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SUMMARY 

The entropy balance associated with a Budyko-Sellers climatic model is developed. It is shown that 
different regimes, associated with decreasing, as well as increasing values of entropy production (which 
measures the rate of dissipation in the system) in the course of time are possible. This immediately poses the 
problem of stability of steady states of the climatic system. An explicit criterion of climatic stability is thus 
derived, which is expressed in terms of thermodynamic quantities related to excess entropy production. The 
results are illustrated on simple cases involving diffusive’ energy transport. A comparison with Paltridge’s 
minimum entropy exchange principle is also attempted. 

1. INTRODUCTION 

The complexity of the dynamical processes determining long-term climatic trends is 
well known. Nevertheless, the need of an approach involving only a few global variables is 
nowadays widely recognized. Suffice it to quote the energy-balance models of the Budyko- 
Sellers type (Budyko 1969; Sellers 1969), which have been developed further by such 
investigators as North (1975, a, b), Ghil (1976) and Coakley (1979), and which led to a 
qualitative understanding of a great many features of climate and its evolution. 

Reduction of state space by suitably averaging the initial dynamical variables is a 
well-known procedure in many areas of physics. The most characteristic example is certainly 
Statistical Mechanics, where different averages have led, successively, from the Liouville 
equation to  Boltzmann-like equations, to Markov chains, or to macroscopic balance 
equations like those of hydrodynamics and chemical kinetics. 

A second line of approach to the study of complex systems, which is also suggested by 
the statistical mechanics ‘prototype’, is the development of a thermodynamic description. 
The primary objective is to cast some basic features of the system in the properties of state 
functionals - like entropy (or more generally, a Lyapounov functional; see Prigogine et al. 
1977) or entropy production - which are largely independent of the details of the individual 
degrees of freedom. Typical examples of such properties are the Clausius inequality, the 
theorem of minimum entropy production in the linear range of irreversible processes 
(Prigogine 1947), or the stability criterion of steady states far from equilibrium (Glans- 
dorff and Prigogine 1971). Surprisingly, this second line of approach is much less common 
in climate modelling. It is only recently that Paltridge (1975, 1978), Golitsyn and Mokhov 
(1978) and North et al. (1979) examined the possible existence of a variational principle 
governing climate. Paltridge’s approach is specially significant for our discussion. Assuming 
certain relationships between atmospheric and oceanic dissipation rates, he showed that 
a maximization of the steady-state overall dissipation rate of the earth-atmosphere system 
yields uniquely defined spatial distributions of surface temperature, cloud cover and meri- 
dional energy fluxes, which closely resemble the observed zonally averaged mean-annual 
values. 

The purpose of this paper is to develop the entropy-balance equation associated with 
an energy-balance equation of the Budyko-Sellers type. From this equation we identify, in 
section 2, the appropriate expressions for the entropy flux and entropy production which 
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are valid for stationary as well as for time-dependent states. In section 3 we evaluate the 
time-derivative of the entropy production and show that, in general, it has no definite sign. 
As a result the steady state solution of the system does not correspond to a minimum of 
entropy production, even if linear relations between energy flux and temperature gradient 
are considered. This provides an extension of Prigogine’s minimum entropy production 
theorem. It also shows that entropy production can no longer serve as a Lyapounov 
functional, whose variational properties guarantee the stability of the reference state. This 
raises, therefore, the question of stability of the climatic system. In the remainder of section 
3 we show how this question can be tackled by the methods of thermodynamics of irrever- 
sible processes. 

Section 4 is devoted to the explicit evaluation of the time course of entropy production 
for a simple climatic model involving, successively, an ice-free earth (section 4a) and a 
climate close to the present-day one (section 4b). In both cases we show that entropy 
production may decrease or increase in time, depending on the initial state. This corrobo- 
rates the general results of the analysis of section 3, according to which the steady state 
climate does not appear to satisfy an obvious variational principle, at least at the level of a 
Budyko-Sellers type of model. Nevertheless, some general trends appear to recur con- 
tinuously. For instance, entropy production tends to increase whenever the equator-pole 
temperature difference becomes more pronounced. 

