Scherer Marc 2/01/69

INSTITUT D'AERONOMIE SPATIALE DE BELGIQUE

3, avenue Circulaire, UCCLE - BRUXELLES 18

AERONOMICA ACTA

A - N° 34 - 1964

Nitrogen oxides in the chemosphere by M. NICOLET

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE

3, Ringlaan, UKKEL - BRUSSEL 18

FOREWORD

The preparation of space experiments as well as the recent observations at the Jet Propulsion Laboratory, require a detailled analysis of the chemical processes in which nitrogen oxides are involved. "Nitrogen oxides in the chemosphere" is the result of a thoroughly research on that problem which has already been studied before. This paper will be published during 1965 in the Aeronomical and Planetary Sciences section of The Journal of Geophysical Research, USA.

M. Nicolet.

AVANT-PROPOS

La préparation d'expériences spatiales en même temps que les récentes observations du Jet Propulsion Laboratory, requièrent une analyse détaillée des processus chimiques où interviennent les oxydes d'azote. "Nitrogen oxides in the chemosphere" est le résultat d'une recherche très approfondie de ce problème qui avait déjà été l'objet d'études antérieures. Ce travail paraîtra dans la section : Aéronomie et sciences planétaires du Journal of Geophysical Research, USA, au cours de l'année 1965.

M. Nicolet.

VOORWOORD

De voorbereiding van ruimteproefnemingen, terzelftertijd als de jongste waarnemingen van het Jet Propulsion Laboratory vereisen een uitgediepte ontleding van de scheikundige reakties in dewelke de stikstofoxyden tussenkomen. "Nitrogen oxides in the Chemosphere" is het resultaat van een zeer diepe studie van dit probleem, dat reeds vroeger het voorwerp van studies was geweest. Dit werk zal in de loop van het jaar 1965 verschijnen in de afdeling : Aëronomie en planetarische wetenschappen van de Journal of Geophysical Research, USA.

M. Nicolet.

VORWORT

Die Vorbereitung für Raumforschungexperimenten sowie die letzten Messungen im Jet Propulsion Laboratory erforden eine umständliche Analyse der chemischen Vorgänge in welchen die Stickstoffoxyde eintreten. "Nitrogen oxides in the chemosphere" ist das Ergebnis einer durchausgeführte Erforschung über dieses Problem, das schon vorher studiert war. Diese Arbeit wird in der Abteilung der Aeronomie und planetarischen Wissenschaften des Journal of Geophysical Research, USA, in 1965 herausgegeben werden.

M. Nicolet.

NITROGEN OXIDES IN THE CHEMOSPHERE

by

Marcel NICOLET

ABSTRACT

A study is made of the various reactions in which nitrogen oxides are involved in the chemosphere. The hydrogen compounds do not play an important role, and it is found that the essential aeronomic reactions depend on ozone and atomic oxygen. Thus, the ratio nitrogen dioxide-nitric oxide can be determined. The absolute values of the NO_2 and NO concentrations depend on the dissociation of molecular nitrogen in the chemosphere. The chemical conditions cannot be applied in the mesosphere since the life-time of NO is relatively long, and a downward transport is involved. Very special assumptions concerning chemical reactions would be necessary to reconcile the photochemical picture and the observational results. The introduction of ionic reactions, considered in an accompanying paper, will lead to a correct interpretation.

I.- INTRODUCTION

The subject of nitrogen oxides was introduced [Nicolet, 1945] in aeronomic studies of nitric oxide in its consideration as an important ionic constituent of the ionospheric D region. The photochemistry of nitrogen was first studied by Bates [1952] and has been further studied by Bates [1954] and Nicolet [1954]. This problem, which is much more complicated than that of the photochemistry of oxygen, was developed by Nicolet [1955] in relation with the airglow. Calculations are difficult because the chemical aeronomy of nitrogen in an oxygen atmosphere leads to a complex problem as recently discussed by Nicolet [1960] and Barth [1961]. The presence of important concentrations of nitric oxide ions requires a special analysis of ionic reactions related to the presence or absence of the neutral molecule. Our experimental knowledge concerning rate coefficients is not yet complete, but has increased rapidly, however, in recent years and a systematic account can be found in several review papers : Three body reactions by Barth [1964], reactions involving nitrogen and oxygen by Schiff [1964] and aeronomic reactions involving hydrogen by Kaufman [1964].

Attention here will be confined to the photochemistry of nitrogen. An attempt will be made in another paper to cover the subject of related ionic reactions which modify the photochemical picture and add greatly to the significance of the occurence of atomic nitrogen and its oxides in the ionosphere.

2.- NITROGEN DIOXIDE AND NITRIC OXIDE RATIOS BELOW 100 KM.

If nitrogen dissociation is operative at sufficiently low altitudes, the formation of nitric oxide may be due to a three-body process

$$N + O + M \rightarrow NO + M + 150$$
 kcal

for which the rate coefficient b is not yet known with sufficient precision

2.-

(1)

[Mavroyannis and Winkler, 1961a; Krestchner and Petersen, 1963; Barth, 1964]. Calculations will be made with the following recombination rate

$$b_{1a} = (1 \pm 0.5) \times 10^{-32} n(M) \text{ cm}^3 \text{sec}^{-1}$$
. (2)

Three-body recombination of nitrogen and oxygen atoms leads to the emission of various electronic bands of nitric oxide [Barth et al., 1959].

A pre-association process such as [Young and Sharpless, 1963; Callear and Smith, 1964]

$$N(^{4}S) + O(^{3}P) \rightarrow NO(^{4}\Pi) \rightarrow NO(C^{2}\Pi)$$
 (3)

followed by

$$NO(C^2\Pi) \rightarrow NO(X^2\Pi) + \gamma \text{ bands }; A_{21} = 1.5 \times 10^7 \text{sec}^{-1}$$
 (4a)

and

$$NO(C^2\Pi) \rightarrow N(^4S) + O(^3P) ; a_{21} = 3.5 \times 10^8 \text{sec}^{-1}$$
 (4b)

results in nitric oxide formation with a rate coefficient, b_{1b},

$$b_{1b} = 1 \times 10^{-17} cm^{3} sec^{-1}$$
 (5)

which is more effective than (2) where n(M) is less than 10^{15} cm^{-3} .

