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Abstract. - Expressions for the number density, the escape flux, the paral
lel and perpendicular momentum fluxes, and the energy flux in an open 
ion-exosphere, are set up under the following assumptions: (a) the 
velocity distribution function at the exobase is given by an asymmetric 
bimaxwellian depending on 4 parameters; (b) along a magnetic field line 
the potential energy of a charged particle is a monotonic function and the 
magnetic field strength monotonically decreases to a constant value. A 
method which allows to calculate the 4 parameters of the velocity distri
bution for a given set of values of the state variables is outlined. Finally, 
the analytic formulae for the state variables are explicitely given for the 
special case that the velocity distribution at the exobase is a bimaxwellian. 

I. INTRODUCTION 

Nowadays it is generally accepted that the dynamical behaviour of 
the ions and electrons in the topside polar ionosphere can not be 
described by an hydrodynamic approach of the general transport 
equations. Indeed, at higher altitudes the number of collisions becomes 
very small and any hydrodynamic approach becomes invalid. In this 
co1lisionless region, known as the ion-exosphere, a kinetic approach is 
very useful [see e.g. Chiu and Schulz, 1978; Croley, Jr. et al., 1978; 
Lemaire and Scherer, 1970, 1972a, 1973a, 1974; Whipple, Jr., 1977]. 

(*) Pr6sent6 par M. M. NICOLET. 
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The controversy between the supporters of the hydrodynamic 
theory and the defenders of the kinetic theory was based on a misun
derstanding [Donahue, 1971; Lemaire and Scherer, 1 973b]. Both 
methods are appropriate for the study of the dynamical behaviour of 
charged particles in the polar ionosphere: the hydrodynamic approach 
is valid in the ion-barosphere (i.e. the region where the collisions have 
to be taken into account), whereas the kinetic approach can be applied 
in the collisionfree exosphere. Between these two regions there exists a 
small transition region with a thickness of a few scale heights, where 
the number of collisions rapidly decreases. Up till now, this transition 
region has not yet been described successfully, and is generally neglect
ed by intrOducing the assumption that the barosphere is separated 
from the exosphere by a sharply defined surface called the exobase or 
baropause. 

That the hydrodynamic and kinetic approaches are complementary 
and not at all contradictory was illustrated by Lemaire and Scherer 
[1975] who calculated continuous distributions for the number density, 
the escape flux, the temperature, the temperature anisotropy, and the 
energy flux by matching at the exobase the solutions of the hydro
dynamic Navier-Stokes equations for the hydrogen ions, to a simple 
kinetic polar wind model. Although this model calculation shows 
many interesting features, one of the major shortcomings is that the 
proton temperature anisotropy at the exobase always equals the 

constant value 1 - ~ c:::: 0.36. This is due to the assumption that the 
n 

velocity distribution of the hydrogen ions at the exobase is given by a 
pseudo-Maxwell-Boltzmann distribution: 

f[ro,v(ro)] = N -- exp --v2(ro} ( m )3/2 [m ] 
2nkT 2kT 

(1) 

where the particles with downward directed velocities are missing. 
ro is the radial distance of the exobase; v(ro) is the velocity vector at 

the exosbase of the particle with mass m; k is the Boltzmann constant; 
Nand T are two parameters which have to be determined so that the 
calculated number density and temperature at the exobase have a 
given value. 

Once that the parameters Nand T are defined, any moment of the 
distribution (1) has a fixed value. Therefore the escape flux and the 
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temperature anisotropy can not be fitted on given values. This deficiency 
can be solved by developing a kinetic polar wind model based on a 
more general velocity distribution which depends on more than two 
parameters. The purpose of this paper is to calculate formulae for the 
state variables in the polar ionexosphere under the assumption that 
the velocity distribution at the exobase is given by an asymmetric ani
sotropic maxwellian. 

with 
(3) 

and where VII and V.l denote the components of the velocity vector 
v(ro) respectively parallel and perpendicular to the magnetic field; i.e. 