Section 5 is devoted to the solution of the energy balance equation using Paltridge’s 
maximum entropy production conjecture. This yields a meridional energy flux which is in 
fair agreement with present-day data, but a somewhat less satisfactory temperature distribu- 
tion. 

In the final section 6 we draw the main conclusions of the analysis. We point out the 
intrinsic variability of the climatic system, as illustrated from the different behaviour ob- 
tained for the entropy production by different assumptions on the energy flux (such as a 
diffusive energy transport or a maximum entropy production). It appears, therefore, that 
the basic problem one is faced with is to delimit the principal factors responsible for the 
selection of a particular steady state climatic regime. 

2. THE MODEL. ENTROPY-BALANCE EQUATION 

A one-dimensional model involving meridional energy transport will be adopted 
(North 1975a, b;  Coakley 1979) as described in Fig. 1. 

Figure 1 .  
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As frequently done in such models, the absorbed part of solar influx, F, and the 
infrared cooling rate, F I R  are described in terms of an effective surface temperature T, 
which depends on latitude. Thus, the fine structure of the atmosphere along the vertical 
direction is ignored. 

A basic problem arising in the analysis of the evolution of a physical system is to find the 
appropriate constitutive relution(s) between the fluxes (in the present case, the meridional 
energy flux) and the state variables (in the present case, the surface temperature T and its 
gradient). The complexity of the earth-atmosphere system precludes any derivation of such 
laws starting from first principles. It is therefore tempting to turn to thermodynamics of 
irreversible processes, which provides a natural classification of physical systems according 
to the type of constitutive relation prevailing. As it turns out, one must first identify the 
proper quantities which have to be related by the constitutive relations (also known as 
phenomenological laws). This is done by constructing the entropy production, which plays a 
central role in the theory of irreversible processes. To this end we first write the energy- 
balance equation for our system. It will be convenient to switch to spherical coordinates 
and to incorporate the square of the inverse of radius of the earth into the heat flux and the 
various proportionality coefficients. The only component of V surviving in a one-dimen- 
sional latitudinal model is then 

V , = ( l - x ) -  2 + a  . 
ax 

where x is the sine of latitude. The balance equation thus takes the form 

ae aT 
at = at C- = Fs-FIR-div J _ -  

or, setting 

aT a 
at C- = f ( T , x ) - - ( l  ax -x2)'J, , 

where C is the heat capacity (or thermal inertia) coefficient and J, the energy flux. 
In order to deduce the entropy-balance equation we adopt Gibbs's entropy postulate 

(Glansdorff and Prigogine 1971). Namely, we assume that if the total entropy is written in 
the form (in the symmetric hemisphere case considered hereafter) : 

1 

S = 2 [ s d x  . 
J O  

(3) 

then the reduced entropy s depends on the same variables as in thermodynamic equilibrium. 
For the system under consideration this means 

s = s(e) 

1 C 
T T ds = - d e  = -dT (4) 

This assumption is eminently plausible. The most important climatic phenomena are those 
due to the transport by the oceans and the lower atmosphere. Both systems are well within 
the collisional regime of kinetic theory, and hence their state is expected to be close to local 
equilibrium. 

We now combine Eqs. (3)-(4) with Eq. (2). We obtain: 
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Performing the x-integration in the first term and using the boundary condition 

J , = O  at x = O , x  = + I  . ( 5 )  

as well as Eq. (l),  we arrive at the expression 

Hence, we identify the entropy flux 

and the entropy production 

Note that this separation implies that the functionf(T,x), that is the absorbed and outgoing 
radiations Fs and FIR is entirely associated to non-dissipative processes. In this view there- 
fore, the main role of the radiative flux is to create a lateral temperature gradient (that is, a 
non-equilibrium state), whose maintenance is associated with the entropy production 

We are now in position to identify the variables to be related by the constitutive 
equations, namely J,  and V,T-’. Let us discuss a few representative situations (see also 
Glansdorff and Prigogine 1971): 

(a) We first assume that the system operates in the linear range of irreversible pro- 
cesses. This will be reflected by the linear relation 

diS/dt, Eq. (8 ) .  

J ,  = LV,T-’  . ( 9 4  
where the phenomenological coefficient L ( L  >, 0) is constant. In this relation, V,T - is to 
be viewed as a generalized thermodynamic force conjugate to the energy flux J,. 

