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FOREWORD 

The paper entitled "An iterative method for the solution 
of eigenvalue problems" has been submitted for publication in 
"Mathematics of Computation". 

AVANT PROPOS 

L'article "An iterative method for the solution of 
eigenvalue problems" a été soumis pour publication dans "Mathematics of 
Computation"„ 

VOORWOORD 

Het artikel "An iterative method for the solution of 
eigenvalue problems" is ter publicatie voorgelegd aan "Mathematics 
of Computation11. 

VORWORT 

Die Arbeit "An iterative method for the solution of 
eigenvalue problems" wurde ftlr Veröffentlichung in "Mathematics 
of Computation" eingegelen. 



AN ITERATIVE METHOD FOR THE SOLUTION OF EIGENVALUE PROBLEMS 

By 
. M„ GODART 

Abstract 

A new simple iterative method is developed for the deter-
mination of proper elements associated with the solution of Sturm-
Liouville problems,, The convergence of the iteration process is 
rapid and each eigenvalue can be estimated independently of all 
the other eigenvalues. The' involved accuracy is determined by 
the method used for the solution of an ordinary first order differen-
tial equation. 

Zusammenfassung 

Um die, mit der Lösung Sturm-Liouvilleschen Problemen, 
verbundenen Eigenelemente zu rechnen, stellen wir ein neues 
Iterationsverfahren vor„ Die Konvergenz dieses Verfahren ist 
sehr gut und jede Eigenwert kann unabhängig von den anderen 
gerechnet werden. Die Genauigkeit hangt meistens von der Lösung 
einer gewöhnlichen Differentialgleichung erster Ordnung ab. 



Résumé 

Nous présentons une nouvelle méthode iterative simple 
pour déterminer les éléments propres associés, à la résolution 
des problèmes de Sturm-Liouville, La convergence du proces-
sus est rapide et chaque valeur propre peut être calculée in-
dépendamment de toutes les autres„ La précision atteinte est 
déterminée principalement par la technique utiliséé pour ré-
soudre une équation différentielle ordinaire du premier ordre. 

Samenvatting 

Wij stellen een eenvoudige iteratiemethode voor om 
de eigenwaarden en -funkties te bepalen van vraagstukken welke 
leiden tot vergelijkingen van Sturm-Liouville. De convergentie 
van het iteratieproces is snel en iedere eigenwaarde kan onaf-
hankelijk van de overige berekend worden. De bereikte nauw-
keurigheid wordt hoofdzakelijk bepaald door de methode die 
gebruikt werd om een gewone differentiaalvergelijking van de 
eerste orde op te lossen. 



1.- INTRODUCTION 

Many boundary value problems of interest in mathematical 
physics can be finally reduced to the determination of the proper 
elements of a Sturm-Liouville equation. The most general form of 
these equations is : 

r dy(x) -i 
L p ( x ) d x J + q ( x ) y ( x ) + X r ( x ) y ( x ) = 0 ' ( 1 ) 

with a ̂  x ̂  b, and the problem is to determine the particular values 
of the X parameter (eigenvalues) for which equation (1) possesses 
non identically zero solutions (eigenfunctions) obeying two boundary 
conditions of the type s 

dy(a) 
A l y(a) + A2 p(a) — — = 0 , (2,a) 

dy(b) 
Bx y(b) + B2 P(b) — = 0 , (2,b) 

where the values of the constants A^, A^ and B^, B^ are not simul-
taneously zero. 

Several methods have been proposed to determine the proper 
elements (i.e. eigenvalues and eigenfunctions) of Sturm-Liouville 
equations. Most of them have been reviewed by Kopal^" but we shall 
examine one of them, the so called Rayleigh-Ritz method, in order 
to explain the main defect they have in common and to judge their 

r2] 
general efficiency. This method was originally proposed by RitzL J. 
By transformations whose details will not be given here but which are 
described in many classical texts it leads to the solutions of equations 
of the form s 



