r - 6.6 solar 

o 
1.52 x 10 K at the exobase, i.e. at the 

radii. The densities, bulk velocities, and temperatures observed at 1 AU 

during quiet Solar Wind conditions range between the limits indicated by 

error bars in Figure 5. 

The Quiet Solar Wind conditions (Hundhausen, 1970) are compared in 

Table 1 to the numerical results obtained for the kinetic model (LSb) of 

Lemaire and Scherer (1971a). The agreement between the observed and 

calculated values is satisfactory for quite a number of moments of the 

velocity distribution i.e. for the density (~), the bulk velocity (WE)' 

the particle flux (FE)' the average and perpendicular temperature of 

both electrons and protons «T>, T~, the total kinetic energy flux (EE)' 

and for the heat conduction flux (CE). However, in this kinetic model 

the temperature or pressure anisotropy at 1 AU is discording1y high 

compared to the observed values. This discrepancy cannot be explained 

by the already excessive temperature anisotropies at the exobase resulting 

from the boundary conditions adopted. 

If the average solar wind temperatures can be predicted more or 

less correctly by co11ision1ess model calculation, it must be admitted, 

however, that these models cannot account for the actual distribution of 
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TABLE 1 

Conditions 

WE 

nE 

FE 

< T > e E 

< T > p E 

(TII/Tl.)e 

(Til /TJ.) P 

EE 

CeE 

Comparison of the Quiet Solar-Wind Conditions with the Results of the 
Kinetic Model LSb, which is a best fit solution to these Quiet Solar­
Wind Conditions. 

Hundhausen Kinetic 

[ 1970 ] Model LSb Units 

320 320 km sec -1 

5.4 7.18 -3 em 

1. 73 2.30 8 -2 10 em sec -1 

10 to 12 x 10 4 11. 7 x 10 4 uK 

4.8 104 4.8 x 10 4 oK 

1.1 to 1.2 3.05 

3.4 164 

-1 -1 -2 -1 2.4 x 10 2.0 x 10 erg em sec 

1 x 10-2 -2 -2 -1 5.1 x 10 erg em sec 

w 

*'" ~ 
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temperature anisotropies for solar wind protons and electrons. Some pitch 

angle scattering mechanism must therefore be responsible for the reduction 

of the temperature anisotropy without affecting too much the average tem­

perature: <T> =} (Til + 2T
1
). As suggested by Axford (1971. personal 

communication) the residual Coulomb collisions could contribute to produce 

the necessary reduction of T.I T~ without changing <T> • Indeed. the 

Coulomb collision time for angular deflections are much shorter than for 

energy equipartition. Consequently, the particle pitch angles can be 

changed more easily than the energy spectrum. It can therefore be con­

cluded with Lemaire and Scherer (197la). that Coulomb collisions could 

provide the wanted mechanism to reduce the temperature anisotropy below 

values predicted by an exospheric model calculation. The results of Leer 

and Axford (1972) also support this conclusion. 

Conclusions : Even if less questionable than the hydrodynamic approximation. 

the kinetic or collisionless approximation does not lead to fully satis­

factory models of the solar wind at large radial distances. Even if the 

effects of Coulomb collisions are small, when cumulated over a distance 

of several scale heights (H) they can account for a significant reduction 

of the temperature anisotropy, as observed at 1 AU. But improved kinetic 

approximations including the effects of Coulomb collisions as a first 

order correction are required to say more about the subject, and to 

evaluate how large are the residual discrepancies which should be explained 

by wave-particle interactions. 

It can also be concluded that hydrodynamic and kinetic applications 

to the solar wind should be considered as complementary approaches, when 

applied within their own validity ranges: i.e. in the region close to 

the Sun for the hydrodynamic approximations, and beyond 5-10 Solar radii 

for the kinetic approaches. 



References 

BRASSEUR, G., and LEMAIRE, J., Planet. Sp. Sc., ~, 201, 1977. 

BURNETT, D., Proc. Lond. Math. Soc., 39, 385, 1935. 

CHAMBERLAIN, J.W., Astrophys. J. 131, 47, 1960. 

CHAPMAN, S., Phil. Trans. Roy. Soc. A. 216, 279, 1916. 