(b) The phenomenological coefficient L is not constant. Rather, when Eq. (9a) is 
written in the Fickian or Fourier form: 

L 
T 2  J ,  = - IV,T --V T . 

the transport coefficient A EE LIT2 is constant. 
In both cases (a) and (b) we have a phenomenological law reminiscent of a diffusive 

mechanism of energy transport. Naturally, this does not mean that molecular diffusion and 
heat conduction are the dominant transport mechanism. Rather, these laws must be viewed 
as a phenomenological way of expressing turbulent transfer of latent heat and sensible heat 
in a medium of variable temperature. Several authors have discussed the properties of the 
phenomenological transfer coefficient (Stone 1973 ; Newel1 1974; Lin 1977), and in particular 
its possible dependence on both local temperature and temperature gradients. This leads us 
to discuss a third type of situation: 
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(c) The system operates in the nonlinear range of irreversible processes, in the sense 
that the flux-force relationship is nonlinear. One way to express this is to take the coefficients 
L or 1 in Eq. (9a) or (9b) to depend on both T and V,T: 

or 

J ,  = L ( T , I v , T I ) v , T - ~  
J ,  = - L ( T , I v , T I ) v , T  . 

Contrary to the case of certain physico-chemical systems (Glansdorff and Prigogine 1971) it 
does not seem possible to specify the particular form of nonlinearity involved in Eq. (9c). 
Hence, one can envisage a large number of different situations corresponding to different 
choices of constitutive relations. All these choices may well be compatible with present-day 
climatic data, if the coefficients involved in L or 1 are adequately fitted. Already in the case 
of Eq. (9b), North (1975b) was able to reproduce a reasonable present-day meridional 
temperature distribution and flux by fitting a single parameter A. It is therefore important to 
be able to remove somehow this high degeneracy in the choice of J,. One way to achieve this 
is Paltridge’s maximum entropy production Ansatz. We will have a detailed look at this 
possibility in section 5.  In the following section we adopt a different approach. We intend to 
see how far one can go in the analysis of the climatic system as represented by the energy- 
balance equation, on the basis of the properties of thermodynamic state functions like 
entropy and entropy production. 

3. VARIATIONAL PROPERTIES OF ENTROPY PRODUCTION, LYAPOUNOV FUNCTIONALS 

One of the most important results of the thermodynamic theory of irreversible processes 
is Prigogine’s theorem of minimum entropy production (Prigogine 1947). It asserts that in 
purely dissipative systems in which the fluxes and forces are related by linear laws of the 
form (9a), entropy production at the steady state settles to a minimum value compatible 
with the constraints acting on the system. It follows that these steady states are stable 
toward all possible disturbances, provided that thermodynamic equilibrium itself is stable. 
In other words, entropy production acts like a Lyapounov functional (see e.g. Cesari 1962) 
ensuring global stability. 

Let us now see whether this result can be extended to our climatic model, Eq. (2). To 
this end we examine the behaviour of entropy production as a function of time. To remain 
as long as possible within the hypotheses of Prigogine’s theorem we first consider the linear 
flux-force relation (9a), where the phenomenological coefficient L is constant. 

The balance equation (2) takes the form 

aT a aT-’ C- =f(T,x) - - ( l -x’ )L-  at ax ax 

and 8, Eq. (8) becomes: 

Taking the time derivative and remembering that L is constant, we obtain: 

-- aT-l  a 1 aT dx( l -xz ) - - - -  
dt ax axT2 at 

Substituting aT/at from Eq. (lo), performing a partial integration and taking into account 
the boundary conditions (6) we obtain: 
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_ -  dt - - cs0 dx $ [ :( 1 - x2)- ~ T - I ] ~  ax +- 4 . ~ ' ~ ~  d x p J ' T , x )  1 [ a  $1 - X 2 ) Z  aT- l l  d 9  4L2 

= -+-" d i 9  d 9  
- dt dt 

The first term of this relation, di9 /d t  describes the time variation of 9 arising solely from 
internal dissipative processes. If only this term were present relation (12) would be equiva- 
lent to the theorem of minimum entropy production, dY/dt  < 0. In Eq. (12) however we 
have a second term de9/dt which depends on the radiative fluxf(T,x) and which has no 
definite sign. Its presence offers new possibilities like, for instance, the inversion of the sign 
of dY/dt  under certain conditions. 