(4) 

where O(ro) is the pitch angle. 
The asymmetric bimaxwellian (2) depends on four parameters N, u, 

Tn and T.l which can be chosen to obtain at the exobase a given 
number density, flow velocity or escape flux, temperature, and tem
perature anisotropy. The assumptions on which the kinetic model cal
culations are founded are summarized in Sec. 2. For a detailed de
scription of the kinetic approach however, we refer to Lemaire and 
Scherer [1971, 1975]. The number density, the particle flux, the parallel 
and perpendicular momentum fluxes, and the energy flux along an 
open magnetic field line in the exosphere are calculated in Sec. 3 for 
particles emerging from the barosphere. In Sec. 4 we outline how the 
four parameters N, u, T" and T.l can be determined. Finally, in Sec. 5 
the special cases of (0 a bimaxwellian velocity distribution function 
(u = 0; Til ::j:. T.l); (ii) a maxwellian velocity distribution function 
(u = 0; Tn = T.l); and (iii) an asymmetric maxwellian velocity dis
tribution function (T" = T.l; U ::j:. 0) are considered. 

II. THE KINETIC MODEL 

We assume that in the ion-exosphere the trajectories of the charged 
particles can be determined by the non relativistic guiding center 
approximation, and that the particle drift across magnetic field lines 
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can be disregarded. Moreover we assume that along a magnetic field 
line, the static magnetic field is a monotonic decreasing function ofthe 
distance S (measured along the field line), and reaches a constant value 
at infinity. The law of conservation of energy yields the relation 

with 
R(s) = -2IP[1 + (X - (l + P)y] 

where we introduced the shorthand notations 

(X = ZeqJ(so)lmIP, P = ZeqJ(s)lmIPy; 

(5) 

(6) 

(7) 

for the reduced electric potential energy respectively at the exobase So 
and at the point s in the exosphere; Ze is the electric charge of a 
particle with mass m, qJ is the electrostatic potential due to the small 
charge separation, IP is the gravitational potential at the exobase; and 
finally y = rolr is the ratio of the radial distance of the exobase level 
So, to the radial distance of the point s. 

Moreover, from the first adiabatic invariant follows 

(8) 

Assuming that the potential energy, ! mR(s), is a monotonic function, 
2 

two cases have to be considered corresponding to the algebraic sign 
of R(s) [Lemaire and Scherer, 1971]. A particle for which R(s) is nega
tive, will move in a potential well. Such particle will be accelerated 
outwardly and will escape. This occurs for the lighter positive ions 
such as H+ and He+, for which the outward directed electric force is 
larger than the gravitational force. On the other hand the heavy oxy
gen ions 0 + and the electrons emerging from the barosphere, will 
encounter a potential barrier and are decelerated. In this case only 
particles with a velocity vector inside a loss cone can escape. Particles 
with a velocity vector outside the loss cone are gravitationally or 
magnetically reflected and are called ballistic particles. 

It can be shown [Lemaire and Scherer, 197)] that the region in 
velocity space corresponding to the class of ballistic particles is defined 
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by: 

with 

o ~ e ~ n, 0~qJ<2n; 

o ~ qJ < 2n; 

vt = "R/(l- ,,), v! = -24)(1 + Ply. 

v; = -24)a(1 + a;)/(l- a) - 24)(1 + Ply, 

Om = arcsin [,,1/2(1 + R/V2)1/2], 

e:" = arcsin [pl/2(1 - V!/V2)112], 

" = B(s)/B(so), a = B(oo)/B(so), p = ,,/a = B(s)/B(oo). 

(9) 

(10) 

The angle qJ is measured in a plane normal to the magnetic field. The 
class of escaping particles which have to overcome the potential barrier 

!mR(s) > 0 is given by: 
2 

Va> ~ V ~ vc' 0 ~ e ~ 0:", 0 ~ qJ < 2n (11) 

Vc ~ v < 00, 0 ~ 0 ~ Om' 0 ~ qJ < 2n 

And finally, the escaping particles moving in a potential well, i.e. 

! mR(s) < 0, are defined by 
2 

(_R)1/2 ~ V < 00, 0 ~ 0 ~ Om, 0 ~ qJ < 2n. (12) 

In what follows we will assume that at the exobase, the velocity dis
tribution function of the particles emerging from the barosphere is 
given by the asymmetric bimaxwellian (2). The velocity distribution 
in the exosphere is obtained by solving VIasov's equation subject 
to the boundary condition (2). Taking into account (5) and (8) this 
yields: 

f[r,v(r)] = n- 3/2NPfI/2p.L exp[ _P II (u
2 + R)] 