det || D.k - X H.k || = 0, (3) 
1 ̂  i, k ̂  n 

where the D ^ and H ^ are the values of quadratic functionals for 
the i-th and k-th elements of a sequence of trial functions chosen 
once for all. Under rather general conditions, it can be shown that 
for indefinitely increasing values of n, the solutions of equation (3) 
decrease monotonically and converge to the eigenvalues of the originally 
stated problem. More precisely, if ^ i-s the m-th solution of 
equation (3) when the solutions are ranged in increasing order, then 
the sequence of all the numbers with n = m, m + 1, is 
decreasing and converges to the m-th eigenvalue of the corresponding 
Sturm-Liouville equation when its eigenvalues are also ranged in 
increasing order. The bigi defect of this approximation method is its 
inability to furnish any estimate of the difference between one of 
the numbers A and the corresponding eigenvalue K . m m 
A theoretical convergence is not sufficient because the solution 
of equation (3) gets extremely complicated when n increases. A rapid 
convergence is thus required but this can only be reasonably expected 
if we possess beforehand a rather precise knowledge of the general 
behaviour of the eigenfunctions. This is not usually the case. 
An even more serious defect of this method is that high values of 
n are necessary to obtain the higher order eigenvalues and to reduce 
a truncation-like error for the low order eigenvalues appreciably. 
When however such large values of n are used, the determinantal 
equation (3) for A. turns out to be of a correspondingly high degree 
and its solution may then entail such an accumulation of round-off 
errors as to prevent any further diminution of the total error af-
fecting the computed eigenvalues. The necessity to compromise 
between these two sources of error severely restricts the accuracy 
obtainable. Similar restrictions are encountered when other previously 
developed methods are applied. 

The methos currently in the mathematical literature devoted 
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to the approximation of the proper elements of a Sturm-Liouville 

problem are thus not very reliable. The present work will describe 

a very simple method which does not suffer from the main defects 

of the calculation methods used previously. In what follows, the 

underlying principle of the method will be explained and it will be 

shown how it can be applied. A particularly simple case will then 

be treated in order to illustrate the .efficiency of the new method. 

It will finally be shown that it can be extended to singular Sturm-

Liouville equations. 

2.- THE NEW APPROXIMATION METHOD. 

The method is based on the remarkable properties of a 

function introduced in a change of dependent variables that consi-

derably simplifies the theoretical study of those equations. 

Continual reference will be made to references [•'+] and [5] where all 

details and proofs omitted here for sake of brevity can be found. 

It will be assumed that in the interval a ^ x ^ b, the function p(x) 

is positive and possesses a first continuous derivative, that the 

function r(x) is positive and continuous and that the function q(x) 

is continuous. The new dependent variables p(x) and 0(x) may be 

introduced by means of the defining equations ; 

y(x) = p(x) sin 0 (x), (5 ,a) 

dy(x) 
p & ) ' — = p(x) cos 0(x) . (5,b) 

According to equation (1) and boundary conditions (2,a) 

and (2,b), the function 0(x) obeys the differential equation : 

d0(x) 

dx P(x) 
cos 0(x) + q(x) + X r(x) sin 0(x) J sii 

(6) 



and satisfies the boundary conditions s 

A
t
 sin 9(a) + cos 9(a) = 0 , (7,a) 

B
1
 sin 9(b) + B

2
 cos 9(b) = (7,b) 

while the function p(x) obeys the differential equation 2 

dp(x) r 1 "I 
= p(x) s i n 9(x) cos 9(x) ^ ^ - q(x) - k r(x) J (8) 

dx 

and satisfies the condition of never being zero in the interval 

a ^ x ^ b. 

Let us now determine a priori permissible initial and final 

values for the function 9(x) by means of the auxiliary conditions s 

0 ^ a < n , a) 

0 < (3 ̂  n , (9,b) 

Boundary conditions (7,a) and (7,b) can then be replaced by the 

equivalent conditions i 

9(a) = cc, (10, a) 

9(b) = (3 + nn , (10,b) 

where n is any integer (positive, negative or null). 
* 

The solution 9(x, \) of equation (6) satisfying an initial 

condition deduced from (10,a) and (9,a) possess the following interesting 

properties. 

