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ABSTRACT

A hierarchy of models of climatic evolution is considered, First,
an energy balance model is used to analyze the influence of systematic
increase of solar energy output over the last hundred million years,
Plausible scenarios of evolution of infrared cooling rates, of heat transfer
coefficient and of polar temperafure are constructed, Next, the dynamical
coupling between humidity and temperature is considered at the level of a
two-variable planetary model, The stability properties of the steady-state
climatic regime of the last 250 myr are discussed both analytically and by
numerical simulations.

RESUME

On examine une série de modéles d'évolution climatique, En premier
lieu, on utilise un modéle de bilan énergétique pour analyser l'influence de
1'accroissement systématique de la constante solaire durant les derniéres
centaines de millions d'années, On developpe de scénarios plausibles
d'évolution des coefficients de refroidissement infra-rouge, du coefficient
de transfert de chaleur ainsi que de la température polaire, Ensuite, on
considere les effets du couplage dynamique humidité-température au niveau
d'un modeéle planétaire & deux variables et on analyse les propriétés de
stabilité du régime climatique des derniéres 250 millions d'années.
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1, INTRODUCTION

The influence of solar output on surface temperature of the earth
has been analyzed by Budyko (1969) and Sellers (1969) on the basis of the
ice-albedo feedback. They found that a slight variation of the solar constant

can induce climatic catastrophes associated with transitions to an ice-
covered or an ice-free earth,

Recently, it was pointed out that the sun is a variable star whose
energy output has systematically increased over the past billion years
(Neumann and Rood, 1977), Yet, as well known, there has been no glaciation
during the mesozoic and early cenozoic eras, In an attempt to resolve this
apparent paradox, Sagan and Mullen (1972) invoke "the possibility of an

planetary scale, Moreover, by extrapolating their radiative calculations to
the future they predict a catastrophic increase in temperature due to a
runaway greenhouse effect fed-back positively by the increasing HyO vapor
concentration in the atmosphere,

Implicit in the above considerations is the assumption that the
various coefficients appearing in the energy balance equation can be
parameterized in terms of the percentage cloud cover and/or the H,0 concentratim
at ground level, which therefore appear to play a passive role, This is
certainly reasonable for short-time predictions associated with slight
variations of the termal regime, On the other hand, in the presence of abrupt
transitions that could possibly be induced by the various feedbacks present
over long periods of time, this assumption is expected to break down.

The purpose of the present communication is twofold, We first attempt
to analyze some global trends of climatic evolution in the past 250 myr up to
the beginning of quaternary glaciations, using a model involving latitudinal
energy transfer, The model presented in section 2, incorporates the effect of
evolving solar output, of infrared cooling, and of energy transport, We next
turn, in section 3, to the modelling of the simultaneous evolution of
temperature, T and relative humidity, h on an equal footing, The resulting
equations, which are considered at a planetary scale, turn out to be very
difficult to analyze because of the unknown form of cloud cover and precipita-
tion rates as a function of T and h, For this reason we limit ourselves, in
of present and past climatic regimes, using some data recently compiled by
Sasamori (1975), The analysis suggests the existence of certain sources of
instability arising from the positive feedback of humidity on temperature and
vice-versa. However, using values of parameters close to present day ones, it
is found that the steady-state climatic regime remains stable. Some represen-

tative evolution trajectories of T and h are briefly discussed in section 5,
whereas section 6 summerizes the results.

2, ENERGY BALANCE MODEL

The starting point is the energy balance equation of the earth-
atmosphere system in the form written by North (1975a, b)
oT

cp ; = Q s(x) { 1 - O‘(E’Nrs) J - I(T) + AT (1)
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C is the heat capacity, A the heat transfer coefficient, I the infrared
cboling rate, Q the solar constant, S(L) the percentage of incident flux at
position r, and a(r, rg) the albedo. Following Budyko (1969) a is to be
approximated by a discontinuous function around rs, the locus of the ice
boundary, However, we are here interested in the climatic history of the past
250 myr or so, up to the quaternary period, It will therefore be legitimate
to restrict eq, (1) to an ice-free earth and hence set

r, r)=a

I, x) =a (2)
Moreover, we will adopt the commonly used expression for the infrared
cooling rate :

I(T) = A + BT . (3)

where T is now expressed in degrees centrigrade, and the values of the cooling
coefficients A and B include the effect of cloud cover.