. exp { _PII [V2( 1 + t ~ 1 sin2 0) -2u (R + V2( 1 _ si~2e) y/2J} (13) 

with t = TII/T.L' 
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III. MOMENTS OF THE VELOCITY DISTRIBUTION 

The state variables, defined as the physically significant moments of 
the velocity distribution, can be calculated by means of 
(a) the number density 

n(s) = f f(r,v)d3v 

(b) the escape flux 

(c) the parallel and perpendicular momentum fluxes 

PIl(s) = m f vij/(r,v)d3v 

P .L(s) = ~m f vlf(r,v)d3v 

(d) the energy flux parallel to the magnetic field 

8(S) = ~m f v2vllf(r,v)d3v 

(14) 

(15) 

(16) 

(17) 

(18) 

The integrations are to be taken over the appropriate three dimen
sional velocity space. The integration over the angle q> is straightfor
ward since this variable does not occur in the integrand. To calculate 
the remaining double integrals we use the transformation formulae: 

v = Pi1 1/2[X2 + y2 - q(s)J1/2 

() = Arcsin {111/2x[x2 + y2 - q(S)]-1/2} (19) 

with 
q(s) = PIlR(s) (20) 

Taking into account (l3), the state variables (l4)-(lS) become 
(a) the number density: 

n{s) = t5CffA(X'Y) dxdy (21) 
B(x,y) 
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(b) the escape flux 

F(s) = (2 - ~)Piil/2C f f A(x,y)dxdy (22) 

(c) the parallel and perpendicular momentum fluxes 

Pn(s) = 2~kTIlC f f A(x,y)B(x,y) dx dy (23) 

P .L(s) = ~kTII"cffx2 A(x,y) dxdy (24) 
B(x,y) 

(d) the energy flux parallel to the magnetic field 

8(S) = (2 - ~)Pii 1/2kT nC f f [x 2 + y2 - q(s)] A(x,y) dx dy (25) 

In these formulae the following shorthand notations were introduced 

A(x,y) xyexp[-tx2 - y2 + 2Uy] 

B(x,y) = [px2 + y2 _ q(S)]1/2 

C = 2n- 1/ 2 Nt1/ exp [- U2] (26) 

U = Pfl'2U ; p = 1 - " = 1 - B(s) > 0 
B{so) 

~ _ {I for escaping particles 
- 2 for ballistic particles 

The domain of integration depends on the type of particles and 
follows from (9), (11) and (12) and the transformation formulae (19). 

A. Particles moving in a potential well (R(s) < 0) 

All particles are escaping. The velocity space is defined by (12) from 
which we deduce that the integrations (21) to (25) have to be taken 
over the domain 

O~x<oo; O~y<oo 

Hence the state variables can be calculated by means of the following 
formulae 
(a) the number density 

n(s) = N(t/p)1/2" exp ( - U2) h(O,oo,Sl) (27) 
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(b) the escape flux 

F(s) = !Nco'7exp( - U2). [1 + J~Uerfex( - U)] (28) 
4 

with 
Co = (8kTn/nm)1/2 (29) 

(c) the parallel and perpendicular momentum fluxes 

PII(s) = NkT II (P/t)1/2'7 exp (- U2) h(O,OO,Sl + S2) (30) 

P .L(s) = ! NkT .L(t/p)1/2'72 exp ( - U2)h(0,OO,Sl + S2 - S3) (31) 
. 2 

(d) the energy flux parallel to the magnetic field 

8(S) = ~NkTIl Co '7 exp ( - U2). {[~ + 7 - q(s) + U2] 

. [1 + J~U erfex( - U)] - H (32) 

In the formulae above, h(a,b,S) is a linear function of S defined by: 

b 

h(a,b,S) = f yS(y)exp(2Uy - y2)dy 

/J 

Moreover we introduced the shorthand notations 

S1 = erfex( f S2) 

2 
S2 = In(t/p)112[y2 - q(S)]1/2 

S3 = ~S1S~ 
2 

<Xl 

erfex(z) = ]nexp (Z2) f exp( -x2)dx 

" 

(33) 

(34) 

(35) 

The functions h(O,oo,S;) with i = 1, 2, 3, defined by (33) and (34) can 
not be determined analytically; the remaining integrals have to be 
calculated numerically. 
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B. Particles encountering a potential barrier (R(s) > 0) 

In this case the particles can be subdivided into two classes: the 
escaping and the ballistic particles. For each class we will calculate the 
state variables (21) to (25) separately. 