The chemiluminescent production of the β , γ and δ bands which was investigated by Young and Sharpless [1963] leads to the following absolute rates of the emission processes

$$\beta$$
 bands : 2.4 x 10⁻³⁴ n(M) n(O) n(N) cm⁻³sec⁻¹
 γ bands : 8.2 x 10⁻¹⁸ n(N) n(O) + 2.4 x 10⁻³⁵ n(M) n(O) n(N) cm⁻³sec⁻¹
measured at 4 mm Hg.

Before considering other nitric oxide formation processes, it is necessary to simplify the study of nitric oxide by analysing its reactions with atomic oxygen and ozone, which are the principal active constituents in the chemosphere. First, there is the following three-body process

$$0 + NO + M \rightarrow NO_2 + M + 72 \text{ kcal}$$
(6)

The reaction has a relatively high rate coefficient [Kaufman, 1958; Ogryzlo and Schiff, 1959; Clyne and Thrush, 1962c; Schiff, 1964; Reeves et al., 1964] with a negative activation energy of about 1.8 ± 0.4 kcal according to Clyne and Thrush [1962 c] or 1.93 ± 0.1 kcal according to Klein and Herron [1964]. The following rate coefficient for (6) is adopted

$$b_{2a} = 3 \times 10^{-33} e^{1000/T} n(M) cm^{3} sec^{-1}$$
 (7)

This three-body process leading to the formation of nitrogen dioxide must be compared with the radiative process [Bates, 1954; Nicolet, 1960]

$$0 + NO \rightarrow NO_{2} + h\nu \ (\lambda \ge 3975 A)$$
 (8)

which should be a three-body mechanism according to various laboratory measurements. The measured rate coefficient ($\lambda\lambda$ 3875 A - 1.4 μ) is [Fontijn et al., 1964]

$$b_{2b} = 6.4 \times 10^{-17} \text{ cm}^3 \text{sec}^{-1} (\pm 30 \%).$$
 (9)

For $\lambda < 7250$ A, we consider the following value :

$$b_{2b} = 3.2 \times 10^{-17} \text{ cm}^3 \text{sec}^{-1}$$
 (10)

Since the probability of emission is not less than $4 \times 10^{6} \text{ sec}^{-1}$, we adopt the rate coefficient given by (9) at all altitudes [Levitt, 1962; Schiff, 1964; Doherty and Jonathan, 1964; Reeves et al., 1964].

Two bimolecular processes must be considered as important aeronomic reactions. One is a reaction with oxygen atoms

$$0 + NO_2 \rightarrow NO + O_2 + 46 \text{ kcal.} \tag{11}$$

5.-

This is known to be rapid [Ford and Endow, 1957; Phillips and Schiff, 1962 a; Schiff, 1964; Klein and Herron, 1964]. The 0_2 molecules formed in (11) are vibrationally excited [Basco and Norrish, 1960; Phillips and Schiff, 1962 c] to v ⁰⁰ = 8 (33.7 kcal) and perhaps electronically excited to ${}^{1}\Sigma_{g}(v^{0} \le 2)$ with energies between 37.5 and 45.5 kcal corresponding to $9 \le v^{00} \le 11$. We adopt for (11) the rate coefficient

$$b_3 = 1.5 \times 10^{-12} T^{1/2} e^{-500/T} cm^3 sec^{-1}$$
. (12)

The other reaction of nitric oxide with ozone [Johnston and Crosby,,1954] leads to ground state NO₂ molecules

$$0_3 + NO \rightarrow NO_2 + 0_2 + 48 \text{ kcal} \tag{13}$$

with a rate coefficient [Johnston and Crosby, 1954; Phillips and Schiff, 1962a]

$$b_4 = 5 \times 10^{-14} T^{1/2} e^{-1200/T} cm^3 sec^{-1}$$
. (14)

A chemiluminescent radiation [Greaves and Garvin, 1959] in the red and infrared ($\lambda \ge 5900$ A) is emitted during reaction (13). It corresponds to an electronically excited state with a rate coefficient [Clyne et al., 1964].

$$b_{4a} = 5 \times 10^{-14} \text{ m}^{1/2} \text{ e}^{-2100/\text{T}} \text{ cm}^{3} \text{ sec}^{-1}$$
 (14a)

In addition to these processes involving NO2, the following photodissociation process occurs in a sunlit atmosphere

$$NO_2 + h\nu (\lambda < 3975) \to NO + 0$$
 (15)

with the average photodissociation coefficient [Bates, 1954; Leighton, 1961]

$$J_{NO_2} = 5 \times 10^{-3} \text{ sec}^{-1}$$
 (16)

Under laboratory conditions the photolysis of nitrogen dioxide must involve an analysis [Ford, 1960] of NO_3 , N_2O_5 , etc. However, if a reaction such as $O_3 + NO \Rightarrow NO_3 + O_2$ has an activation energy of the order of 7 kcal, NO_2 will be unaffected during the night. For day time conditions, excluding NO_3 which has a dissociation energy of only 50 kcal, aeronomic conditions essentially correspond to the $NO - NO_2$ system.

Neglecting reactions in which hydrogen and nitrogen atoms are involved, the differential equation related to NO_2 is written as

$$\frac{dn(NO_2)}{dt} + \begin{bmatrix} b_3 n(0) + J_{NO_2} \end{bmatrix} n(NO_2) = \begin{bmatrix} b_2 n(0) + b_4 n(O_3) \end{bmatrix} n(NO)$$
(17)
where $b_2 = b_{2a} n(M) + b_{2b}$.

For daytime conditions, an equilibrium exists since $\tau_{NO_2} \leq 200$ sec, and

$$\frac{n(NO_2)}{n(NO)} = \frac{\begin{bmatrix} b_{2a} & n(M) + b_{2b} \end{bmatrix} n(O) + b_4 & n(O_3)}{J_{NO_2} + b_3 & n(O)}$$
(18)

Fig. 1 is an illustration of the vertical distribution of the ratio $n(NO_2)/n(NO)$ which shows that, above the stratopause, nitrogen dioxide may be neglected in the analysis of nitric oxide reactions.