We shall regard 6 as slowly varying in time according to the law
suggested in Neumann and Rood (1977)

1 dL 12,5 x 0,01

- — = - (4)
L dt 1+1.66X0-1.66x10 t

where L is the luminosity of the sun, X, is the initial hydrogen mass fraction
and t is the time in billions of years,

Finally, the mean annual latitudinal distribution of radiation S(x)

can be expressed in Legendre polynomials as follows (North, 1975a, b)
3 x2 -1
S(x) 1 +8, P (x) ~1-0,482 — (s)
2 2 9

where és the sine of the latitude, and the factor Sy is fitted from astro-
nomical dgta, . insert eq, (2) to (5) into eq. (1), It is convenient to
express the result in spherical coordinates, We also perform a longitudinal
average and observe that the evolution of T due to planetary factors is much
shorter than that arising by the evolving solar output, Hence we regard the
long-term evolution of T as a sequence of quasi-steady states each one
corresponding to the value of 6 appropriate for a given epoch, We finally
obtain :

d , d I(x) 3Q(1 - )
— (1 -%x") — I - + o S x° =
dx dx D 2D

Q(l - a) S
—— < 2 _ 1 ) (6)
D 2

2
where D = K/roB and T, is the earth's radius, This equation is subject to two
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boundary conditions expressing the absence of heat transport at the poles and
across the equator :

d
2.1/2 4 212 4
x) — x")

(1 - = 1 -

(7N

Eq. (6)and (7) were analyzed in some detail 1in a previous
communication (Nicolis, 1978). The exact solution satisfying the boundary
conditions is

Q(l - a) 1
A+ BT(x) = I(x) = ———2— (2D + = -

2D + 5

1
s+zs x7) (8)

From this expression one can express the equatorial temperature, corresponding
to the value of Q at a given epoch as deduced from eq, (4) and the present-
day value Q = 1.918/4 = 0,479 cal min~! cm™

5,

A+BTe = Q1 —ao) (1 - = > (9a)
9 12D + 2
or equivalently :
S,
1 Q1 -a) (1 -==) -(A+BT )

D= - ° 2 = (9b)

6 A+BT -Q( -a)

eq [

Substituting (9b) into eq. (8) one can then compute the polar temperature
in terms of Teq’ Q, a and the infrared cooling parameters A, B in the
form :

QU1 - a ) - A
T =3 —2 —— _9o7 (10)
B €q

From this expression we can reconstruct plausible pathways of
evolution of the polar temperature as follows, We begin by requiring a more
or less invariant equatorial temperature T,, throughout the past 250 myr,
say 259, in accordance with paleoclimatic data, We also argue that the
cooling coefficients A, B must have been less than the present day ones
through an enhanced greenhouse effect (Sagan and Mullen, 1972; Budyko, 1974,
1977), To account for such a possibility we vary A, B for each epoch, between
the present-day values used in North (1975a) A = 0,288 cal min-! em™ R
B = 0.00208 cal min_1 em™2Kland values less than the present-day ones by 1%
up to 10%, We also vary the albedo ¥y in a similar fashion,
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Most of these variations give unacceptable values for the thermal
transfer coefficient D (eq. (9b)) and/or for T_ (eq. (l0)). As a matter of
fact, the results are rather sensitive functions of the parameters as
illustrated in Fig, 1. This already eliminates a great number of combinations

POLAR
S TEMPERATURE (°C)

5

"/

N

750 TIME (108yrs AGOI

Fig. 1.- Polar temperature as a function of the percentage decrease

—— in A and the heat influx Q(1 - ay)(or equivalently, of the
time in myr ago). Theeguatorial temperature is taken equal
to 25°C,

of these parameters. Among the remaining ones we select those combinations
which give an evolution of T_ toward freezing values as time evolves to the
beginning of quaternary glaciations, Fig, 2 represents two pathways of
evolution of T_ determined from the above described procedure, We see that
past values of A, B are smaller than the present ones by a few percent
whereas the heat transfer coefficient decreases systematically in time. Both
trends are compatible with currently available information on paleoclimates,
In particular, the decrease of D can be attributed, at least in part, to the
increasingly poor equator-pole energy exchange arising from the progressive
isolation of the Arctic during the last tens of millions of years (see also
Budyko, 1969).
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We thus obtain :

dT
¢ — = Q1 -x -u n(T, )] - & - BT + (A, + B.T) n(T, h)
P4t o o 1 1

- Ly qS(T) (1 - h) + Lx(T, h) (16)