CHEW, G.F., GOLDBERGER, M.L. and LOW F.E., Proc. Roy. Soc. London, !, 
236, 112, 1956. 

EVIATAR, A. and SCHULZ, M., Astrophys. and Space Sc., ~, 65, 1976. 

ENSKOG, D., Dissertation, Upsala, 1917. 

GRAD, H., Comm. Pure and Appl. Math., ~, 331, 1949. 

HUNDHAUSEN, A.J., Rev. Geophys. Space Phys., !, 729, 1970. 

351 

HUNDHAUSEN, A.J., Coronal Expansion and Solar Wind, Springer, Berlin, 1972. 

JOCKERS, K., Mitt. Astron. Ges., 25, 217, 1968. 

JOCKERS, K. , Astron. Astrophys. , !, 219, 1970. 

LEER, E. and AXFORD, W.I., Solar Phys., 23, 238, 1972. 

LEMAIRE, J. and SCHERER, M. , J. Geophys. Research, '!.!!.., 7479, 1971a. 

LEMAIRE, J. and SCHERER, M. , Phys. Fluids, .,!!, 1683, 1971b. 

LEMAIRE, J. and SCHERER, }1., Phys. Fluids, £, 760, 1972a. 

LEMAIRE, J. and SCHERER, M., Bull. Cl. Sci. Acad. Roy. Belgique, 5s, 

t. LVIII, 1112, 1972b. 

LEMAIRE, J. and SCHERER, M., Rev. Geophys. Space Physics, 11, 427, 1973. 

MACMAHON, A., Phys. Fluids, !, 1840, 1965. 

PARKER, E.N., Astrophys. J., 128, 664, 1958. 

POTTASCH, S.R., Astrophys. J., 131, 68, 1960. 

SCHUNK, R.W., Rev. Geophys. Space Phys., £, 429, 1977. 

SHIZGAL, B., Planet. Space Sciences, 25, 203, 1977. 

SPITZER, L.Jr., Physics of fully ionized gases, Interscience, New York, 

1956. 

SRIVASTAVA, M.P. and BHATNAGAR, P.L., Plasma Phys., 1!, 79, 1974. 



352 

5 Tran.port EquatiOl:l. 

~ 

a, v, T 

.tr.a. t.n.or and h.at flow ex­
pr •••• d ill t.rM of the lower­
order _t. 
d.Ufuaion ) 
viacoaity coefficienta 
conductivity 
coodnctibllity 

d.pand on int.ractiona force 
betw .. n particl.a 

Validity : col11aioo domiu.ted 
liait 

... f.p. «D ; Llot » tco11. 
f::: f(Kazwell> 

Bolt ... nn Equation 
Vlaaov Equ.tion. 

f(c.t) f, i, i 

Validity colli.ionle •• 1iait 
lB. f.p. » D 

Momenta Equation. 

alway. ".ltd. 

5.8 J 10,13 x..-nU ApproxiuUona 
20 ... 

D , V , Pre t Qr1t 
+ 3 + 6 + 3(10) 

All velocity _t. up to a c.r­
tain order tr.at.d on an 'quel 
footing 

r. h .•. d.pand on interaction. 
fore .. beLveen particle. 

validity : colli.iOl:l do.1natad 
liait 
II. f.p. «D J Llot » t.,.U • 

f::: f(_ell) 

---- zero order------
---- fir.t order------
----neon<! order------

Ha_11 Equation •. ~ i. Ii 
x..-ntua eq. ~ r + y x r - 0 
Continuity eq. ~ n 
S.cond ord.r _tua eq •. -

2. D (p~ B) D (P)' 
- . -3- - 0; - ~ 0 
Dt n Dt Bn 

the 

C.G.L. approxtaatioo 
Hacmahoo approxtaa tion , (1935) 
Sriva.tave aDd BhatnagAr,(1914) 

Fig. 1.- Table of hydrodynamic and kinetic approximations of the general transport equations. 
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HEIGHT ABOVE SOLAR LIMB: h [R."J 