I. Escaping particles 

The domain of integration GE for the escaping particles follows 
from (11) and (19), and is illustrated in Fig. I were v = I-a. All 
integrations over the variable x can be performed. This yields: 

y 

II 
I II GE 

Vx2.y2= q(oo) 

" lJl 
...... 1 

GB 

........... 

" 2 2 " px + y = q(s) 
\ 

x 

FIG. 1. - Domains of integration for the ballistic (Ga) and for the escaping (GEl 
particles. 

(a) the number density: 

n(E)(s) = N(t/p)1/211 exp( - U2){h(Q,CO,Sl)+ g(0,Q,T1) exp[ -tq(co)/v]} 

(b) the escape flux 
(36) 

1 
F(E)(s) = -N Co 11 exp( - U2){h(Q,co,l) 

2 

+ g(O,Q,I) exp [ - tq( co )/v]} (37) 
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(c) the parallel and perpendicular momentum fluxes 

PW)(s) = NkTII(P/t)1/211exp( - U2){h(Q,00,8 1 + 82) 

+ g(O,Q,T 1 + T 2)exp [ - tq( 00 )/v] (38) 

P1E)(s) = !NkT.l.(t/p)1/2112exp( - U2){h(Q,00,81 + 82 - 83) 
2 

+ g(0,Q,T1 + T2 - T 3)exp[ -tq(oo)/v]} (39) 

(d) the energy flux parallel to the magnetic field 

e(E)(s) = ~ NkTIl Co 11 exp ( - U 2){G -q(S)] h(Q,00,1) + h(Q,00,y2) 

+ [g(0,Q,y2) + G -q(s) + q(oo)/v] g(0,Q,1)] exp [-tq(oo)/v]} (40) 

The function g(a,b,T) is linear in T and defined by 

b 

g(a,b,T) = f YT(Y)exP [2UY + G -1 )y2]dY (41) 

a 

Moreover the following shorthand notations were introduced 

T1 = erfex( fT2) 

T 2 = Ji (t/p)1/2 [ ry2 + X2J1/2 (42) 

T3 =?::"1 . Si 
2 

Q = [q(oo)] 1/2; X2 = ~q(oo) - q(s); 
v 

1I=1-a=1- B(00»0; 1:=1-£= B(s)-B(oo)>0 
B(so) v B(so) - B( (0) 

The integrations over the y variable, which still remain in the formulae 
(36)-(40) can only be calculated analytically for the escape flux (37) 
and the energy flux (40). Indeed, after some tedious calculation we 
obtain: 

h(Q,00,1) = ![1 + ~U erfex(Q - U)]exp[U2 - (Q - U)2] (43) 
2 
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h(Q,oo,y2) = ~ {I + Q2 + QU + U2 +,;;. U G + U2 ) erfex(Q - U)} 

g(O,Q,l) = 

with 

. exp [U2 - (Q - U)2] (44) 

t ~ v {[I -J~~ g)(KQ + ~)]eXp[2UQ + G _1)Q
2
] 

-[1 -,;;.~ g) (~)]} if K2 == ; - 1 > 0 

_1 [~+ (Q _ ~) e2UQ] if t = v 
2U 2U 2U 

t ~ v {[I + J~ ~ erfex (PQ - ¥)] exp [2UQ + G -1) Q2] 

% 

g)(z) = In exp ( _Z2) f exp (t2
) dt 

o 

(46) 

and finally 

- --+ Q --+--- e 1 t=v 1 [3 (3 3Q2 3Q 3) 2UQ] of . 
2U 4U3 2U 2U2 4U3 

- - - + 1 +,;;.- -+- erfex --1 {I [U
2 

U(3 U
2
) (U) 

2p2 p2 p2 P 2 p2 P 

(45) 

(47) 

_[Q2 + -.!.(U
2 

+ 1 + UQ) +,;;. U (~+ U
2
)erfex(pQ - U)] p2 p2 p3 2 p2 P 

l 
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All the other functions hand 9 in the formulae (36), (38) and (39) have 
to be calculated numerically 