After twilight, when atomic oxygen is rapidly removed in the stratosphere by its association with molecular oxygen, the major process is, according to (17),

$$\frac{dn(NO_2)}{dt} = \frac{dn(NO)}{dt} = b_4 n(O_3) n(NO).$$
(19)

The life-time of NO is very short during the night in the stratosphere since $b_4 n(0_3) > 3 \times 10^{-4} \text{ sec}^{-1}$ (see Fig. 1). In other words, nitric oxide disappears during dark hours in atmospheric regions where ozone is present in sufficient abundance.

- •

In the upper mesosphere and thermosphere where n(0) does not vary appreciably, the differential equation (17) with $J_{NO_2} = 0$ and $b_3 n(0)$ > $b_4 n(0_3)$ indicates that the ratio $n(NO_2)/n(NO)$ increases after sunset as follows

$$\frac{n(NO_2)}{n(NO)} = \frac{b_2}{b_3} \begin{bmatrix} 1 - e^{-b_3} n(0)t \end{bmatrix}$$
(20)

Night-time equilibrium conditions are reached very rapidly in the thermosphere but do not differ from daytime conditions (see Fig. 1). The curves of Fig. 1 show that the ratio $n(NO_2)/n(NO)$ shows the greatest change in the middle mesosphere where it depends on the rapidly varying concentrations of O_3 and O after sunset.

Finally, in the stratosphere below 30 km where the photoaction plays a role the ratio $n(NO_2)/n(NO)$ increases and may correspond to a greater NO₂ concentration than that of NO, depending on the O₃ concentration.

3.- NITRIC OXIDE AND ATOMIC NITROGEN.

In order to determine the behavior of nitric oxide, it is necessary to examine aeronomic reactions in which atomic nitrogen is effectively involved. In addition to (1) and (3), nitrogen atoms can react with nitrogen dioxide [Kistiakowsky and Volpi, 1957; Harteck and Dondes, 1958; Kaufman and Kelso, 1959; Verbeke and Winkler, 1960; Clyne and Thrush, 1961d]

$$N + NO_2 \rightarrow 0 + N_2 0 + 34 \text{ kcal}$$
(21a)

 \rightarrow NO + NO + 78 kcal (21b)

$$\rightarrow N_{2} + 0_{2} + 121 \text{ kcal}$$
(21c)

for which a rate coefficient, b_5 , may be of the same order as for the other bimolecular reactions. However, while the reaction of atomic oxygen with nitrogen dioxide is more important in the aeronomic ratio $n(NO_2)/n(NO)$, the reactions of atomic nitrogen with nitric oxide and molecular oxygen

ر مقال م الم منه منه الما الله

ų.

are certainly the principal reactions in the chemosphere.

The following reaction [Kistiakowsky and Volpi, 1957; Verbeke and Winkler, 1960; Herron, 1961; Clyne and Thrush, 1961a; Phillips and Schiff, 1962b]

$$N + NO \rightarrow N_{a} + O + 75 \text{ kcal} \tag{22}$$

has a very small activation energy. We adopt the rate coefficient

$$b_6 = (1.5 \pm 0.5) \times 10^{-12} T^{1/2} cm^3 sec^{-1}$$
 (23)

which varies by about a factor of 2 between 200°K and 700°K. The fact that vibrational excitation [Phillips and Schiff, 1962b] of N_2 (v \leq 12) occurs in reaction (22) and may lead to a decomposition of ozone, is of no practical aeronomic consequence. It can be shown that reaction (22) is not important in the stratosphere and lower mesosphere where atomic nitrogen does not exist. Such a reaction is, however, the most important nitrogen recombination process in the thermosphere.

The reaction of atomic nitrogen with molecular oxygen produces nitric oxide

$$N + 0_2 \rightarrow N0 + 0 + 32 \text{ kcal}$$
 (24).

with a maximum vibrational NO(v = 6) excitation, and requires a relatively high activation energy [Kistiakowsky and Volpi, 1957; Kaufman and Decker, 1959; Clyne and Thrush, 1961a, Mavroyannis and Winkler, 1961b] between 6 and 7 kcal. Laboratory determinations of the rate coefficient b_7 of (24) are fitted between 400°K and 1500°K by the expression

$$b_7 = 2 \times 10^{-13} T^{1/2} e^{-3000/T} sec^{-1}$$
 (25)

which is adopted for the whole chemosphere. Such a rate coefficient is small at low mesospheric temperatures; nevertheless, it leads to an aeronomic production rate of NO molecules of about 10^{-5}sec^{-1} per nitrogen atom at the mesopause level and to about 10^{-3}sec^{-1} in the thermosphere.

Production of nitric oxide in the laboratory may also result from the reaction of nitrogen atoms with ozone [Chen and Taylor, 1961; Phillips and Schiff, 1962a],

$$N + 0_2 \rightarrow NO + 0_2 + 126 \text{ kcal.}$$
 (26)

We adopt the following rate coefficient

$$b_8 = 2 \times 10^{-12} T^{1/2} e^{-1200/T} cm^3 sec^{-1}$$
. (27)

This reaction would have an aeronomic role (only in the mesosphere) if nitrogen atoms were present in sufficient numbers. In fact, this reaction can be neglected since the concentration of atomic nitrogen is small compared to that of atomic oxygen.