The reason for this lack of universality, as opposed to the universality of Prigogine's 
theorem, is in the boundary conditions. In Prigogine's theorem, the latter (fixed or zero-flux 
conditions) rule out all spatial configurations that could lead to a value of 9 smaller than 
the steady-state one. In the present case however the lateral (zero-flux boundary conditions), 
Eq. ( 5 ) ,  are not sufficiently stringent to eliminate such possibilities. As a matter of fact, the 
only exchanges between system and surroundings are along the vertical direction which has 
been lumped, owing to the one-dimensional character of the model described by Fig. I and 
Eq. (2). As a result, the radiative fluxf(T,x) which is at the origin of the term de9/dr in 
Eq. (12), acts like a constraint of a new type as it is incorporated into the structure of the 
energy balance equation. Interestingly, this constraint does not act directly as the driving 
force for a dissipative flux. Rather (see also comments following Eq. (8)), it is associated 
with a process of energy storage. In this respect the behaviour of dY/dt  as deduced from Eq. 
(12) is somewhat reminiscent of that of electrical circuits comprising resistors and induc- 
tances. As pointed out by Landauer (1975), in such systems involving inertial elements in 
addition to dissipative ones, the entropy production may indeed increase in time, even if the 
circuit characteristics are completely linear. 

So far we discussed strictly linear phenomenological laws, Eq. (9a). The results can, 
however, be extended straightforwardly to case (9b) of a Fourier type of law. The balance 
equation (2) and the entropy production 9, Eq. (8) take the form: 

aT a aT c- = f(T,x)-t-I-(1 -XZ)-- . at ax ax 
9 = 2 

10' 

Note the presence of the weighting factor 1/T2 in the integrand. The computation of dY/dt  
follows the same lines as before. The final result is: 

Without the last two terms, d9/d t  would again be negative definite. As in the previous 
subsection, the presence of the radiative-flux term f(T,x) offers some new possibilities. So 
does the last term, which, however, is of a higher order in (aT/ax) than the other two terms. 
For this reason it is expected to give a negligible contribution. This will be verified in the 
explicit calculations reported in section 4. 
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Let us briefly summarize the situation. We have shown that, because of energy storage 
processes, the time variation of entropy production is not necessarily negative, as in curve 
(a) of Fig. 2 characterizing usual physico-chemical systems obeying Prigogine's theorem. 
Different possibilities can be envisaged, like for instance curve (b) of Fig. 2. We discuss 

Figure 2. Possible time evolutions of entropy production compatible with Eqs. (12) and (15). Curve (a): 
same behaviour as in Prigogine's minimum entropy production theorem. (b) : Entropy production is increas- 
ing, but reference state remains stable. (c), (d): Reference state is unstable, and system evolves to new steady 

states. 

their climatic significance in section 4. For the purposes of our present qualitative discussion 
however, both situations (a) and (b) are indicative of the stability of the stationary climatic 
regime. Of more interest are therefore situations corresponding to curves (c) or (d), which 
are perfectly compatible with Eq. (12) or (15) and which indicate, nevertheless, that the 
system may evolve away from a certain reference state and tend to a new climatic configura- 
tion. 

We would now like to obtain a criterion which would show when such instabilities are 
possible. In jrreversible thermodynamics, it turns out that one cannot derive such a criterion 
using the variational properties of entropy production. Following Glansdorff and Prigogine 
(1971) we introduce therefore a new functional related to the excess entropy around the 
reference state. Let us first outline the formulation in the general case where no particular 
constitutive relation is postulated. 