2. Ballistic particles 

The domain of integration GD in the xy-plane for the class of ballis
tic particles can be determined by (9) and (19), and is illustrated in 
fig. 1. Since for the ballistic particles l> = 2, the escape flux (22) and 
the energy flux parallel to the magnetic field (25) will be zero. For the 
remaining state variables the integrations over the x variable can be 
performed. This yields: 
(a) the number density: 

n(D)(s) = 2N(t/p)1/211 exp [ - U 2 - tq(s)/p] {1(O,Q,W 1) 

- 1(J7ifi>, Q, W 2)} (48) 

(b) the parallel and perpendicular momentum fluxes 

pjr)(s) = 2NkTu(p/t)1/211exp( - U2){[1(0,Q,W1) 

-1(Jq(s),Q,W2)]exp[ -tq(s)/p] 

+ h(Jq(S),Q,S2) - g(0,Q,T2)exp[ -tq(oo)/v]} (49) 

pT)(s) = NkTl.{t/p)1/2112exp( - U2){[1(0,Q,W1 - W3) 

- l(J q(s),Q,W 2 - W 4)] 

. exp[ -tq(s)/p] + h(v'q(S),Q,S2) - g(0,Q,T2)exp[ -tq(oo)!lI]} (50) 

where l(a,b,W) is a linear function in W defined by 

b 

l(a,b,W) = fYW(k)exP[2UY+(; 1)y2JdY (51) 
a 

Moreover we introduced the shorthand notations 

W 1 = erf( f T 2): W 2 = erf( ~; S2) (52) 

W - 1t W S2. W - 1t W S2 3 - - 1 2, 4 - - 2 2 
2 2 
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with 
z 

erf(z) = J;rf exp( -t2)dt 

o 

IV. DETERMINATION OF THE PARAMETERS N, u, Til AND T1. 

(53) 

The in Sec. 3 calculated state variables depend on the parameters N, 
u, Til and T1. of the velocity distribution function (2). These can be 
determinated by expressing that at the exobase the calculated number 
density n(so), flow speed w(so), temperature T(so) and temperature 
anisotropy o(so) are equal to given values. The flow speed is defined by 

w(s) = F(s)/n(s) (54) 

and the temperature and temperature anisotropy can be calculated by 
means of 

T(s) 
1 
- [TII(s) + T l.(s)] (55) 
3 

a(s) = T II (s)/T1.(s) (56) 

with 
T1.(s) = P1.(s)/k n(s) (57) 

TII(s) = [P1I(s) - mw(s) F(s)]/kn(s) (58) 

The number density and the parallel and perpendicular momentum 
fluxes at the exobase can be expressed by means of analytical for
mulae. Indeed from (21), (23), (24) and (26) follows: 
(a) the number density 

n(so) = oC f f xexp[ -tx2 - y2 + 2Uy]dxdy (59) 

(b) the parallel and perpendicular momentum fluxes 

PII(so) = 2c5kT Il C f f xy2 exp [ -tx2 - y2 + 2UyJ dx dy (60) 

P1.(so) = okTIlC f f x3 exp[ -tx2- y2+ 2Uy]dxdy (61) 
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For the escaping particles the domains of integration are the same as 
given in Sec. 3, whereas for the ballistic particles it can be shown that 
the domain of integration is determined as the region inside the ellipse 
vx2 + y2 = q( (0) for which x ~ 0 and y ~ O. Some tedious calcula
tions give the following results. 

A. Particles moving in a potential well (R(s) < 0) 

(a) the number density 

n(so) = ! N erfc( - U) (62) 
2 

with erfc(z) = exp (_Z2) erfex(z) = 1 - erf(z) (63) 
and (b) the parallel and perpendicular momentum fluxes 

PII(so) = NkTIl [J;t + G + U2)erfeX( - U)}xP( - U 2) (64) 

1 
P.l.(so) = -NkT.l.erfc( - U) 

2 
(65) 

After substitution of these results in (55)-(58) the temperature T(so) 
and the temperature anisotropy a(so) at the exobase can be calculated 
by means of 

T(so) = ! T.l. [(2 + t) erfex ( - U) - 2t - ~_ tu]/erfex( U) 
3 1terfex(-U) v 1t (66) 

a(so) = t{l _ --;::,--2_U__ 2 } 
J1terfex( - U) 1t[erfex( U)J2 

(67) 