The main difficulty with eq, (14) and (16) lies in the occurence
of the unknown functions n(T, h) and r{(T, h), In this respect however,
Sasamori (1975) has compiled data enabling the evaluation of the derivatives
of these functions for present-day climatic conditions. As we show in the next
section, this information can be used to make some predictions about the
stability and other qualitative properties of the coupled temperature-humidity
system.
4, LINEAR STABILITY ANALYSIS

Let (T, ho) be a steady-state solution of eq., (14) and (16)
corresponding to present-day climatic conditions or to one of the past
climatic conditions depicted in the scenario of Fig, 2, We choose this as
a reference state and look for theevolution in its vicinity following an
initial perturbation. Such perturbations are of course inevitable in a
complex system like the earth-atmosphere one, The question is whether the
system will counteract them and return to the reference state (we will then
say that it is asymptotically stable), or whether on the contrary the
perturbations will be amplified (the reference state will then be unstable)
and drive the system to a new climatic regime, Stability theory (Minorski,

around the reference state, To this end, we set

T = T, + 8T(¢t)

17>

h = hy + &h(t)

Substituting into eq. (14) and (16), expanding the right hand side in
Taylor series around (T_, h.) and neglecting quadratic or higher terms,
we obtain

d&T - _ ; 9n an
c — = { -Qp ( — > -B+ (A, +B, T ‘><f——»> + B, n
p o 3T o 1 1 "o aT /o 1 o

3

dt
or 5,385
+ L ( — > -xq (1)L ——— (1 -h) 1 8T
oT o (273 + To) 4
- on . on
+ [ -Qp ( — > + (A, +B, T) < — >
o 3h o 1 1 "o oh 4
or
+ L ( — > + X qS(T )IJ 8h (18a)
ah % °
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déh 5,385 d&T 1 -r 5,385 or
(= vn, —— —)- [ o (=)
o o
dt (s}

2
(273 + T )2 dt q (T) (273 + T ) 9T
o s o o
1 ar
- l—x+—- ——)J 8h (18b)
‘ qS(TO) dh
We have set n, = n(T,, h,), r, = r(T , h ). Note that T, is to be calculated

by integrating expression (8) over latitude, whereas h_, r _ are determined
from the steady-state conditions E(T,, hy) ~ r(T,, h ). Adopting again the
quasi-steady state picture discussed in section 2, we may regard the
coefficients of 8T and 8h in eqs. (18) as time-independent, Hence we seek
for solutions of the form

. wt

8T e

&T

(19)
~
&h = &h &°*

and compute w from the characteristic equation, If it turns out that Rew > O

for at least one of the roots of this equation, (TO, ho) will be unstable,

If Rew < O for both roots, then (TO, ho) will be asymptotically stable,
To simplify notation we write (18a), (18b) in the form

~ ”~ ~
w8T = abT + Bbh
(20)
R 5,385 ~ N ~
bh + wh  —————— 8T = 78T + ebh
° (273 + T)

where a, B, 7, £ are defined by comparing eq. (20) to eqs, (18). The
characteristic equation then reads

) 5,385 hy
w - (a+ € - — 3 B8) w+ (ag ~ By) =0
(273 + T )
)
2 -
or w -Tw+A =0 21D

Depending on the signs and relative magnitudes of T and A we will have
monotonic or oscillatory damping, oscillatory instabilities or saddle point
behavior, Moreover, the sign of a, 8, 7, € will give us the way humidity
and temperature feed back into their own rate of change or on the rate of
change of the other variable.On inspecting the complete expressions for
these coefficients, eqs. (18), one could then see, for example, how the
cloud cover acts on a global scale to affect the system's dynamics. This
analysis is carried out in the next section.
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5. RESULTS

Eqs. (18) to (21), have been evaluated numerically as follows.
Values of 6 and of the infrared cooling coefficients are chosen for various
epochs according to a particular scenario, for instance that represented by
curve b) of Fig. 2. Next, the derivatives

G GG G

are computed from the "sensitivity factors" recently evaluated in Sasamori
(1975). The remaining factors Bos L, X are taken from thermodynamic data

and from Budyko (1974). A first result is that, throughout the past 250 myr,
the coefficient & remains negative. According to eq. (18a) this means that
for a fixed relative humidity, the thermal regime itself tends to be stable*.
A similar property holds for the humidity equation, namely € < 0. Note that,
from eq. (18a), the coefficient a itself contains a purely thermal
contribution and a contribution due to humidity. The latter turns out to be
even larger in absolute value than the purely thermal one. Thus, the direct
effect of humidify on temperature amounts to a strong negative feedback.

The situation is very different with the coupling coefficients §
and Y, which turn out to be both positive and large. In other words the

positive feedback.