Let T be a reference temperature, for instance that corresponding to the present-day 
climate. We consider a slight perturbation, 6T, from this state, and set 

Using Eq. (4) one can easily construct the excess entropy function 

Note that 
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1 

6's = / - l dx6 ' s<  0 (18) 

Because of this, we regard 6's as a Lyapounov functional (Cesari 1962) and we evaluate its 
time derivative along the motion described by the balance equation (2). Keeping in mind 
that p i s  time-independent, we obtain: 

d l  
d t 2  --(a's) 3 -2C 

with (cf. Eq. (2)) 

c x  as T = (g)$T-%(l  a - X Z ) f s J ,  

More explicitly: 

-- dx6Jx.GV,T-' . 

The first term of this expression reflects the effect of radiative flux. The second term has the 
same structure as the entropy production, Eq. (9), except that we now deal with the excess 
flux SJ,, and the excess force 6V,T-'. We shall refer to this combination as the excess 
entropy production (Glansdorff and Prigogine 1971). 

By Lyapounov's stability theorem (Cesari 1962), we conclude that .f will be asymptoti- 
cally stable as long as d/dt+(s2S) has a sign opposite to S'S, or 

along all solutions of Eq. (19b). 

V,T-  '. Choosing as an example, the non-linear relation (Stone 1973): 
To give a more explicit form to this expression, we must specify how J,  is related to 

we obtain the explicit form of the stability condition: 

where 1; denotes the derivative of 1, with respect to its argument aT/ax. 
In this inequality none of the terms, except the first, have a definite sign. Hence, under 

certain conditions their sign can become negative and their absolute value can exceed that 
of the first term. In this case one would have d/dt(S2S) < 0, and since (6's) remains always 
negative, by Lyapounov's theorem would be unstable. We may refer to this situation as a 
climatic catastrophe. We see that it is reflected by a clearcut change in the thermodynamic 
properties of the system. In a sense, climatic change becomes a problem of thermodynamic 
stability. Note that the terms threatening stability in Eq. (23) are related either to the 
storage termf, or to the non-linearity in the J, - V,T relationship. This is in agreement with 
the fact that the source of non-linearity making bifurcations possible in the energy-balance 
equation (cf. Eq. (2) or (19b)) is, precisely, in these two terms. 

Finally, it is easy to verify that the left-hand side of relation (21) or (23) is closely 
related to the second variation of the functional recently proposed by North et al. (1979) 
in their variational formulation of Budyko-Sellers climate models. 
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4. ILLUSTRATIONS 

In this section we illustrate the structure of the general expressions derived so far on 
simple examples. 

(a) An ice-free earth 

We first consider Eq. (2) in the case of an ice-free earth. It is believed (Budyko 1977) 
that this was indeed the case in the mesozoic and early cenozoic eras up to the beginning of 
the quaternary glaciations. 

We adopt relation (9b) for the energy flux, and the following expressions for the radia- 
tive flux terms f(T,x) : 

J ,  = -IV,T 

f(T,x) = Q(1 -a)S(x)-(A+BT) (24) 

where the albedo c1 is taken to be constant (a rather legitimate approximation for an ice- 
free earth). Q is the solar constant, A and B are the infrared cooling coefficients, and the 
insolation S(x) is approximated by (Coakley 1979) : 

S(x) = 1 + SZP, (S2 < 0) (25) 
P2 being the second Legendre polynomial. Equation (2) takes thus the explicit form 

aT  a aT 
C- at = Q ( l - a ) ( l + S , P , ) - ( A + B T ) + L a j c ( l - x Z ) a ~  

The solution is easily found to be 

T(x) = To + T~P,(x) (274 
where the planetary temperature To obeys 

and the amplitude T, to 

Both To, T, are to be expressed in degrees centigrade. The entropy production, Eq. (14), 
becomes : 

2 1 1 

9' = 2LT;lO dx(1 -x2) [(273 + To) + 7'2P,(x)]2 (2) 
One can easily see (Nicolis 1979) using the appropriate numerical values for Q, a, S,, A, B, 
I that 273+T0 % T,. Thus, the above expression can be approximated by 

12L Ti(t) 9%- 
5 (273 + To(t))2 

We proceed to the evaluation of d9'ldt. To simplify the picture as much as possible we 
consider only those evolutions that keep the planetary temperature To invariant. This is 
legitimate, since the equations for To and T, are uncoupled. The time dependence of T2 is 
easily found to be 
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with 

T2(f)  = T2m +e-"(Tzo - T2m) 

T20 = initial condition 

p = ~ ( B + 6 1 )  > 0 1 

It follows that 

Figure 3 depicts the evolution of T2 and 9. We see that B can decrease or increase in time, 
according as the initial value T20 is smaller or larger than the steady-state level T2m.  As TZm 
is negative, in actual fact this implies that for fixed values of the coefficients, 9 decreases if 
the initial thermal gradient, measured by IT2/, is large and it increases if the initial IT2\ is 
small. This is quite reasonable, since the steeper the gradient, the larger the rate of dissipa- 
tion will have to be. 