Substitution of (28) and (62) in (54) yields the flow speed at the 
exobase: 

w(So) = !coU + ~erfex( - U)]/erfex( - U) (68) 
2 

For a given set of values n(so), w(so), T(so) and a(so) the parameters N, 
u, Til and T.l. can be determined by means of the system of four 
transcendental equations (62), (66), (67) and (68). This will be discuss
ed in more detail in a forthcoming paper. 
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B. Particles encountering a potential barrier (R(s) ~ 0) 

1. Escaping particles 

(a) the number density 

with n(E)(so) = iN[erfC(Q - U) + K 1] (69) 

f~ f»(CQ + ~)exp [ -(Q - U)2] - ~ f» (~)exp [ - U2 - tq(oo)jv] 

for ,,2 ==!.. - 1 > 0 
v 

1 e- 2UQ 

Kl=~ JnU exp[-(Q-U)2] fort=v 

-~erfex(PQ - ~)exp[ -(Q - U)2] + ~erfex( - ~) 
t 

exp [ - U2 - tq( 00 )jv ] for p2 == 1 - - > 0 
v 

(b) The parallel and perpendicular momentum fluxes 

(70) 

P~i)(so) = NkTIl {[U JnQ + G + U2)erfeX(Q - U) + K2(Q)] 

exp [ - (Q - U)2] - KiO) exp [ - U2 - tq( 00 )jv]} (71) 

P1E)(so) = ~NkT.L {[erfeX(Q - U) + KiQ)] exp [ -(Q - U)2] 

with 
- KJCO) exp [ - U2 - tq( 00 )jv ]} (72) 

r ~[,,2Z U + (U
2 

_ !) f» ("Z + U)] 
,,3 "..jn ,,2 2 " 

for ,,2 ==!.. - 1 > 0 
v 

K2(z) = [1 - 2Uz + 2U2
Z

2 - e- 2UZ]j(2JnU3
) for t = v (73) 

_~[p2Z + U + (U
2 
+ l)erfex(pz _ U)] 

p3 p..jn p2 2 p 

for p2 == 1 - !.. > 0 
v l 
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.!:: .!?d(/{Z + U) _ t(/{2Z - U) 
/{ /( J'ltV/{4 

&' 2 t lor/{ == - - 1 > 0 
v 

1 + Z2 1 - e- 2Uz 

K3(z) = . U - Kiz) for t = v (74) 

-'!::erfex(pz _ U) + t(p2Z + U) for p2 == 1 _! > 0 
p P J'ltVp4 V 

L t t() t 2 =1+ +-qoo --U 
2 (1 - v) v V/{4 

(75) 

2. Ballisticpartic/es 

It can be shown that the number density, and the parallel and 
perpendicular momentum fluxes for the class of ballistic particles are 
given by 

(76) 

Plr'( s,) - 2NkT, [5. + (~ + u' ) enex ( - U) }xp ( - u ') - 2P\ri;~ 

p~B)(SO) = NkT.1. erfc( - U) - 2p~E)(SO) (78) 

where n(E)(so). P\F)(so) and p~E)(SO) are the corresponding state variables 
for the escaping particles, respectively given by (69), (71) and (72). 

The total number density, escape flux and parallel and perpendicu
lar momentum fluxes are given by 

n(so) = n(E)(so) + n(B)(so) 

F(so) = F(E)(so) 

p II (so) = P\F)(so) + pjr}(so) 

p .1.(so) P~)(so) + P~l(so) 

(79) 

(80) 

(81) 

(82) 

which allows to calculate the flow speed w(so), the temperature T(so) 
and the temperature anisotropy a(so) by means of the relations 
(54)-(58). Since all the state variables at the exobase still depend on Q 
or q(oo) (which is proportional to the height of the potential barrier) 
the parameters N, u, Tn and T.1. can not be determined as easily as for 
the particles moving in a potential well. The height of the potential 
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barrier depends on the different kinds of constituents of the ion
exosphere, and can be calculated in a self consistent way by expressing 
that the total ion escape flux equals the electron escape flux [Lemaire 
and Scherer, 19711. Therefore the parameters N, u, Til and T.L corre
sponding to the velocity distribution (2) of one kind of particles will not 
only be determined by the particle density n(so), the flow speed w(so), 
the temperature T(so), and the anisotropy a(so) of the considered par
ticles, but also by the values at the exobase of the state variables of 
all other sorts of particles building up the ion-exosphere. 