Potentially, the competition between these two opposing tendencies-
stabilizing trend through @ and €, and a destabilizing one through § and Y-
can give rise to a breakdown of stability of the reference state. Yet, on
numerically evaluating the coefficients one finds that the factors T and A
in the characteristic equation (21) are, respectively, negative and positive
with T2 - 4 A > 0. This means that both roots of this equation, say w; and @
(with |w1| < |w |) are real and negative. According to stability theory
(Minorski, 1962; the. steady state (To, h )is therefore stable and behaves
like a mnode.

2

The next point of interest concerns time scales. It appears that
lwll, which is of the order of 10~ min'l, is smaller than |w2| by a factor
of at least 10°. Thus, one of the stable modes relaxes to zero at a
relatively fast scale, whereas the other one evolves more slowly at a
geological time scale. More precisely, the way these two modes are superposed

* The results persist even when %B is varied in the range - 0.01 to
- 0.03. This corroborates an idea developed by Budyko (1974, 1977) and Cess

(1976) that cloudiness feedback is not particularly effective in affecting
the thermal regime.



in the time development of &T(t) and 6h(t) is given by the equations

-Bdh + (0, - a) 8T W, t B &h + (¢ - w_ ) 8T Wt
8T(t) = 0 2 2 o 1 + 0 1 e . 2
7% Wy T ¥
(22)
w, -a =B & + (o, -a) T Wt
Sh(t) = L 0 2 S e1 +
B (1)2—(1)1

+ e (23)

where 6T , &h are the initial values of the perturbations.
o o
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Fig. 3.- Time evolution of temperature and relative humidity perturbations
— for 6T0 = 0.2°C, 6h0 = - 0.03. The following values are chosen
Q = 0.479 cal cm™ min_l, A =324 x 10_1 cal em~2 mi.n'1 s
Al =6.94 x 1072 cal cm2 min‘l, B=3.24 % 10"3 cal em~2 mi_n'1 k-1
By =2.31 x 1073 cal em? min-l k-1, T, = 15°C, n_ = 0.5
r, = 1.8 x 1074 ¢ em=2 min~l , X =7.5x%x 10-2 g cm2 min"i
h, =0.77 , u_ =0.26 , C_=3.5x 10° cal cm™?

H)

(o]
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Fig. 3 and Fig. 4 describe the time course of temperature and
humidity as given by eqs. (22) and (23) for some representative values of
initial conditions. A significant feature is the occurence of overshoots
(or undershoots) before the stage of systematic decrease of the perturbations
and the ultimate stabilization toward the reference state is reached.

6T b&nh

-14 003 - 7

002t \ J
oot} \ .
© bh o7

-05--001- \ /A
-0.07 s ' \ / ~

-003

T

6To = -1°C \ -
L Bho = 0.03

1 1 1 1 1 1 1
t 2 3 & S 6 7 8 8
log tmin

Fig. 4.- Same phot as in Fig. 3, but for initial conditions 8T = - 1le°C,
5h, = 0.03. °

6. CONCLUDING REMARKS

We have seen that simple energy balance models are capable of
reproducing some general trends of past climatic evolution., At each epoch
the latter is characterized by a pronounced thermal stability, although
in a long time scale it is slowly modulited by the sun's evolving energy
output.

The situation remains stable when a two-variable description in
terms of temperature and humidity is adopted. It is found that, despite
the temperature-humidity positive feedback, the climate system is characterizal
by an inherent stability. As a result, there is a tendency to evolve back
to the steady-state regime (To’ ho)’ although the transient behaviour may
present some interesting features like the occurence of overshoots.

In carrying out the numerical simulations reported in Section 3,
specific values of the various parameters had to be adopted. Moreover, the
values of the '"sensitivity factors" leading to the evaluation of the
derivatives of n and r compiled by Sasamori, have been utilized for past
climatic conditions as well. It is not impossible that the stability will
be compromized when some of the parameters will vary in rather wide ranges
of values remote from present-day conditions. Unfortunately ,one cannot be
more specific at this time because of the scarsity of paleoclimatic data
regarding cloudiness n and condensation rate r.



It would beinteresting to project the analysis into the future
to see how the temperature-humidity feedback is modified by the systematic
increase of the solar constant. Similarly, a more realistic model of two
variables including latitudinal transport and/or the possibility of ice
boundary.is likely to add novel features. Finally, the dependence of the
cooling coefficients A, B on the distribution of water vapor should
eventually be taken into account following, for instance, the model
developed by Cess (1974). In future work we hope to report on these points.
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