We see in an explicit way the possibility of having maximum entropy production at the 
steady state for all families of initial conditions (or equivalently, for all 'virtual displace- 
ments') with T2, > T2m. The same system however can give rise to a decrease in B, for 
different types of initial conditions. Note however that all these new possibilities do not 
compromise the stability of the steady-state regime, Tzm. As a matter of fact, (B-Pm) 
turns out to be a Lyapounov function ensuring stability both in the case of increasing and of 
decreasing 9 ' s  (see also Fig. 2, curves (a) and (b)). 

In the context of climatic history of the last 250 myr or so, one might question the 
assumption adopted implicitly so far that the coefficients A, B, A do not evolve in time. 
Recently one of the authors (Nicolis 1979) developed plausible scenarios of evolution of 
these coefficients and analysed the consequences of such variations on the values of To and 
T,, using the constraint (suggested by paleoclimatic data) that the equatorial temperature, 
Teq remained practically invariant (Teq N 25°C). We have verified that this simultaneous 
evolution of both T and the parameters does not affect the qualitative trend shown in Fig. 3. 
Namely, a more pronounced pole-equator thermal gradient leads to a relaxation accom- 
panied by a decreasing entropy production whereas the opposite is true if the pole-equator 
initial gradient is smaller that the steady state value. 

(b) The influence of ice caps 

We now extend the model of the previous subsection to account for the existence of 
ice caps characterizing the present climate. Equation (26) keeps then the same general 
form, except that the albedo a is replaced by an expression taking into account the existence 
of an ice edge. Specifically (North 1975a), denoting by x, the position of the latter and 
assuming symmetric hemispheres : 

1 -a  = a(x,x,) 
= boy x > x ,  I = a0 + a,P2(x), x < x ,  . (31) 

where bo is the absorption coefficient over ice or snow 50 % covered with clouds, and %y a, 
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P (arbitrary units) 
Tz(*C)~ + 1 

T (arbitrary units) 0 '  

Figure 3. Time evolution of the amplitude T2 of the second Legendre mode (lower part) and of entropy 
production (upper part) associated with model Eqs. (26). 

are the absorption coefficients over ice-free areas obtained after analysing the a1 bedo 
distribution by Legendre series. As usual, it is assumed that at x, the temperature is 
- 10°C. 

An appropriate solution of Eqs. (26)  and (31)  can be found by expanding Tin series of 
Legendre polynomials. Truncation to the second mode gives (North 1975a): 

C- dTz - - QH2(x,)-((B+6A)T2 d t  

To + T'P~(x,) = - 10 (32)  

where To and T, are again expressed in degrees centigrade, and 

H,(x,) = (2n + 1) 

m = 0,2 

dxS(x)a(x,x,)P,,,(x) 

(33) 

s: 
Note that, contrary to the preceding subsection, these equations are coupled through the 
variable x,. 

The entropy production, Eq. (14), takes the same form as Eq. (28) : 

121 T;( t )  
5 (273 + To(t))' 

P(f) N - (34) 

provided we again adopt the assumption 273+T0 B IT,I. As it turns out, the solution of 
Eq. (32) completely justifies this assumption. 