V. SOME SPECIAL VELOCITY DISTRIBUTION FUNCTIONS 

In Sec. 3 we calculated the state variables under the assumption that 
the velocity distribution was given by a general asymmetric anisotro
pic Maxwellian, depending on four parameters N, u, Til and T.L' In 
what follows we will consider some special cases of this velocity dis
tribution, corresponding to some particular values of the parameters. 

(i) The bimaxwellian velocity distribution function (U = 0, TU ~ TJ 

The bimaxwellian or anisotropic velocity distribution depends on 
three parameters N, Til and T.l.' The formulae for the state variables 
can be deduced from the formulae of Sec. 3, in which U = O. As a 
consequence of this the y-integrations can be calculated analytically. 

A. Particles moving in a potential well 

The analytical expressions for the functions h(O,oo,S,), with i = 1,2, 
3, entering in (27), (30) and (31) can be calculated quiet easily. This 
yields 
(a) the number density 

n(s) = !NIX{erfex(Vx) - (p/t)1/2 erfex[Vx{t/p)1/2]} (83) 
2 

(b) the parallel and perpendicular momentum fluxes 

PII(s) = ~NkTIIIX{erfeX(VX> - (p/t)3/2erfex[Vit/p)1/2] 

+ In(l-f)Vx} (84) 

-sss-
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P.L(s) = !NkT.LIX{lXerfex(Vx) - rtVx/J; 
2 

- (P/t)1/2 Ml erfex [V x(t/p)1/2]} 

IX = rt{l -1} V" = [ -q(S)]I/2 

Ml = IX + !rt + trt q(s)/p 
2 

(85) 

(86) 

The escape flux and the energy flux follow respectively from (28) and 
(32) 

F(s) =! Nco rt = ! N(2kT,,/nm)1/2rt 
4 2 

6(S) = !NkTIl Cort [1 + rl - q(s)] 
4 

B. Particles encountering a potential barrier 

1. Escaping particles 

(87) 

(88) 

The functions h(Q,oo,S,) and g(O,Q,T1), with i = 1,2, 3, entering in 
the formulae (36), (38) and (39) can be defined analytically for U O. 
This yields after some tedious calculations. 
Ca) the number density; 

for t #:. " 

- [(p/t)1/2 erfex [X(t/p)1/2] + Z(X)] exp [ - tq( 00 )/"]} (89) 

and for t = " 
1 n(E)(s) = - NlXexp [ -q( oo)]{erfex(Vc) 
2 
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where we introduced the following shorthand notations 

Vc = [q(oo) - q(S»)1!2 

{

"/!!J(XI,,/) with "/ = (7:11(;2)1/2 if 1(;2 ==!. - 1 > 0 
Z(x) = v 

-fJerfex(xl{J) with fJ = ('rlp2)1!2 if p2 == 1 -; > 0 

(b) the parallel and perpendicular momentum fluxes 

for t :f: v 

exp[ -q(oo)J - [(Plt)3/2erfex[X(tIP)1!2J + 2 v(t - p)X 
J1C t(t - v) 

- ~ Z(X)] exp [ - tq( 00 )/v J} 
t-v 

p~E)(S) = !NkT.l.x{[.xerfeX(Vc) - t11VJ + M 2Z(VC)] 

2 (t - v) 1C 

(91) 

(92) 

(93) 

exp[ -q(oo)J - [M 1(Plt)1 /2 erfex [X(tlp)1/2J - v11 X
J 

+ M 2Z(X)] 
(t - v) 1C 

with 

and for t = v 

exp [ - tq( 00 )/v J} (94) 

M2 = rl + t11 + ~ V2 

2(t - v) v _ p c 
(95) 

P~F)(s) = ~ NkTllrlexp [ -q( oo)J {erfeX(Vc) - (plt)3 /2 erfex [X(tlp)1/21] 

+ ];r[ Vc - pX/t + ~(V: - X3)]} (96) 

-SS7-



M. Scherer 

p~E)(S) = ~ NkTl.aexp [ - q(oo)] {a erfex(Vc) 

- Ml (p/t)l/Z erfex [X(t/p)1/Z] 

+-= aVc + aVc-M1X-- -+--X 2 [ 2 3 2(1 1)tlt 3]} 
In 3 3 2 T P 

(97) 

The escape flux and the energy flux parallel to the magnetic field can 
be determined respectively from (37) and (40), in which the results 
(43)-(45), (47) for U = 0 are substituted. This yields for t #: v 

