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Abstract

We introduce Ultrahyperbolic Clifford Analysis (UCA) as a motivation
for studying Associated Homogeneous Distributions (AHDs). UCA can be
regarded as a higher-dimensional function theory that generalizes the theory
of complex holomorphic functions. In UCA, the algebra of complex numbers
is replaced with a Clifford algebra Clp,q and the classical complex Cauchy-
Riemann equation is replaced with a Clifford algebra-valued equation, having
physical relevance.

The convolution kernel in Cauchy’s integral formula from complex analysis,
1

2πiz
−1, becomes in UCA a (non-trivial) AHD. In the theoretical development

of UCA and also for its practical application, it is necessary that we can
convolve and multiply AHDs. The aim of this talk is to show that UCA
can be founded on classical distribution theory, so that it is not necessary
to use a more general generalized function algebra for this purpose. This is
achieved by using a new convolution and isomorphic multiplication algebra of
(one-dimensional) AHDs developed earlier by the author, entirely within the
setting of Schwartz’ distributions.

1 Introduction

Ultrahyperbolic Clifford Analysis (UCA) is a particular generalization of complex
analysis to hypercomplex analysis. Let p, q ∈ N, n , p+q, P the canonical quadratic
form of signature (p, q), Rp,q , (Rn, P ) the inner product space with inner product
induced by P and Clp,q the Clifford algebra generated by Rp,q. Then, UCA can be
regarded as the study of a particular subset of functions from Rn → Clp,q. A physical
interpretation of UCA is that of a theory of functions defined on a generalized
Lorentzian space with an arbitrary number of time (p) and space dimensions (q).
UCA generalizes Hyperbolic Clifford Analysis (HCA), corresponding to p = 1 or
q = 1, and Elliptic Clifford Analysis (ECA), corresponding to p = 0 or q = 0. ECA
is about 30 years old and now a mature part of analysis, [2], [4]. HCA and UCA are
still under development.
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The set of Associated Homogeneous Distributions (AHDs) with support in R, de-
noted by H′ (R), is the distributional analogue of the set of power-log functions with
domain in R, [18], [25], [11]. H′ (R) contains the majority of the (one-dimensional)
distributions one typically encounters in physics applications, such as δ, η , 1

π
x−1

(a normalized Cauchy’s principal value Pv 1
x
), the Heaviside step distributions 1±,

pseudo-functions generated by taking Hadamard’s finite part of certain divergent
integrals, associated Riesz kernels, generalized Heisenberg distributions, all their
generalized derivatives and primitives, etc.

There is a close relationship between UCA and AHDs. First, the development
of UCA requires us to study AHDs since the latter appear as cornerstone objects
in the formulation of UCA. In addition, one needs their properties, e.g. for solving
Boundary Value Problems (BVPs) and Riemann-Hilbert Problems (RHPs).

In particular, HCA with p = 1 and q = 3 appears to be a very suitable math-
ematical tool for solving physics applications, e.g. in Electromagnetism (EM) and
Quantum Physics (QP). The latter physical relevance explains why AHDs appear
so often in applications.

In earlier work, I constructed a convolution algebra and an isomorphic multipli-
cation algebra of AHDs on R within Schwartz’ distribution theory, [11]–[17]. We will
see that higher dimensional versions of these algebras on Rn, obtained as pullbacks
along the quadratic form P , play a key role in UCA. Consequently, UCA can be
founded on Schwartz’ distribution theory and it is thus not necessary to use a more
general generalized function algebra for its construction.

2 Ultrahyperbolic Clifford Analysis

For an in depth overview of Clifford analysis, see [2], [4], [3], [9], [10].

2.1 Clifford algebras

Let {e1, . . . , en} denote an orthogonal basis for Rn. The universal (real) Clifford
algebra Clp,q over R

p,q is defined by

e21 = . . . = e2p = +1 and e2p+1 = . . . = e2n = −1, (1)

eiej + ejei = 0, i ̸= j, (2)

together with linearity over R and associativity. Clifford showed how to turn an
n-dimensional linear space into an 2n-dimensional algebra. Essential is that his
algebra is not closed for vectors, but is closed for all anti-symmetric tensors which
can be generated from the underlying linear space. These anti-symmetric tensors
represent oriented subspaces of the original n-dimensional linear space. A (real)
Clifford number (also called “multivector”) x is therefore a hypercomplex number
over R of the form

x = a1︸︷︷︸
1

+ aiei︸︷︷︸
(n1)

+
1

2!
ai1i2 (ei1 ∧ ei2)︸ ︷︷ ︸

(n2)

+ . . .+ a1,...,n (e1 ∧ . . . ∧ en)︸ ︷︷ ︸
(nn)

. (3)
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This can be regarded as a direct sum of n + 1 grades x = ⊕n
k=0 [x]k, making Clp,q

a graded linear space of dimension 2n. We have the embeddings: R ↪→ Clp,q by
the grade 0 part and Rp,q ↪→ Clp,q by the grade 1 part. A Clifford number of pure
grade k has the geometrical interpretation of an oriented k-dimensional subspace.
E.g., x = [x]1 represents an oriented line segment (a vector), x = [x]2 represents
an oriented surface segment, etc. Clifford himself called his algebras geometrical
algebras, because they are the natural choice when doing geometrical meaningful
calculations with oriented subspaces of a given n-dimensional linear space.