As is shown in [ 4 ] and [5], 9(x, k) is a monotonically increasing function 

of the argument k and satisfies the equalities i 

lim 9(b, k) » 0 , (11,a) 

k a. oo 

lim 9(b, A.) = + oo. (11,b) 

k-^ + oo 

Moreover, the function i 



is a solution of the differential equation s 

d x ( x> r 1 i — = x(x, _ q O O + ^r(x) " J s i n 20(x, X ) 

2 + r(x) sin 9(x, X ) 

dX(x, X ) 

dx 

(13) 
and it obviously satisfies the initial condition : 

X(a, X) = 0 (14) 

From this, we can deduce that X ) i s positive everywhere in the 

interval a < x b„ Equation (13) and initial condition (14) lead to 

the expression s 

q(x) and r(x), this function is certainly non negative in the interval 
a < x ^ b. Moreover, it can be zero at a point x = c of this interval 
only if the function sin 9(x, X ) is identically zero and thus constant 
in the interval a < x ^ c. This cannot happen however because at all 
points where the function sin 9(x, X ) vanishes, we have according 

Because of our hypothesis concerning the functions p(x), 

to (6) : 

de(x, x ) 1 
(16) 

dx 7 Ü > > 0 > 
and also : 



and this would contradict the previous deduction that sin 9(x, A.) 
must be constant in the interval a < x ^ c. 

Now, the derivative x(b> X) of tiie function 0(b, X) with respect 
to X is positive. When this is considered with the relations (11,a) 
and (11,b) it may be clearly seen that the second boundary condition (10,b) 
considered as an equation for X is solvable only for non negative values 
of the integer u and that it then possesses One and only one solution. 
The calculation of the (n + 1) - th eigenvalue X r is thus equivalent 
to the solution of the equation s 

(3 + nn - 9(b, X) = 0 (18) 
In the present case, the Newton-Raphson approximation method leads to 
the algorithm s 

X , , . = X T + p + nn - 9(b, X ) n, k + 1 n, k L . n, k _ X"1 (b, X k>, (19) 

where X , denotes the k - th approximation to the eigenvalue X . n, k n 
The application of the algorithm (19) does not present any difficulties, 
especially when an electronic computer is available for the numerical 
integration of equations (6) and (13), or (6) and (15). Nothing can 
ensure the convergence of the successive estimates X , to the n ̂ <c 
corresponding eigenvalue X^, but obtaining a converging sequence 
of approximations is no longer a problem. In fact, it can be seen that 
the correction proposed by formula (19) for a known approximation 
is always in the right direction. In other words, this correction is 
positive,;(^esp. negative, zero) if the chosen approximation is less 
than (respl greater than, equal to) the sought eigenvalue. Then the 
only accident that must be avoided is to disturb or even to make the 
convergence impossible by obtaining successive approximation X^ 
X and X (i < k < j) as shown in the following diagram s 
n, k n, j 

v • . X I X > 
n, j n, i n, k 



Whenever such a situation occurs in the iteration process 

however, it is sufficient, in order to realise a sequence of succes-

sive approximations which certainly converges to the sought eigenvalue X , 
n 

to replace the value X computed with formula (19) by the arithmetical 
j 

mean of the minimum and maximum values of all preceding approximations. 

3.- APPLICATIONS 

A . The efficiency of the proposed method for the approximation of the proper 

elements of Sturm-Liouville equations, will now be investigated on 

a particularly simple example. 

Consider the differential equation : 

d 2y(x) 

dx 2 

+ Xy(x) = 0 (20) 

and the boundary conditions : 

y(0) = 0 , (21,a) 

dy(l) 
= 0 . (21,b) 

dx 

Elementary calculations show that the proper elements of this problem 

are given by : 

X = (2n + l) 2 ji2 /4 , (22,a) 
n 

y (x)= sin (2n + 1) nx /2 . (22,b) 
n 

In table Ii, we compare the eigenvalues as they have been determined 

by our method (X ) to their exact values (X , ) for the first 3 comp. theor. 

five values of the integer n. As an illustration, the estimated 

relative errors and the required numbers of iterations are also given. 
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TABLE I 

n X comp. ^"theor. 
. 6 e x 10 Iterations 

0 2.46739 2.467401 4 9 

1 22.2068 22.20661 8 1 

2 61.6863 61.68503 21 3 

3 120.907 120.9026 36 3 

4 199.869 199.8595 48 3 

It can thus be seen that the method provides good results in this case. 

B. The theory as devoloped to this point is not applicable to cases 
for which the function p(x) can be zero at one or both of the 
extremities x = a or x = b. The method proposed is however applicable 
to these cases, after being slighty modified. For sake of brevity, 
the theoretical aspects will be omitted and only intuitive arguments 
will be used. These can, however, be established rigorously. Two 
examples will be treated in order to indicate the suggested extension. 

1° Consider the differential equation i 

dy(x) — r 
dx L dx ] + Axy(x) = 0 

and the boundary conditions s 

| y(0) | < + o o , 

y (D = o. 