F(s) = ~ NCotl{texp [ -q( (0)] - vexp [ - tq( oo)/v]}/(t - v) (98) 

1 {[ 1 + tV Z av] [ a(s) = -NkTU cotl 1 + c + 2 exp -q(oo)] 
4 ,t - v (t - v) 

- -- - + -- + -- - q(s) exp -tq(oo)/v v [1 a q(oo) ] [ ]} 
t v t t-v v 

(99) 

and for t = v: 

F(s) = ~ NCotl[1 + q(oo)]exp[ -q(oo)] (100) 

a(s) = ~NkTIl COtl{U + q(oo)](1 + ~ + V;) 

- q(00)[1 + t ~ 1 q(oo)]}exp [ -q(oo)] (101) 

2. Ballistic particles 

The functions I(O,Q,W;) and I(J q(s),Q,W 1) with i = 1, 3, h(J q(s), 
Q,S2)' and g(O,Q,Tz) which enter in the right hand side of (48), (49) 
and (SO) can be defined analytically if U = O. Hence the number 
density and the parallel and perpendicular momentum fluxes of the 
ballistic particles can be calculated by means of analytical expressions. 
Calculating the integrals which define I, hand 9 is, however, very 
cumbersome. These tedious calculations can be avoided by defining 
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the functions %(s), £?I1I(s) and £?I i(S) as follows 

%(s) = 2C II ~exp[ -tx2 - y2]dxdy (102) 
B(x,y) 

GB+GS 

£?In(S) = 4kTnC II xyB(x,y)exp[ -tx2 - y2]dxdy (103) 

GB+GS 

£?Ii(S) = 2kTII'1C II x
3

y exp( -tx2 - y2)dxdy (104) 
B(x,y) 

GB+GS 

where B(x,y) and C are given in (26), and G E and G B are the domains 
of integration respectively for the escaping and ballistic particles (see 
Fig. 1). The double integrals in the righthand side of (102), (103) and 
(104) can be calculated easily and lead to the formulae. 

%(s) = Ncx{exp [-q(s)] - (Pf01l2 exp [-tq(s)fp]) (105) 

£?In (s) = NkTucx{exp [-q(s)] - (Pft)3/2 exp [- tq(s)!p]) (106) 

£?Ii(s) = NkTicx{cx exp [-q(s)] - M 1(Pft)1/2 exp [-tq(s)/p]} 
{I 07) 

where cx and Ml are given by (86). 
From the definitions (102)-(104) and the relations (21), (23) and (24) 

follows that 
n(B)(s) = %(s) - 2n(E)(s) 

p\r)(s) = £?I1I(s) - 2P\F)(s) 

p~)(s) = £?I i(S) - 2P~)(s) 

(108) 

(109) 

(110) 

where n(E)(s), P\F)(s) and P~)(s) are respectively given by (89) and (90), 
(93) and (96), and (94) and (97). 

(li) Maxwellian velocity distribution function (U = 0, Til = Ti ) 

In this case we can deduce the formulae for the state variables 
directly from the expressions obtained for a bimaxwellian velocity dis
tribution by putting t = I. The resulting formulae are much simplified 
since 

cx=l; t-v=l-v=a>O 

and therefore: Z(x) = yf!J(x/y) with y = (nfa)1/2. 
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The formulae obtained in this way are in compliance with the 
results obtained in earlier model calculations [Lemaire and Scherer, 
1970}. 

(iii) The asymmetric maxwellian velocity distribution (U =1=0, Til = T.L) 

Substituting t = I in the general formulae deduced in Sec. 3 we 
recover the earlier calculated results for an ion-exosphere model with 
an asymmetric distribution [Lemaire and Scherer, 1972b}. 

VI. CONCLUSIONS 

Assuming that at the exobase the velocity distribution function of 
the particles emerging from the barosphere is given by an asymmetric 
anisotropic velocity distribution function the number density, the 
escape flux, the parallel and perpendicular momentum fluxes and the 
energy flux along an open magnetic field line have been calculated. 
Moreover we have shown that the earlier determined formulae for the 
polar wind state variables [Lemaire and Scherer, 1970, 1972b} can be 
obtained as a special case of the present model ion-exosphere in which 
the temperature anisotropy of the protons at the exobase is no longer 

restricted to the constant value 1 - ~. 
11: 
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