In order to analyse the time dependence of P(t) we solved numerically the initial value 
problem for Eqs. (32) using the Hamin method. We first explored (Fig. 4) the vicinity of the 
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55 I I I 

-." 
10 30 

t (years) 
50 

Figure 4. Time evolution of entropy production associated with model Eq. (32), using two different initial 
conditions for Tz and TO = 14.9"C. In both cases the present climatic regime is recovered asymptotically. 
Numerical values used: Q = 4 (1360) Wrn-,, bo = 0.38, a. = 0.697, a2 = -0.0779, C = 3.138~ lo8 

J m-', S, = -0.477, A = 214.2 W m-2, B = 1.575 W m-,, 1 = 0.591 W m-'. 

steady-state solution of these equations corresponding to the present-day climate. For the 
numerical values given in the caption of Fig. 4, this state corresponds to To = 14.9"C, 
T, = -28.2"C, x, = 0.96 and is asymptotically stable. Figure 4 depicts the evolution of 
9 ( t )  induced by a perturbed pole-equator gradient, keeping the planetary temperature 
invariant. We see that if T,, = - 30°C 9 decreases in time, whereas for T2, = -26°C 9 
increases until the present-day climate is recovered. We arrive therefore at the same quali- 
tative behaviour as in the preceding subsection. We thus feel that there is no support for the 
claim (Golitsyn and Mokhov 1978) that the stability properties of the climate should be 
linked to the extremal properties of entropy production. 

In Fig. 5 we report the evolution of entropy production using the same parameter 

To 110 h T, =-36 

I I 

0 50 100 
t (years) 

Figure 5 .  Time evolution of entropy production associated with model Eq. (32) using an initial condition 
(x. = 0.84, To = 1O"C, T2 = -36°C) simulating the last major glaciation. Numerical values used are as 

in Fig. 2. 
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values as in Fig. 4, but starting from initial conditions simulating the last major glaciation 
(18000 years B.P.). We know that in this case the ice caps went as far down as 57" in the 
Northern Hemisphere, and that the planetary temperature was less by about 5°C.  The ice 
boundary condition (third relation (32)) allows us then to compute T2. Taking x, = sin57" = 
0.84, To = 10°C we find T2 = -36°C. As seen from Fig. 5,  the entropy production 
then decreases monotonically until the present-day climate is reached. 

5. COMPARISON WITH PALTRIDGE'S IDEAS 

The main focus of this paper was the time-dependent properties of entropy production 
in the vicinity of a steady-state climatic regime. As is usually done in the analysis of irre- 
versible phenomena, both the equations of evolution of the state variables and the entropy 
function were evaluated by introducing suitable constitutive relations linking fluxes and 
forces. Thanks to these relations, the energy-balance equation became closed, and allowed 
for an explicit evaluation of the temperature profile across the system. 

An altogether different approach was adopted in the work by Paltridge (1975, 1978). 
His main idea is to use an unconstrained energy balance equation, whereby the energy flux 
is not linked to the temperature gradient. At the steady state and in the framework of the 
one-dimensional model adopted in the present work, this yields : 

(35) 
a 
ax 

V'J,  = -(1-x2)'JJ, = Q ( l  - u ( x ) ) S ( X ) - ( A + B T )  

where -V+ is the adjoint gradient operator. As noted in section 2, the inverse of the radius of 
the earth has been absorbed into J,. From this relation one may express T as a function of 
J ,  : 

Q ( l  - u ( x ) ) S ( X ) - A - V + J ,  
B T =  

In this way the entropy production, Eq. (8), can be written entirely in terms of the flux J,: 

V'J,  S = -2B dx 10' 273B + Q( 1 -u(x))S(x) - A - V + J ,  (37) 

Following Paltridge, we may now seek for the function J:  extremizing 8. We obtain in this 
way the following variational equation, SPjSJ ,  = 0: 

(1 -x2)*J:(x)  = 

where 

g(X) = Q ( l  -~(x))S(x)-A+273B . (39a) 

and the constant K is adjusted to give zero flux at the poles: 

gf(x)dx 
K =  JL. . 

Figure 6 depicts the energy flux obtained by applying this procedure and by using the 
parameter values adopted earlier in the present work. The results are reasonable, both as 
far as the position of the maximum and the behaviour near the poles is concerned. On the 
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LATITUDE ( d e g r e d  

Figure 6. Latitude dependence of the energy flux divided by the earth’s radius, obtained by the entropy 
production extremization (Eq. (38)). The parameter values used are the same as in Fig. 4. 