The Clifford product of two numbers of pure grade, x = [x]k and y = [y]l, is
given by

xy =
k+l∑

i=|k−l|,2

[xy]i . (4)

In particular, the Clifford product of two vectors v and w decomposes into the sum
of the inner and outer products,

vw = v ·w + v ∧w, (5)

wherein the grade 0 part contains information about the angle between the vectors
and the grade 2 part expresses that two vectors also span an oriented parallelogram.

Familiar Clifford algebras are: R, C, H (Hamilton’s quaternions), P (Pauli’s al-
gebra), M (Majorana’s algebra), and the time-space algebra Cl1,3. Clifford algebras
have been found to be very well-suited to formulate physical problems, [20], [21],
[1], [24].

2.2 Generalized Cauchy-Riemann equation

Introduce the Clp,q-valued nabla operator ∂ ,
∑n

i=1 ei∂i, called Dirac operator, and
let Ω be a domain in Rn .

Definition 1 Ultrahyperbolic Clifford Analysis is the study of functions satisfying

∂F = −S, (6)

with F ∈ C∞ (Ω, Clp,q) and for given S ∈ C∞
c (Rn, Clp,q), together with a boundary

condition for F at infinity and possibly integrability conditions on S.

If S = 0, eq. (6) is a particular generalization of the Cauchy-Riemann equation
from complex analysis and then defines functions F called (left) holomorphic.

2.3 Physical interpretation

Let us restrict eq. (6) to the Clifford algebra Cl1,3, choose for S a smooth compact
support multivector function having as only non-vanishing grades 1 and 3 (i.e.,
S = [S]1 + [S]3) and restrict F to be of pure grade 2 (i.e., F = [F ]2). Then eq.
(6) reproduces the Maxwell-Heaviside equations for the EM field F , generated by a
given electric monopole current density source [S]1 and a given magnetic monopole
current density source [S]3, [19], [23], [26]. Hence, HCA of signature (1, 3) (and
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CA EM

Cauchy-Riemann eq. Equation of EM
Clifford-valued functions Generalized EM fields
Holomorphy Holography
Singularities, Residues Source fields
Cauchy/Integral theorems Reciprocity theorems
Riemann-Hilbert problems Scattering problems
etc. etc.

Table 1: Correspondences between CA and EM.

with additional grade restrictions) is a mathematical function theory that models
physical EM fields. This identification now leads to the correspondences summarized
in Table 1.

The above physical interpretation can be readily generalized. Choose any Clifford
algebra Clp,q, let F be a general Clp,q-valued function and S a given smooth compact
support Clp,q-valued function. Then eq. (6) becomes a model for a generalized EM
in a universe with p time dimensions and q space dimensions!

2.4 Cauchy kernels

Of central importance in the formulation of UCA are the Cauchy kernels. The
Cauchy kernel Cx0 in UCA is a vector-valued distribution, which derives from a
scalar distribution gx0 ∈ D′ as

Cx0 = ∂gx0 . (7)

The scalar distribution gx0 is a fundamental solution of the Ultrahyperbolic Equation
(UE) (i.e., the wave equation) in Rp,q

�p,qgx0 = δx0 . (8)

The point x0 ∈ Rn will eventually play the role of calculation point in the generalized
Cauchy’s integral theorem in UCA, but can here be thought of as parametrizing a
family of distributions.

Introduce the shorthands, Px0 , P (x− x0) and An−1 , 2πn/2/Γ (n/2). A (real)
fundamental solution of the UE for general (p, q) with 2 ≤ n is, [5], [8], [6], [22],

(i) for n > 2

gx0 = − 1

(n− 2)An−1

1

2

(
eiq

π
2 (Px0 + i0)1−

n
2 + e−iq π

2 (Px0 − i0)1−
n
2

)
, (9)

(ii) for n = 2

gx0 =
1

4π

1

2

(
eiq

π
2 ln(Px0 + i0) + e−iq π

2 ln(Px0 − i0)
)
, (10)

=
1

4

(
cos(qπ/2)

1

π
ln |Px0 | − sin(qπ/2)1−(Px0)

)
. (11)

The distributions gx0 are readily seen to be pullbacks along Px0 of one-dimensional
AHDs. This is how AHDs enter in the formulation of UCA.
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3 Associated Homogeneous Distributions on R

3.1 Definition

Definition 2 HD. A distribution f z
0 ∈ D′ is called a (positively) homogeneous dis-

tribution of degree of homogeneity z ∈ C iff it satisfies for any r > 0,

⟨f z
0 , φ (x/r)⟩ = rz+1 ⟨f z

0 , φ (x)⟩ , ∀φ ∈ D. (12)

Definition 3 AHD. A distribution f z
m ∈ D′ is called an associated (positively) ho-

mogeneous distribution of degree of homogeneity z ∈ C and order of association
m ∈ Z+, iff there exists a sequence of associated homogeneous distributions f z

m−l of
degree of homogeneity z and associated order m− l, ∀l ∈ Z[1,m], not depending on r
and with f z

0 ̸= 0, satisfying,

⟨f z
m, φ (x/r)⟩ = rz+1

⟨
f z
m +

m∑
l=1

(ln r)l

l!
f z
m−l, φ (x)

⟩
,∀φ ∈ D. (13)

For a more detailed overview of AHDs, see [18], [25], [11].

