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A 'one-dmensional energy-balance equation involving diffusive energy transport and taking 
into account the ice-albedo feedback is considered. A systematic elimination oí the spatial 
degrecs of freedom is performed. This gives rise to a zero-dimensional climate model 
displaying the explicit dependence of planetary albedo on plarietary temperature and on 
some model parameters. In the general case, the zero-dimensional model involves memory 
effects as well as two characteristic relaxation rates. 

1. iNTRODUCTION 

One of the main tasks in the mathematical modeling of climate in terms of 
simple energy balance equations is to incorporate the most important 
feedback mechanisms present in the earth-atmosphere system. Previous 
studies (e.g. Budyko, 1969; Sellers, 1969) have shown the irnportance of a 
positive feedback due to surface albedo, in the framework of a one- 
dimensional (I-D) latitudinal model. In view of the role of this mechanism 
in determining climate sensitivity a number of authors developed rather 
sophisticated albedo representations (Lian and Cess, 1977; Oerlemans and 
Van Den Dool, 1978) in terms of such factors as temperature, cloudiness 
and solar zenith angle. A common element in most of these repre- 
sentations is the occurrence of some discontinuity, related to the existence 
of an ice edge. 

On the other hand, it has been shown recently that many of the 
qualitative effects predicted by one-dimensional models, such as the 
occurrence of transitions between different climatic regimes, are also 
reproduced by globally averaged, zero-dimensional (O-D) models 
(Fraedrich, 1978; Crafoord and Kallen, 1978). In the latter, some very 
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92 C. NICOLIS 

simple continuous (linear or piecewise linear) dependences of albedo on 
planetary temperature have been postulated. The question therefore arises 
whether such relationships can be justified from the experimental data, 
which a11 refer to zonally averaged latitude-dependent values. This is not 
merely an academic problem, since certain linear albedo-temperature 
feedbacks have been shown to be unphysical when used in the framework 
of a l-D model (Schneider and Gal-Chen, 1973). 

The purpose of this note is to express, in a self-consistent way, the 
dependence of the planetary albedo on planetary temperature, starting 
from a i-D energy balance model. The main point we make is that the 0- 
D model can be viewed as an exact consequence of a l-D model when the 
spatial degrees of freedom are systematically eliminated. This will enable 
us to deduce an explicit form of the albedo-temperature feedback which is: 
(i) continuous in a certain temperature range and (ii) dependent explicitly 
on such parameters as the eddy diffusivities and the infrared cooling 
coefticients. 

In Section 2 we describe the 1-D modei used. In Section 3 we perform 
ai1 elimination of the space variables in the l-D model, based on the wide 
separation of the time scales occurring in the problem. The procedure may 
be summarized as follows. Let X and Y be two groups of variables whose 
evolution is governed by a set of coupled first-order, autonomous differen- 
tia1 equations. We assume that in the eqiiation for Y there is a large 
parameter I describing a fast relaxation process. Under certain conditions 
one may divide both members of the equation by I and switch to suitable 
dimensionless variables. One then obtains : 

dX/dt = f ( X ,  Y, E ) ,  (Fa) 

EdY/dt=g(X, Y, E )  (Fb) 

where E = I -  4 1 and f, g are smooth functions of E in the vicinity of E = O. 
We are interested in the behavior of the above system as &+O. According 
to a theorem due to Tikhonov (Wasow, 1965, sec. 39), under certain 
conditions, as &+O, the solutions of the full system (F) tend to solutions of 
the reduced system: 

dX/dt =f ( X ,  Y, O),  (Ra) 

g ( X ,  X O ) = O .  (Rb) 

From relation (Rb) we may obtain Y as a function of X :  

Y = W ( X ) ,  
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CLIMATE MODELS 

in which case the equation for X takes the closed form: 
d X / d t = f ( X ,  W ( X ) , O ) .  

93 

In Section 3 the above procedure is applied to identify an effective 
planetary aíbedo; the latter is studied both numericaily and analytically 
for smail deviations from the present-day regime. Section 4 is devoted to 
the time-dependent problem. We show that the time dependences of the 
spatial degrees of freedom are reflected by memory effects at the leve1 of 
the O-D reduced balance equation for the planetary temperature. A brief 
discussion of the results is given in Section 5. 