C 

Figure 7. Entropy production surface, Z, as a function of the energy flux, J, and of an average temperature 
gradient, l A T l . 9 :  line of unconstrained steady states. An example of such states is (b), the state of maximum 
dissipation. (a), (c): steady states obtained after using a constitutive relation. In particular state (a) is taken 
to be the present-day climate as given by North’s model discussed in section 4. Possible time-dependent 
.behaviours of entropy production are described in the vicinity of points (a’), (c’), of the surface C. In par- 
ticular, as shown in section 4 (b), (a’) is a saddle point: for high initial [AT1 P tends to decrease, whereas the 
opposite is true for small initial IATl’s. This behaviour is not to be confused with the fact that, among all 
possible steady states, (b) is the one with maximum dissipation. In other words, Paltridge’s variational 

principle prtains to steady-state behaviour and not to the evolution in the vicinity of a steady state. 

other hand, one can show that the corresponding temperature profile gives excessively high 
values at the equator and low values at the poles, as already pointed out by Golitsyn and 
Mokhov (1978). 

Independently of these technical aspects, however, the main point to be retained is that 
entropy extremization does not require using a constitutive relation expressing J, in terms of 
aT/ax or fitting such coefficients as Iz  in order to obtain the steady state format of present 
climate. Thus, among all possible steady states that may be realized by the earth-atmo- 
sphere system under a given energy input, there is one (cf. Eq. (38) and Fig. 6 )  which extremizes 
the entropy production. Other steady states, such as those evaluated in section 4, are possible. 
They have, however, a smaller dissipation rate than the state J:, Eq. (38). The situation is 
described in Fig. 7. 
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6. CONCLUDING REMARKS 

Our principal goal in this paper was to cast some basic features related to climate and 
its evolution into the properties of entropy and entropy production. We have found that the 
behaviour of these quantities is far from being simple and universal, just like climate itself 
is far from showing simple and universal trends. Rather, it appears that the direction of 
change of entropy production is conditioned by the initial strength of the equator-pole 
temperature gradient as compared to that of the final steady state. Now, a more pronounced 
thermal gradient is characteristic of glacial periods (Newell 1974). We may therefore 
summarize the results of section 4 by stating that the evolution to a glaciation is accompanied 
by an enhanced rate of dissipation, as measured by the entropy production. An additional 
illustration of this conclusion is provided by a direct comparison of Eqs. (28) and (34). 
Using paleoclimatic data from the mesozoic era (Nicolis 1979) we deduce that for an equa- 
torial temperature of 25” and a polar one of ls”, 

121FaSI (- 712 
4”P,SI = - 5 (273+22)’ 

whereas for the present interglacial climate : 

We see that the change in Tz induces about a 16-fold increase of 4”. Certainly, 1 cannot have 
varied in the opposite direction by a comparable amount. Thus, the present interglacial 
climate appears to be more dissipative than the climate associated with an ice-free earth. 

Although the results of sections 2 and 3 are quite general, the illustrations developed in 
section 4b are limited by several simplifications. Perhaps the most serious one - which is in 
fact a limitation of all diffusive models used so far in the literature - is the assumption that 
x, adjusts instantaneously to the value of T(x). This introduces an unrealistically fast time 
scale into the problem. Obviously, a natural boundary condition on the ice edge must be 
introduced in order to allow for the ice melting or advance in a self-consistent way (see also 
Pollard 1978). A second limitation is the two-mode truncation adopted. This prevents ana- 
lysing the behaviour of dissipation under the effect of localized disturbances from some 
reference state. Such local disturbances are certainly more realistic. The time scale of evolu- 
tion is also likely to be lengthened under these conditions. 

The discussion of Fig. 7 in connection with the thermodynamic properties of steady 
states illustrates the considerable degeneracy associated with the modelling of the meri- 
dional flux. A basic problem which remains open at this time is therefore to come up with 
criteria determining the selection mechanisms of a particular steady state climatic regime. 
Paltridge (1979) suggests that the role of fluctuations is likely to be instrumental. He 
believes that fluctuations are capable of introducing a drift in state space, eventually driving 
the system to the state of maximum dissipation. A general answer to this major question is 
however still lacking. It may be expected that the systematic use of thermodynamics could 
prove useful in tackling this problem. 
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