In addition to the loss process (22) of nitric oxide occuring under day and night-time conditions, it is necessary to add the following photo-dissociation process

$$NO + h\nu (\lambda \sim 1900 A) \rightarrow N + 0$$
 (28)

for which Bates [1954] has adopted a rate coefficient at zero optical depth

$$J_{\rm NO} = 10^{7} {\rm sec}^{1}$$

Furthermore, the photoionization of NO by Lyman-alpha followed by dissociative recombination is also a loss process

$$NO + h\nu \ (\lambda = 1216 \ A) \rightarrow NO^{+} + e \rightarrow N + 0.$$
 (29)

An average value of about 4 ergs cm² sec⁻¹ for solar Ly- α leads to a rate coefficient at zero optical depth of

$$I_{NO} = 5 \times 10^{-7} sec^{-1}$$
. (30)

Under equilibrium conditions between nitrogen dioxide and nitric oxide, the rate of change of n(NO) is given by the following equation

$$\frac{dn(NO)}{dt} + n(NO) \left[I_{NO} + J_{NO} + b_6 n(N)\right] = \left[b_1 n(O) + b_7 n(O_2)\right] n(N) \quad (31)$$

Hence, writing dn(NO)/dt = 0 in (31), the ratio n(NO)/n(N) is given by

$$\frac{n(NO)}{n(N)} = \frac{b_1 n(O) + b_7 n(O_2)}{I_{NO} + J_{NO} + b_6 n(N)}$$
(32)

In this formula, b n(N) is the important term in the denominator if $n(N) > 5 \times 10^4 \text{cm}^{-3}$. Ignoring I and J_{NO}, the equilibrium value of nitric oxide $n^{\star}(NO)$ is then

$$n^{*}(NO) = 10^{-1}e^{-3000/T} n(0_{2}) + 5 \times 10^{-7} n(0).$$
 (33)

The second term on the right is small compared to the first in the mesosphere as well as where the temperature is high in the thermosphere. It becomes important at the atomic oxygen density peak which occurs in the lower thermosphere. A concentration of oxygen atoms of the order of $2 \times 10^{12} \text{ cm}^{-3}$ leads to

 $n^{*}(NO) = 10^{6} cm^{-3}$. (34)

At the mesopause level with $T = 190^{\circ}K$, equation (33) leads to

$$n^{*}(NO) = 6 \times 10^{5} \text{ cm}^{-3}$$
 (35)

i.e. about 3 x 10^{-9} of the total concentration.

The time to reach an equilibrium according to (31) depends on the term b_6 n(N) and, if n(N) > n(NO), all conditions are required to reach a perfect chemical equilibrium. At the mesopause level, an atomic nitrogen concentration of at least of 10^6 cm⁻³ is required to apply strictly equilibrium brium conditions, which can be attained in less than one day. Consequently,

If we write
$$I_{NO} + J_{NO} > b_{\beta} n(N)$$
, so that (32) becomes

$$\frac{n(NO)}{n(N)} = \frac{b_{\gamma} n(O_{2})}{I_{NO} + J_{NO}}, \qquad (36)$$

which is applicable to mesospheric conditions, we obtain a ratio n(NO)/n(N) greater than unity and increasing downwards.

4.- ATOMIC NITROGEN IN THE CHEMOSPHERE

Using the set of reactions written above, the equation governing the rate of change of atomic nitrogen is

$$\frac{dn(N)}{dt} + n(N) [b_1 n(0) + b_6 n(N0) + b_7 n(0_2)] = n(N0) [J_{N0} + I_{N0}] + 2P(N)$$
(37)

in which the last term on the right takes into account the various possibilities of atomic nitrogen production.

In the chemosphere, only the following predissociation process, considered by Herzberg [1948], can be introduced

$$N_2 + h\nu (\lambda\lambda \sim 1200 \text{ to } 1250 \text{ A}) \rightarrow N_2 (a^{1}\Pi_g) \rightarrow N + N$$
 (38)

in which Lyman-Birge-Hopfield bands are involved; namely (7-0) at 1250 A, (8-0) at 1226 A and (9-0) at 1205 A. The most penetrating radiation corresponds to 1226 A for which the absorption cross-section should be of the order of 5 x 10^{-19} cm². According to Bates [1954] an approximate value of the dissociation rate coefficient at zero optical depth should be about

$$J_{N_2} = 10^{-12} \text{ sec}^{-1}$$
 (39)

By adding (31) and (37), we obtain the proper expression for photochemical changes

$$\frac{1}{2} d[n(NO) + n(N)]/dt + b_6 n(NO) n(N) = n(N_2) J_{N_2}$$
(40)

or for equilibrium conditions

$$b_6 n(NO) n(N) = n(N_2) J_{N_2}.$$
 (41)

For example, a round figure of n(NO) being $10^6 \text{ cm}^3 \text{sec}^{-1}$ near 100 km leads to n(N) $\ge 10^6 \text{ cm}^{-3}$.

If we adopt the relations

$$n^{*} (NO) = \frac{b_{1}n(0) + b_{7}n(0_{2})}{b_{6}}$$
(42)

and

$$n^{*}(N_{2}) = \frac{P(N)}{b_{1} n(0) + b_{7} n(0_{2})}$$
 (43)

for the solutions of (41), the actual value of n(NO) is

$$n(NO) = n^{*}(NO) / [1 + 10^{5}/n^{*}(N)]^{\frac{1}{2}}$$
 (44)

At the mesopause level, the term $b_7 n(0_2)$ is about $10^{-5} \sec^{-1}$ and any production of nitrogen atoms greater than 1 atom cm⁻³sec⁻¹ leads to a stationary value for n(NO), which is practically the equilibrium value $n^*(NO)$.

In the mesosphere, the loss of nitrogen atoms increases rapidly with decreasing height and equilibrium conditions can always be applied to atomic nitrogen. Thus, we have, for the change of n(NO) in the mesosphere, assuming that only chemical changes occur,

14.-

$$\frac{dn(NO)}{dt} + 2b_6 n^2(NO) \frac{I_{NO} + J_{NO}}{b_7 n(O_2) + b_6 n(NO)} = 2P(N) \left[\frac{b_7 n(O_2) - b_6 n(NO)}{b_7 n(O_2) + b_6 n(NO)} \right]$$
(45)

Since $b_7 n(0_2)$ must be greater than $b_6 n(NO)$, according to (42) and (44), the following approximation

$$= \frac{dn(NO)}{dt} = 2b_6 \frac{I_{NO} + J_{NO}}{b_7 n(O_2)} n^2(NO)$$
(46)

leads, by integration, to an approximate life-time of nitric oxide in the mesosphere and lower atmospheric regions. The time $\tau_{\rm NO}$ necessary to reduce the concentration n(NO) to 50 percent of its initial value n (NO) is

$$\tau_{\rm NO} = 10^6 \frac{n^* (\rm NO)}{n_{\rm o}(\rm NO)} \sec$$
 (47)

which is at least 10 days for any concentration less than the photochemical value defined by (42). Since n^* (NO) is certainly greater than the actual value n(NO) in the lower mesosphere, the possibility of maintaining nitric oxide in the mesosphere is real.