(23) 

(24,a) 

(24,b) 



It can easily be seen that the proper elements of this Sturm-Liouville 

problem are given by ; 

(25, a) i - -2 
K J« t n n 

y n(x) = f x J o (jn x) , 

where J is the Bessel function of order 0 and where j is its o n 
(n + 1) - th positive zero. 

(25,b) 

Equation (6) shows that the singularity at x = 0 can be 

avoided if we take : 

a = n /2. (26,a) 

By choosing (3 as explained in the second paragraph, the 

approximation method may be applied. The calculations have been 
performed and the obtained results are given in table II in the same 

form as used for table J , 

TABLE II 
n A. comp. ^theor. e x 10 Iterations 

0 5.78307 5.7831862 20 10 

1 3 0 . 4 7 H 1 30.471262 5 10 

2 74.88676 74.887006 3" 11 

3 139.0414 139.04027 8 11 

4 222.9352 222.93231 13 9 

Once more, the method has given reliable results. 

2° Consider finally the differential equation ; 



1 0 . -

dy(x) -r 
(1 - x ) + Ay(x) = 0 (27) 

dx 

and the boundary conditions : 

| y(-l) | < +oo , (28,a) 

| y(+l) | < +oo , (28,b) 

It is well known that the proper elements of this problem are given by : 

n 
= n(n + 1) , (29,a) 

y (x) = P (x) , (29,b) 
n n 

where P (x) is the Legendre polynomial of order n. Equation (6) 
n 

shows that the singularity at x = - 1 can be avoided if as before j 

a = it /2. . (26,a) 

The method however is no longer applicable in its original 

form because of,the second singularity at x = + 1, yet its basic 

idea may be employed. For this, introduce some intermediate point, 

say x = 0. For an arbitrary value of k, the equations (6)'and (13) 

or (6) and (15) can be solved in the. interval - 1 ^ x ^ 0 taking the 

initial conditions (14), (10,a) and (26,a) into account. 

The values at x = 0 of the functions 9(x, A) and x(x, A) just obtained 

are then denoted by
 a n £

i 

In exactly the same manner, the singularity at x = 1 can be 

avoided by choosing s 

p = n /2. (26,b) 

Taking into account the initial conditions (14), (10,b) and (26,b), 

the equations (6) and (13) or (6) and (15) can be solved in the interval 

0 ^ x ^ 1. The values at x = 0 of : the new functions 9 (x,A) and x.(
x

A) 

that have been obtained are then denoted by 0
R
 (A) and X

R
(^) • 
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It can be shown that; the derivative x^ ( M of the function 

0 (X) with respect to X is always positive and that the derivative 
L 

^(A.) of the function wit*1 respect to X is always negative. 

Moreover, the eigenvalues are the solutions of the equation s 
e

L
(X) - e

R
(\) = o. 

Equation (19) can then be replaced by the new algorithm s 

\ k-l-1 * k " [ V » . " 9 L ( X ) ] / [ % ( X ) " * L ( X ) ] • 

(30) 

(31) 

This new form of the approximation method has been applied to the 

determination of the eigenvalues of the Sturm-Liouville problem 

defined by the relations (27) and (28, a and b). The results obtained in 

this case are summarized in table III„ 

TABLE III 

n X 
comp. ^theor. 

e x. 10 . Iterations 

0 0 . 0 . - . 1 

1 1.99997 2 . 15 8 

2 5.99984 6. 27 10 

3 11.9996 12 33 9 

4 19.9991 20 45 13 

Once more, the comparison shows that the method has provided excellent 

results. 

4„- CONCLUSION 

A new method of successive approximations has been proposed 

in order to solve eigenvalue and eigenfunction problem associated with 
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Sturm-Liouville equations. The examples treated show that the convergence 

is reasonably rapid and that the proper elements can be determined 
with an actual accuracy which is only limited by the errors inherent 
to the numerical resolution of equations (6), (13) and (15). It 
is thus highly recommended to replace numerical determinations by 
analytic expressions whenever this is possible. The rate of convergence 
of the approximation method is highly dependent on the first estimates 
chosen for the A. . These values must then be determined as accurately n 
as possible either by comparison methods, by an asymptotic expression, 
or by any other means. In all cases, some theoretical study is 
always helpful for the numerical solution of a Sturm-Liouville problem. 
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