2. THE MODEL 

The 1iD model of North (1975) will be used. The time-dependent energy 
balance equation in this model is of the form 

a T ,  d 
at dX ax 

C-=QS( X)CI(X, x,) - i (x) +- [ (1 - x2)D 2 T(x ) ] ,  

where 
Q is the solar constant divided by 4, taken equal to 340 W m-’, 
x is the sine of latitude and x, corresponds to the ice boundary, 
I ( x )  is the outgoing infrared radiation, 
a(x, x,) is the absorption function [ = 1 - albedo], 
D is the eddy diffusion coeffícient, 
C is the thermal inertia coefficient, taken equal to 3.138 x 10’ J m-’, 
T is the temperature, 
t is time, 
and S(x) is the normalized mean annual meridional distribution of solar 
radiation determined from astronomical calculations. 
The following approximation will be used (Coakley, 1979): 

S(X)= 1.0 -0.477P,(X), (2) 

where P, is the 2nd Legendre polynomial. The parameterization used for 
I ( x )  is the one developed by Cess (1976) for the Northern hemisphere. 
Assuming a constant 50 % cloud cover : 

I ( x ) = A  + B T ( x ) ,  

with (3) 

A=211.5 Wm-’ and B=1.575 Wm-’. 
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94 C. NICOLIS 

The absorption function used, taking symmetric hemispheres, is 

where b,=0.38 is the absorption coefiicient over ice or snow when 50% 
covered with clouds (Budyko, 1969), a, =0.697 and a, = - 0.0779 are the 
absorption coeficients over ice free areas obtained after analyzing the 
albedo distribution by Fourier-Legendre series. 

The ice bsundary is determined using the prescription of Budyko and 
Sellers : 

T > - l O T ,  no ice present, 

T < - 10°C, ice present. 

Finally Eq. (i) is subject to the boundary conditions 

a) no heat transport at the pole, nor across the equator, 
b) the temperature and its gradient must be continuous at the ice edge. 

To solve the balance equation Eq. (l), we expand T ( x )  in a series of 
Legendre polynomials: 

where To is the planetary temperature. We then deduce from Eq. (1): 

1 

O 
H,(x , )  = (2n + 1 ) 1 S ( x ) a ( x ,  x , )Pn(x )dx  (n  = o, 2,.  . .). (6d) 

Eqs. (6) are coupled solely through the value of x,. On the other 
hand the higher the Legendre mode, the faster its relaxation to the steady- 
state value will be, owing to the factor n ( n + l )  multiplying q. We are, 
therefore, within the domain of validity of the Tikhonov theorem referred 
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CLIMATE MODELS 95 

to in the introduction. Hence, the first non-trivial approximation to 
Eqs. (6) taking spatial effects into account, amounts to setting: 

ôT,,/ôt==O, n 2 4 .  

It follows that 

T, = QH,(x,)/[n(n + l )D + B ] ,  n 2 4 .  

Thus T,, is a decreasing function of n both because the denominator is 
quadratic in n and because H, decreases with n. Hen&, we may expect 
that the ice-edge position, Eq. (6c), will not be substantially afíected by 
these higher modes. From now on therefore we illustrate the main idea on 
a two-mode truncation involving To and T2 alone, although the results 
could in principle be extended to higher rs. 

At the leve1 of the two-mode approximation, we will require that the 
model reproduces as closely as possible the present-day steady state values 
of To and T, (To= 14.9"C, T2% -28"C, cf. Coakley, 1979). From this it 
follows that the ice edge is at ~ ~ ~ 0 . 9 6 .  To insure that, we adjusted the 
eddy difíusion coeficient D and the infrareá cooling coefkient A. The 
values which fitted the model best are A=214.2Wm-' and D 
= 0.591 Wm - z. 

3. QUASI-STATIC ELIMINATION OF THE SPATIAL 
DEGREES OF FREEDOM 

We want to see now whether the 1-D model summarized in Eqs. (6) may 
induce a closed equation for the planetary temperature; such an equation 
would constitute a O-D model. Clearly this requires the elimination of a11 
degrees of freedom but To. In the two-mode approximation the variables 
to be eliminated are therefore T2 and x,. 

A necessary assumption to be made at this stage concerns again time 
scales. Comparing Eq. (6a) with Eq. (6b) for n=2, we estimate the 
relaxation time ClBz6.4yr for To whereas C/6D+B?Syr for T2. We 
may regard therefore the time of evolution of T, as being the rate 
determining step. Alternatively, we may set Eq. (6b) for T2 at a quasi- 
steady state as suggested by the Tikhonov theorem: 

aT2/at %o. (7) 

By combining expressions (6b) and (6c) we get an algebraic equation of 
ninth degree in x,: 

QH3 (x,) + (60 + B)( 10 + To)/P3 (x,) = O .  (8) 
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96 C. NICOLIS 

As x, becomes now a function of To, Eq. (6a) takes a closed form. 