Fig. 2.- Curve 1 shows the equatorial electron number density distribution 
per cubic centimeter in the solar corona observed during an 
eclipse near minimum in the sunspot cycle as reported by 
Pottasch {1960]; curve 2 gives the corresponding density scale 
height H in kilometers; curves 3 and 4 illustrate, respectively, 
the proton and electron temperatures at the exobasealtitude 
h expressed in solar radii. o 
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Fig.3.- Solar wind flow velocities. 
The solid and dashed curves refer to hydrodynamic isothermal models for 
which T = T = l06K' at h = 0 5 R . (a) w = 0 8 km/s' (b) w = e p '0' s' o' , 0 

2.15 km/s;(c) Wo = (wo)e = 3.996 km/s;(d) Wo = 4.5 km/s;(e) Wo = 
7,6 km/s. The solid dots indicate for each of these five models the exo­
base altitude (h b) and flow speed (w b)' The solid square corresponds 

ex ex 
to the critical point of the hydrodynamiC Euler equations. 
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Fig. 4.- Solar wind densities. 
The solid and dashed curves refer to hydrodynamic isothermal models for 
which T = T = 106K' at h = 0 5 R,n = 107 cm3 and (a) W = 0.8 e p '0' so 0 

km/s;(b) Wo = 2.15 km/s;(c) Wo =(wo)~ = 3.996 km/s;(d) Wo = 4.5 
km/s; ( e) W 0 = 7.6 km/s. The solid dots indicate for each of these five mo­
dels the exobase altitude (hexb) and density (nexb); the solid square 
corresponds to the critical point of the hydrodynamic Euler equations. 
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Fig.5.- The solid lines give (a) the density, (b) bulk velocity, (c) perpendicular tem­
perature, and (d) average temperature of the electrons and protons in 
Lemaire and Scherer's [1972b] kinetic model 1. The asymptotic behaviors 
are illustrated by dashed lines. The observed coronal density distribution 
reported by Pottasch [1960] is shown by squares. The range of observed 
solar wind properties at 1 AU are taken from Hundhausen et al. [1970] 
and are indicated by vertical bars. 
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DISCUSSION 

Flower 

How is continuity between the inner (fluid model) and outer (kinetic model) 

regions established ? Are the gradients of the flow parameters continuous ? 

Lemaire : 

The fitting of hydrodynamic-solar wind models (determined for the collision­

dominated) and a zero order kinetic solution is made across the exobase by 

nnposing the density, flux of particles, pressure, energy flux ••• to be 

continuous. Because of the assumption that on one side of the exobase the 

mean free path is small and on the other side it is considered to become 

infinite (in the zero order kinetic models) the derivatives (gradients) of 

the density, velOCity, heat fluxes ••• are not continuous. But in first 

order kinetic models matching of these gradients might probably be possible. 

Benz : 

I don't agree with the notion of "protons becoming collisionless at 5 solar 

radii". Of course, this is true for protons having the mean thermal veloc­

ity, but not if they move faster. Then they may become collisionless long 

before. Since the density decreases about exponentially, the higher density 

farther down compensates for the smaller ratio of protons with speeds high 

enough to leave the corona Without collisions. MY point : the separation 

of hydrodynamic fluid and kinetic particles must be made in velocity space 

and not at a certain height. 

Lemaire : 

The exobase that we have considered is for a thermal proton, where the bulk 

of the velocity distribution is located. The higher energy particles became 

of course collisionless even at lower altitudes. Jenssen has taken this 

into account. It would be useful to reconsider this kinetic model with a 

selfconsistent charge separation electric field. 

Be9z. : 

Furthermore I think it is impossible to accelerate helium ions in your 

model. They would come up to 5 solar radii and stay there. 



358 

Lafon : 

I think that the major uncertainty of kinetic models comes from the assump­

tions concerning the particles trapped in closed orbits, which are inde­

pendent of boundary conditions. Don't you think that this is an important 

cause of differences between kinetic and hydrodynamic models ? 

Lemaire : 

The trapped orbits for the electrons in the zero order kinetic approaches 

are assumed to be populated and considered in thermal equilibrium with 

those coming from exobase. This arbitrariness can only be levelled off 

when some collisional process (Coulomb interactions or wave-particle inter­

actions) is taken into account in the ion-exosphere. But these first order 

kinetic models have still to be worked out consistently. 
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