3.2 Preliminaries

We will use hereafter the following terminology.

Definition 4 A partial distribution is a linear and continuous functional that is
only defined on a proper subset Dr ⊂ D.

Definition 5 A f z
m ∈ H′ (R) has a critical degree of homogeneity at z = zc iff f zc

m

exists as a partial distribution.

Definition 6 An extension fε from Dr to D, of a partial distribution f , is a distri-
bution fε ∈ D′, defined ∀φ ∈ D, such that ⟨fε, ψ⟩ = ⟨f, ψ⟩, ∀ψ ∈ Dr ⊂ D.

Definition 7 A regularization of a partial distribution f zc
m ∈ H′ (R) is any extension

(f zc
m )e in H′ (R) of f zc

m from Dr to D.

Definition 8 (i) The convolution product of any two AHDs on R of degrees a−1 and
b−1 is called a critical convolution product, iff the resulting degree a+b−1 , k ∈ N.

Definition 9 (ii) The multiplication product of any two AHDs on R of degrees a and
b is called a critical multiplication product, iff the resulting degree a+ b , −l ∈ Z−.
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3.3 Definition of the products

3.3.1 Convolution

Let D′
R denote the distributions based on R with support bounded on the left and

D′
L denote the distributions based on R with support bounded on the right. A

structure theorem for AHDs states that any AHD on R is the sum of an AHD in D′
L

and an AHD in D′
R. To define a convolution product on H′ (R) we must consider

three cases.
Case 1. The factors have one-sided support, bounded at the same side.
In this case we can use for any degree of the factors the standard definition

involving the direct product (the standard convolution integral). This case is an
example of the method of retarded distributions.

Case 2. The factors have one-sided support, bounded at different sides, and the
resulting degree of homogeneity is not a natural number.

In this case, the convolution f ∗ g, with f ∈ D′
L and g ∈ D′

R, can not straightfor-
wardly be defined in terms of a direct product, because supp(f∗g)∩supp(φ ∈ D (R2))
is generally non-compact. This case is handled in two steps:

(i) First in T , {(a, b) ∈ C2 : 0 < Re(a), 0 < Re(b) and Re(a+ b) < 1} we use
the standard convolution integral.

(ii) Then we extend by analytic continuation toR , {(a, b) ∈ C2 : a+ b− 1 /∈ N}.
Case 3. The factors have one-sided support, bounded at different sides, and the

resulting degree of homogeneity a + b− 1 is a natural number k (critical product).
It was observed that:

(a) Any critical convolution product fa−1∗f b−1 is in general a partial distribution
only defined on S{k}. S{k} is the subspace of S whose members have zero k-th order
moment.

(b) A particular extension of the partial distribution fa−1 ∗ f b−1 from S{k} to S
can be realized as an analytic finite part.

(c) This finite part, being a limit in C2, is in general non-unique.
(d) Fortunately, it turned out that this non-uniqueness only involves an arbitrary

term of the form cxk, c ∈ C arbitrary.
A critical convolution product, only existing as a partial distribution fa−1 ∗f b−1,

is then defined as any extension in H′ (R) and so obtains meaning as a distribution.

3.3.2 Multiplication

Let fa, gb ∈ H′ (R) of degree a and b. The multiplication of AHDs is defined in
terms of the convolution product by

fa . gb , F
( (

F−1fa
)
∗
(
F−1gb

) )
. (14)

3.4 Properties of the products

The constructed algebras of AHDs on R have the following properties.
A. Non-commutativity
(i) Non-critical products are always commutative.
(ii) Critical products are generally non-commutative.
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(iii) Deviation from commutative is by a term of the form cxk (convolution) or
cδ(l) (multiplication), k ∈ N, l ∈ Z+ and c ∈ R arbitrary.

B. Non-associativity
(i) Non-critical triple products are always associative.
(ii) Critical triple products are generally non-associative.
(iii) Deviation from commutative is by a term of the form cxk (convolution) or

cδ(l) (multiplication), k ∈ N, l ∈ Z+ and c ∈ R arbitrary.

4 Conclusion

The here presented connection between UCA and AHDs clearly reveals the impor-
tance of this rather small subset of Schwartz distributions. On the one hand, they
appear as crucial building blocks in the construction of advanced higher dimen-
sional analysis. On the other hand, and essentially because of their role in UCA,
they appear ubiquitous in physics applications.
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