A photochemical value of $n(NO) = 3 \times 10^{-9} n(M)$ at the mesopause with its extrapolation into the mesosphere, stratosphere and troposphere leads to an acceptable concentration of nitrogen oxide at ground level [Hutchinson, 1954]. Considering the various ratios of $n(NO_2)/n(NO)$, as obtained by (18) and (20) and shown in Fig. 1, it is possible to illustrate the vertical distributions of n(NO) and $n(NO_2)$. Fig. 2 and Fig. 3 show the variation in the stratosphere and mesosphere, respectively. Nitrogen dioxide and nitric oxide are of equal importance in the middle stratosphere around 30 km and, during the night, NO disappears by its transformation into NO_2 . In the mesosphere there is a large variation between day and night.

There is, furthermore, a transition zone corresponding to the region where atomic oxygen recombines after sunset. Above the mesopause, NO again increases and reaches a concentration in the E layer of about 10^6 cm⁻³. Nevertheless, ionic reactions must be introduced in the ionosphere and the numerical values given cannot be considered as real in the ionospheric regions. Such conditions will be discussed after an analysis of the ionization processes.

5.- NITROGEN TRIOXIDE, TETROXIDE AND PENTOXIDE

In the ozonosphere, the following reaction

$$0_3 + NO_2 \rightarrow NO_3 + 0_2 + 26 \text{ kcal}$$
 (48)

may occur. It has been studied in the laboratory [Johnston and Yost, 1949; Ford et al., 1957; Husain and Norrish, 1963]. However, its activation energy (about 7 kcal) leads to a low rate coefficient, b₀, in the stratosphere,

$$b_{g} = 5 \times 10^{-13} T^{1/2} e^{-3600/T}$$
 (49)

Also the three-body reaction

$$0 + NO_2 + M \rightarrow NO_2 + M + 50 \text{ kcal}$$
(50)

may occur in the region where atomic oxygen is present. Its rate coefficient, b₁₀, is higher [Ford and Endow, 1957] than ordinary three-body reactions and may be about

$$b_{10} = 5 \times 10^{-31} \text{ cm}^6 \text{sec}^{-1}$$
 (51)

For day-time conditions such reactions are followed by the rapid reaction

$$NO + NO_3 \rightarrow 2NO_2 + 22 \text{ kcal}$$
(52)

which has a very small activation energy and may have a rate coefficient, b_{11} of about

$$b_{11} = 5 \times 10^{-13} T^{\frac{1}{2}} e^{-1000/T}$$
 (53)

The presence of NO₃ may, therefore, be neglected in a sunlit atmosphere due to the presence of NO and also to a photodissociation process since there is an absorption spectrum in the visible region [Jones and Wulf, 1937; Husain and Norrish, 1963]. The night-time conditions are different in the stratosphere due to the absence of nitric oxide. The following processes [Ford, 1960; Benson, 1960; Leighton, 1961] may be considered :

$$NO_3 + NO_2 \rightarrow N_2O_5 + 21 \text{ kcal}$$
(54)

$$NO_3 + NO_2 \rightarrow NO + NO_2 + O_2 - 4 \text{ kcal}$$
 (55)

$$NO_3 + NO_3 \rightarrow 2 NO_2 + O_2 + 18 \text{ kcal}$$
 (56)

for which the following, very approximate, rate coefficients are adopted, respectively :

$$b_{12} = 5 \times 10^{-12} T^{\frac{1}{2}} e^{-1000/T}$$
 (57)

$$b_{13} = 3 \times 10^{-14} T^{\frac{1}{2}} e^{-2000/T}$$
 (58)

$$b_{14} = 1.5 \times 10^{-13} T^{\frac{1}{2}} e^{-3600/T}$$
 (59)

Reactions (48) and (54) will result in an NO₂ loss process for night-time conditions. Since the rate coefficient of (48) decreases from about $1.7 \times 10^{-17} \text{ cm}^3 \text{ sec}^{-1}$ at the stratopause to 1.7×10^{-18} near 30 km, the production of nitrogen trioxide is very small during a night of twelve hours. As a result the nitrogen dioxide is not affected and the production of nitrogen pentoxide is relatively small for normal night-time

conditions. Nevertheless, the problem of nitrogen trioxide and pentoxide cannot be neglected during long nights. The three-body association leading to nitrogen tetroxide should be considered for night-time conditions

$$NO_2 + NO_2 + M \rightarrow N_2O_4 + M + 15 \text{ kcal}$$
(60)

for which the rate coefficient, b₁₉, is small [Clyne and Thrush, 1962a]

$$b_{15} = 8 \times 10^{-34} \text{ cm}^6 \text{ sec}^{-1}$$
. (61)

The effect of (60) must be considered at low altitudes for night-time conditions.

Thus, the reactions involving nitrogen dioxide (and ozone), (48) and (60), which occur during night-time conditions may contribute somewhat to a temporary disappearance of nitrogen oxide in the stratosphere and below.

6.- NITROXYL, NITROUS ACID AND NITRIC ACID.

The formation of nitroxyl and its loss are due to a catalytic action of nitric oxide or atomic hydrogen. Such a process may be considered in the mesosphere and lower thermosphere where H and NO are present.