(9 ) 

we can thus identify an explicit dependence of the “effective” planetary 
albedo a, in terms of the planetary temperature To; the derivative with 
respect to To of this dependence is given by 

Setting 

H ,  (x,) = HO (x, (To 1) = 1 - E p  (To 1, 

dap òa dx, -=P- 
dTo ax, dTo‘ 

It should be realized that this refers to fixed cloud characteristics. Hence 
it is only a part of the total variation of albedo in terms of the planetary 
temperature. In actual fact albedo depends on To also through other 
factors such as cloud amount, water vapor and so forth. Schematically, 
denoting these latter factors by Y, we have 

and thus 

In what follows we shall focus on the first term of the right-hand side 
only. Our purpose is to display the dependence of ap on To in a 
completely self-consistent way without using data other than the basic 
premises of the 1-D model. So far, it seems impossible to carry out a 
similar program for the second term. 

We first study Eq. (8) and Eq. (9) numerically for different values of To. 
The results are given in Figure 1 for -10<To<16. We see that the 
dependence of the effective planetary albedo is nearly linear in that 
temperature range. Moreover, the derivative of the albedo in the vicinity 
of the present day regime is: 

düp/d T = - 0.0032. (13) 

This is less than the values deduced by Cess (1976), using satellite data of 
mid latitudes. However, as pointed out by Cess, such values are probably 
overestimations. In addition, explicit consideration of atmospheric feed- 
back mechanisms, which appear only implicitly in our calculation, is likely 
to further influence results. 

As mentioned earlier, certain parameters have been adjusted to fit the 
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CLIMATE MODELS 97 

O. 25 
-1 0 -5 o 5 10 15 

1, ' c  

FIGURE 1 Dependence of planetary albedo a,, on planetary temperature To as determined 
by numerical evaluation of Eqs. (8) and (9). Numericai values of the parameters are given in 
the text. 

present-day regime. The results obtained are therefore significant for 
values of x, and To not too remote from present conditions. As long as 
one is restricted to small deviations around some given values of variables, 
one can aiso perform an analytic study of the albedo-temperature 
relationship. To this end we set: 

x, = x: + 4, (14) 

where x: is the location of the present-day ice boundary (x:=O.96) and q 
is a small perturbation. Inserting Eq. (14) in both Eq. (8) and Eq. (9), 
expanding around x,' and keeping only linear terms we get a closed 
equation for To: 

where 

GAFD- D 

1 -ap*=HO(xz)  
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98 C.  NICOLIS 

and 

Eq. (16) displays the dependence of the effective albedo on the 
planetary temperature and on the transport and cooling coefticients D and 
B. The latter coeficients appear explicitly, as well as implicitly, through 
the values of x,*. Differentiating this relation with respect to T,*, multiply- 
ing by aor,/ax, and setting T = To = 14.9 in the result, we find a value close 
to the numerical one, Eq. (13). 

It should be mentioned that Lian and Cess (1977) have actually 
expressed the temperature derivative of the planetary albedo in terms of 
zonal values integrated over a11 latitudes. They then evaluated their 
expression using experimentally determined values of the dependence of 
zonal albedo on temperature. Our work differs in that we remain in the 
framework of the 1-D energy balance model and we try to deduce a11 
quantities of interest in a self consistent way without any further use of 
experimental data. 

4. TIME-DEPENDENT PROBLEM-MEMORY EFFECTS 

So far we have studied the dependence of the planetary albedo on 
parameters characterizing suitable averages of the 1-D problem. To this 
end we have assumed that the components T,, n22, expressing the spatial 
dependence of the temperature, are in a quasi-steady-state. As mentioned 
in the previous section, this hypothesis is rather reasonable, in view of the 
difference in the relaxation times of To and of T,, 1122. In this section we 
will nevertheless analyze the more general case of the time-dependent 
problem. For the sake of simplicity we shall limit ourselves again to the 
two-mode approximation, and furthermore to a linear analysis in the 
vicinity of the present value of the planetary temperature, or alternatively 
of the ice edge. 

Starting from the full time-dependent equations (6), we differentiate Eq. 
(6c) with respect to time. Combining the resulting equation with Eq. (6b) 
and Eq. (6c) and using Eq. (6a) we obtain 

1 
C ! $ = s  { [QHo(x,) - ( A  + BT,) + P, (x,)QH, (x,)] 3x, (lO+T,) 
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CLIMATE MODELS 99 

Eq. (17) together with Eq. (6a) constitute a system of two highly 
nonlinear, first-order coupled differential equations for i, and To. Within 
the framework of a linear analysis we let 

xs=x:+q,  q<x: ,  

and 
To=T,*+O, 04T,* ,  

where q and 0, are respectively small deviations of the ice boundary and 
of the planetary temperature. Linearizing with respect to both variables, 
we obtain after some algebraic manipulations 

-= av +6e(t)-âV(t) 
at 

and 

ae 
-= at c -‘[BO(t)+Q(%) 8% x: q ( t ) ] ,  

with 

p: 
C(10+ Tg) 3x5 

-60. 
1 6= 

The solution of Eq. (Na) is 
r 

q (t) = e- âr[K + 6 J dzB(z)e”], 
O 

where K is the constant of integration depending on the initial conditions. 
Assuming K=O, and substituting Eq. (19) into Eq. (18b), we obtain 

We thus arrive again at a closed equation for the deviation 8 of the 
pianetary temperature from the reference value TO. Contrary to the 
previous section, where we were dealing with ordinary differential equa- 
tions, Eq. (20) is now an integro-differential equation displaying memory 
effects. The latter arise from the time-dependent elimination of spatial 
variables . 
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1 O0 C .  NICOLIS 

In order to solve Eq. (20) we use the Laplace transform (e.g. Matthews 
and Walker, 1965, sec. 4-3): 

m 
O ( S ) =  J e-''O(t)dr 

O 

Inserting Eq. (21) into Eq. (20) we obtain 

with 

and O(0) the initial value of 8. Performing the inverse Laplace transforrn 
we have 

(23 ) 

Thus, the time dependence of 8 ( t )  will be determined by the singularities 
of the integrand, that is by the zeros of the denominator. These are given 
by the equation 

s2 + (2 4- B/C)s  - ( E  - âB/C) =o. (24) 

Its roots have the numerical values: 

s1 = -0.038yr-', s 2 =  -0.334yr-', (25)  

for the parameters given above and for a thermal inertia coeffcieritt 
corresponding to a mixed layer of 75 m. 

The values in Eq. (25) are to be compared to the unique relaxation rate 
characterizing the planetary model of the previous section (with memory 
effects neglected) which is 

TIt should be pointed out that the evaluation of characteristic times carried out in this 
section depends crucially on the choice of the thermal inertia coefficient C. If instead of 
choosing a mixed layer of 75m, we took a whole ocean depth, we would be led to much 
larger time scales. Alternatívely, for smaller depths of the mixed layer, we would have shorter 
characteristic times of the order of a year. We believe that the choice of the appropriate 
value of C depends on the nature of the perturbations acting on the system. 
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CLIMATE MODELS 101 

We see that the effect of memory splits this unique characteristic rate into 
a slightly slower one sl, and a much faster one s2. Among these only the 
first one will give a significant contribution to the evolution of To, while 
the other will die out very quickly. In any case the system remains stable 
and overdamped: it cannot display (damped) oscillatory behavior. 

As pointed out by Bhattacharya and Ghil (1978), oscillations may arise 
in the presence of time lags. Within the framework of our model such lags 
cannot arise, as the memory effect is fading away for a11 O < ~ c t .  
Nevertheless, we wnsidered the consequences of replacing the kernel of 
Eq. (20) by a delta hnction 

i 5 dt'âe-""-' ')e(r')-e(t-z). 
O 

Equation (20) becomes then: 

Seeking for solutions of the form 0 = 8, exp (ar) and using the numerical 
values of the model coeficients,,we find the characqeristic equation for w :  

w =  - (0.156-0.O971e-"'). (28) 

It -admits one real negative solution for all 7 3 O. Therefore instabilities and 
oscillations are ruled out. Additional conditions are necessary, such as 
those considered by Bhattacharya and Ghil (1978) ih connection with 
genuinely nonlinear ice-sheet dynamics. (Kallén et al., 1978, 1979), in order 
to obtain such effects within the framework of a l-D energy balance 
model. 

5. DISCUSSION 
We have seen that it is possible within the framework of energy-balance 
models to express a number of features of a system of low dimensionality 
starting from a model corresponding to a higher dimensionality. The 
technique used was the systematic elimination of spatial degrees of 
freedom, either by a quasi-static procedure (Section 3) or in a time- 
dependent way (Section 4). It led us to an explicit representation of the 
surface-albedo feedback in terms of small deviations of the planetary 
temperature from its present value. 

The wide separation of characteristic times between the first two spatial 
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102 C. NICOLIS 

modes (Section 4) shows that memory effects, although quantitatively 
important, do not introduce a qualitative change in the time evolution of 
temperature. This provides an a posteriori justification of the quasi-static 
assumption used in Section 3, as well as of the truncation to the second 
Legendre mode adopted throughout the present paper. 

A crucial factor limiting the generality of our conclusions is that we did 
not consider explicitly feedback mechanisms other than the dependence of 
surface-albedo on temperature. Such mechanisms, denoted collectively by 
Y(To)  in Eq. (li), are likely to’play a rather important role in the total 
value of the temperature derivative of the albedo (Lian and Cess, 1977). 
Unfortunately, it does not seem possible at this time to construct climate 
models taking these other effects into account in a self-consistent way. 
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