The three-body process

 $H + NO + M \rightarrow HNO + M + 49$ kcal (62)

has been the subject of recent laboratory studies since an infrared spectrum was detected [Cashion and Polanyi, 1959]. Absorption and emission bands [Dalby, 1958; Clement and Ramsay, 1961; Bancroft et al., 1962] have been analyzed and detailed investigations of process (62) were carried out by various authors [Clyne and Thrush, 1961b and 1962b; Strausz and Grunning, 1964; Bulewicz and Sugden, 1964]. Considering that (62) has a negative activation energy [Clyne and Thrush, 1961b], the following rate coefficient, b₁₆, is used

$$b_{16} = 1 \times 10^{-32} e^{300/T} n(M) \text{ cm}^3 \text{ sec}^{-1}$$
. (63)

The chemiluminescent reaction involving H + NO, namely

$$H + NO \rightarrow HNO + h\nu (\lambda\lambda 7625 - 6925 - 7965 - 6272),$$
 (64)

is slow [Clyne and Thrush, 1962b]. The rate coefficient is about

$$b_{16a} = 7 \times 10^{-19} \left(\frac{273}{T}\right)^{5} cm^{3} sec^{-1}$$
 (65)

and process (64) is, therefore, unimportant in aeronomy.

The catalytic action of nitric oxide occurs in the recombination of hydrogen atoms; the bimolecular process [Clyne and Thrush, 1962b, Bulewicz and Sugden, 1964]

$$H + HNO \rightarrow NO + H_2 + 55 \text{ kcal}$$
(66)

having a small activation energy, has a rate coefficient, $b_{17}^{}$, of the order of

$$b_{17} = 5 \times 10^{-13} T^{\frac{1}{2}} e^{-1200/T}$$
. (67)

In a hydrogen-oxygen atmosphere, the action of OH and HO₂ must also be considered; the catalytic action of NO leads to

$$OH + HNO \rightarrow NO + H_2O + 69 \text{ kcal}$$
(68)

which has a larger rate coefficient [Bulewicz and Sugden, 1964] at flame temperature than reaction (66). We adopt the following value

$$b_{18} = 5 \times 10^{-12} T^2 e^{-1200/T}$$
 (69)

which is about 10 times b_{17} .

The reaction

$$HO_{2} + HNO \rightarrow NO + H_{2}O_{2} + 40 \text{ kcal}$$
(70)

should also occur, but its rate coefficient, b_{20} , is not known. We consider that

$$b_{17} \stackrel{\ell}{=} b_{20} \stackrel{\ell}{=} b_{18}^{\circ} \tag{71}$$

The net result of reactions (62) to (70) is that nitric oxide is not affected. Atomic hydrogen is subject to other more important loss processes and its chemiluminescent reaction in the formation of nitroxyl is not important.

The possible three-body associations leading to nitrous and nitric acids :

$$NO_2 + H + M \rightarrow HNO_2 + M + 80 \text{ kcal}$$
 (72)

$$NO + OH + M \rightarrow HNO_2 + M + 60 \text{ kgal}$$
 (73)

$$NO_2 + OH + M \rightarrow HNO_3 + M + 53 \text{ kcal}$$
(74)

and

$$NO + HO_2 + M \rightarrow HNO_3 + M + 63 kcal$$
 (75)

with the, respective, rate coefficients b_{20} , b_{21} , b_{22} and b_{23} (which are not known) should be compared with the reactions

$$HNO_2 + H \rightarrow H_2 + NO_2 + 23 \text{ kcal}$$
(76)

$$HNO_2 + OH \rightarrow H_2O + NO_2 + 38 \text{ kcal}$$
 (77)

$$HNO_3 + H \rightarrow H_2O + NO_2 + 66 \text{ kcal}$$
 (78)

and $HNO_3 + H \rightarrow H_2O + NO_3 + 15 \text{ kcal}$ (79)

which are exothermic reactions for which the activation energies likewise are not known. Their, respective, rate coefficients ${}^{b}_{24}$, ${}^{b}_{25}$, ${}^{b}_{26}$ and ${}^{b}_{27}$ should be very small if HNO₂ and HNO₃ have some importance. In any case, NO₂ has a catalytic action and the nitrogen oxides are not affected by reactions (72) to (79). The loss processes of H, OH and HO₂ are not important compared with other processes in which O, O₂ and O₃ are involved.

Finally, three other reactions in which nitrogen oxides are involved must be considered. The presence of NO₂ leads to a very rapid process [Rosser and Wise, 1961; Clyne and Thrush, 1961c; Ashmore and Tyler, 1962; Phillips and Schiff, 1962d; Kaufman, 1964] with practically no activation energy

$$H + NO_{a} \rightarrow NO + OH + 30 \text{ kcal}$$
 (80)

with

$$b_{28} = 2 \times 10^{-12} T^{1/2}$$
 (81)

which corresponds to laboratory measurements [Phillips and Schiff, 1962d]. Such a reaction is, however, less important than the reaction $H + O_3 \rightarrow OH + O_2$ since $n(O_3) > n(NO_2)$. The role of (80) as an NO_2 loss process is also limited since $O + NO_2 \rightarrow NO + O_2$ is the principal reaction.

The effect of NO on HO_2 and H_2O_2 is given by the following reaction

$$NO + HO_2 \rightarrow OH + NO_2 + 9 \text{ kcal}$$
 (82)

which is fast relative to other reactions of HO₂ in similar circumstances [Tyler, 1962]. If an upper limit of about 2.5 kcal is assumed for the activation energy of a reaction such as $O_3 + NO \rightarrow O_2 + NO_2$ with a rather high pre-experimental factor, a rate coefficient, b_{29} , of about 10^{-11} cm³sec⁻¹ at 500°K leads to

$$b_{29} = 5 \times 10^{-12} T^{1/2} e^{-1200/T}$$
 (83)

Under aeronomic conditions, such a reaction must be compared with the rapid reaction $HO_2 + 0 \rightarrow OH + O_2$ or with $NO + O_3$ and NO + O. Its aeronomic role is, therefore, not important. The reaction

$$NO + H_2O_2 \rightarrow HNO_2 + OH + 11 \text{ kcal}, \qquad (84)$$

for which the rate coefficient b_{30} is not known may also be neglected since $0 + H_2 0_2 \rightarrow H_2 0 + 0_2$ has the leading role as a loss process of hydrogen peroxide under aeronomic conditions.

7.- SUMMARY

The essential reactions in which nitrogen oxides are involved in the chemosphere depends on atomic oxygen and ozone. The hydrogen compounds do not play an important role, and all their reactions with NO and NO₂ may be neglected. The processes affecting the ratio $n(NO_2)/n(NO)$ are essentially described by equations (17) and (18) in which only three reactions involving atomic oxygen, and ozone with the photodissociation of NO₂, describe the aeronomic conditions.

The absolute values of NO and NO₂ depend on the dissociation of N₂ in the lower thermosphere. Since the life-time of nitric oxide in the

mesosphere is relatively long, any downward transport leads to a vertical distribution of NO which follows the hydrostatic distribution. In view of the fact that the chemical reactions occur in the ionosphere and that a chemospheric hypothesis for nitric oxide does not hold there as will be shown in another paper, it is necessary to introduce other indirect processes for the dissociation of molecular nitrogen.

REFERENCES

ASHMORE, P.G., and B.J. TYLER, Reaction of hydrogen atoms with nitrogen dioxide, Trans. Faraday Soc., 58, 1108, 1962.

BANCROFT, J.L., J.M. HOLLAS and D.A. RAMSAY, The absorption spectra of HNO and DNO, Canadian J. Phys., 40, 322, 1962.

BARTH, C.A., Nitrogen and oxygen atomic reactions in the chemosphere, Chapter 20 in Chemical reactions in the lower and upper atmosphere, John Wiley and Sons, New York, 1961.

BARTH, C.A., Three-body reactions, Annales Géophys., 20, 182, 1964. BARTH, C.A., W.J. SCHADE and J. KAPLAN, Blue nitric oxide afterglow, J. Chem. Phys., 30, 347, 1959.

BASCO, N., and R.G.W. NORRISH, Vibrational disequilibrium in reactions between atoms and molecules, Canadian J. Chem., 38, 1769, 1960.

BATES, D.R., Some reactions occuring in the earth's upper atmosphere, Annales Géophys., 8, 194, 1952.

BATES, D.R., The Physics of the upper atmosphere, Chapter 12 in The Earth as a planet, Ed. G.P. Kuiper, Univ. Chicago Press, Chicago, 1954.

BENSON, S.W., The foundations of chemical kinetics, McGraw-Hill Cy, New York, 1960.

BULEWICZ, E.M., and T.M. SUGDEN, The catalyzed recombination of atomic hydrogen and hydroxyl radicals, Proc. Roy. Soc., A 277, 143, 1964.

CALLEAR, A.B., and I.W.M. SMITH, Determination of the rate constants for predissociation, collisional quenching, and spontaneous radiation of NO $C^2 \Pi$ (v = 0), Disc. Faraday Soc., 37, 1964.

CASHION, J.K. and J.C. POLANYI, Infrared chemiluminescence from the gaseous reaction atomic H plus NO; HNO in emission, J. Chem. Phys., 30, 317, 1959. CLEMENT, M.J.Y., and D.A. RAMSAY, Predissociation in the HNO molecule, Canadian J. Phys., 39, 205, 1961. CHEN, M.C., and H.A. TAYLOR, Reactions of nitrogen atoms with ozone, J. Chem. Phys., 34, 1344, 1961.

CLYNE, M.A.A., and B.A. THRUSH, Kinetics of the reactions of active nitrogen with oxygen and with nitric oxide, Proc. Roy. Soc., A 261, 259, 1961a.

CLYNE, M.A.A., and B.A. THRUSH, Reaction of hydrogen atoms with nitric oxide, Trans. Faraday Soc., 57, 1305, 1961b.

CLYNE, M.A.A., and B.A. THRUSH, Reaction of nitrogen oxide with hydrogen atoms, Trans. Faraday Soc., 57, 2176, 1961c.

CLYNE, M.A.A., and B.A. THRUSH, Reaction of nitrogen dioxide with active nitrogen, Trans. Faraday Soc., 57, 69, 1961d.

CLYNE, M.A.A., and B.A. THRUSH, Isotopic investigation of the reaction of oxygen atoms with nitrogen dioxide, Trans. Faraday Soc., 58, 511, 1962a,

CLYNE, M.A.A., and B.A. THRUSH, Mechanism of chemiluminescent reactions involving nitric oxide, the H + NO reaction, <u>Disc. Faraday Soc.</u>, 33, 139, 1962b.

CLYNE, M.A.A., and B.A. THRUSH, Mechanism of chemiluminescent combination reactions involving oxygen atoms, Proc. Roy. Soc., A 269, 404, 1962c.

CLYNE, M.A.A., B.A. THRUSH, and R.P. WAYNE, Kinetics of the chemiluminescent reaction between nitric oxide and ozone, Trans. Faraday Soc., 60, 359, 1964.

DALBY, F.W., The spectrum and structure of the HNO molecule, Canadian J. Phys., 36, 1336, 1958.

DOHERTY, G., and N. JONATHAN, Laboratory studies of the chemiluminescence from the reaction of atomic oxygen with nitric oxide under atmosphere conditions, Disc. Faraday Soc., 37, 1964.

FONTIJN, A., C.B. MEYER and H.I. SCHIFF, Absolute quantum yield measurements of the NO=O reactions and its use as a standard for chemiluminescent reactions, J. Chem. Phys., 40, 64, 1964.

FORD, H.W., Seven mechanisms in the photolysis of NO₂ between 3100 and 3700 A, Canadian J. Chem., 38, 1780, 1960.

FORD, H.W., and N. ENDOW, Atomic oxygen reactions in the photolysis of nitrogen oxide at 3660 A, J. Chem. Phys., 27, 1156, 1957.

FORD, H.W., G.J. DOYLE and M. ENDOW, Rate of reactions of ozone with nitrogen oxide, J. Chem. Phys., 26, 1336, 1957.

GREAVES, J.C. and D. GARVIN, Chemically induced molecular excitation : Excitation spectrum of the nitric oxide-ozone system, J. Chem. Phys., 30, 348, 1959.

HARTECK, P., and S. DONDES, Formation of nitrous oxide from nitrogen atoms, J. Chem. Phys., 29, 234, 1958.

HERRON, J.T., Rate of the reaction NO + N, and some heterogeneous reactions observed in the ion source of a mass spectrometer, J. Res. Nat. Bur. Stand., 65a, 411, 1961.

HERZBERG, G., and L. HERZBERG, Production of nitrogen atoms in the upper atmosphere, Nature, 161, 283, 1948.

HUTCHINSON, G.E., The biochemistry of the terrestrial atmosphere, Chapter 8 in The Earth as a Planet, Ed. Kuiper, Univ. Chicago Press, Chicago, 1954. HUSAIN, D., and R.G.W. NORRISH, The production of NO₃ in the photolysis of nitrogen dioxide and of nitric acid vapour under isothermal conditions, Proc. Roy. Soc., A 273, 165, 1963.

JOHNSTON, H.S., and H.J. CROSBY, Kinetics of the fast gas phase reaction between ozone and nitric oxide, <u>J. Chem. Phys.</u>, 22, 689, 1954.

JOHNSTON, H.S., and D.M. YOST, The kinetics of the rapid gas reaction between ozone and nitrogen dioxide, J. Chem. Phys., 17, 386, 1949.

JONES, E.J., and O.R. WULF, The absorption coefficient of nitrogen pentoxide in the ultraviolet and the visible absorption spectrum of NO3, J. Chem. Phys., 5, 873, 1937.

KAUFMAN, F., The air afterglow and its use in the study of some reactions of atomic oxygen, Proc. Roy. Soc., A 247, 123, 1958.

KAUFMAN, F., Aeronomic reactions involving hydrogen, Annales Geophys., 20, 106, 1964.

KAUFMAN, F., and L.J. DECKER, Effect of oxygen on thermal decomposition of nitric oxide at high temperatures, Symposium on Combustion, 7, 57, 1959 (Butterworths Sc. Publ., London).

KAUFMAN, F., and J. KELSO, Reactions of atomic oxygen and atomic nitrogen with oxides of nitrogen, Symp. on Combustion, 7, 53, 1959 (Butterworths Sc. Pub., London).

KISTIAKOWSKY, G.B., and G.G. VOLPI, Reactions of nitrogen atoms. I Oxygen and oxides of nitrogen, J. Chem. Phys., 27, 1141, 1957.

KLEIN, F.S., and J.T. HERRON, Mass-spectrometric study of the reactions of O atoms with NO and NO₂, J. Chem. Phys., 41, 1285, 1964.

KRESTCHNER, C.B., and H.L. PETERSEN, Kinetics of three-body atom recombination, J. Chem. Phys., 39, 1772, 1963.

LEIGHTON, P.A., Photochemistry of air pollution, Academic Press, N.Y., 1961. LEVITT, B.P., Thermal emission from nitrogen dioxide, Trans. Faraday Soc., 58, 1789, 1962.

MAVROYANNIS, C., and C.A. WINKLER, The reactions of nitrogen atoms with oxygen atoms in the absence of oxygen molecules, <u>Canadian J. Chem.</u>, 39, 1601, 1961a. MAVROYANNIS, C., and C.A. WINKLER, The reaction of active nitrogen with molecular oxygen, p. 287, in <u>Chemical reactions in the lower and upper</u> atmosphere, Interscience Publ., New York, 1961b.

NICOLET, M., Contribution à l'étude de la structure de l'ionosphère, <u>Inst</u>. Roy. <u>Mét. Belgique, Mémoires</u>, 19, pp. 162, 1945.

NICOLET, M., Dynamic effects in the high atmosphere, Chapter 13, in The Earth as a planet, Ed. G.P. Kuiper, Univ. of Chicago Press, Chicago, 1954. NICOLET, M., Nitrogen oxides and the airglow, J. Atm. Terr. Phys., 7, 297, 1955.

NICOLET, M., Aeronomic Chemical Reactions, Chapter 2 in The physics and medicine of the atmosphere and space, Eds O.O. Benson, Jr. and H. Strughold, John Wiley and Sons, New York, 1960.

OGRYZLO, E.A., and H.I. SCHIFF, The reaction of oxygen atoms with NO, J. Chem. Phys., 37, 1690, 1959.

PHILLIPS, L.F., and H.I. SCHIFF, Reactions in the atomic nitrogen-ozone systems, J. Chem. Phys., 36, 1509, 1962a.

PHILLIPS, L.F., and H.I. SCHIFF, Mass spectrometric studies of atom reactions. II Vibrationally excited N₂ formed by the reaction of N atoms with NO, J. Chem. Phys., 36, 3283, 1962 b.

PHILLIPS, L.F., and H.I. SCHIFF, Vibrationally excited 0_2 molecules from the reaction of 0 atoms with NO₂ and with 0_3 , J. Chem. Phys., 37, 924, 1962c.

PHILLIPS, L.F., and H.I. SCHIFF, Reactions of hydrogen atoms with nitrogen dioxide and with ozone, J. Chem. Phys., 37, 1233, 1962d.

REEVES, R.R., P. HARTECK, and W.H. CHACE, Chemiluminescent nitric oxideoxygen reaction at low pressures, J. Chem. Phys., 41, 761, 1964.

ROSSER, W.A., and H. WISE, The rate of reaction of hydrogen with nitrogen dioxide, J. Phys. Chem., 65, 532, 1961.

SCHIFF, H.I., Reactions involving nitrogen and oxygen, Annales Géophys., 20, 115, 1964.

STRAUSZ, O.P., and H.E. GRUNNING, Reaction of hydrogen atoms with nitric oxide, Trans. Faraday Soc., 60, 347, 1964.

TYLER, B.J., Reaction of hydrogen peroxide with nitric oxide, Nature, 195, 279, 1962.

VERBEKE, G.J., and C.A. WINKLER, The reactions of active nitrogen with nitric oxide and nitrogen dioxide, J. Phys. Chem., 64, 319, 1960.

YOUNG, R.A., and R.L. SHARPLESS, Chemiluminescent reactions involving oxygen and nitrogen, J. Chem. Phys., 39, 1071, 1963.