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FOREWORD 

"Collision Frequencies'and Energy Transfer s Electrons" is 
the first in a series of two papers dealing with the general subject 
of elastic collision processes and energy transfer applied to the 
constituents of the upper atmosphere. This series will be published 
in Planetary and Space Science during 1966. , 

AVAFI-PRQPOS 

"Collision Frequencies and Energy Transfer s Electrons" est 
le premier de deux travaux» dont le sujet général est l'étude des pro-
cessus de collision élastique et de transfert d'énergie appliqués aux 
constituants'' de 18atmosphère supérieure,, Les résultats de ces recher-
ches seront publiés en 1966 dans la revue Planetary and Space Science. 

VOORWOORD 

"Collision Frequencies and Energy Transfer s Electrons" is 
het eerstê  in een reeks van twee werken die handelen over het algemeen 
onderwerp % processen van elastische botsing en energie-overdracht, toe-
gepast op de bestanddelen van de hogere atmosfeer. Deze reeks zal ge-
publiceerd worden in Planetary ^nd Space Science in de loop van 1966. 

VORWORT 

"Collision Frequeneies and Energy Transfer s Electrons" ist 
die erste Arbeit einer Serie von zwei Abhandlungen, die sich auf das 
general Problem der* elastischen Stossprozesse und der Energieübertragung 
in der höheren Atmosphäre bezieht. Diese Arbeit wird im laufenden 1966 
in Planetary and Space Écience herausgegeben werden. 



COLLISION FREQUENCIES AMD ENERGY TRANSFER : ELECTRONS 

by 
Peter BANKS 

Abstract 

A study is made of the problem of elastic collisions and energy 
transfer between gases which have .separate Maxwelliam velocity distribu-
tions. It is shown that the expression for the energy transfer rate 
obtained by Desloge (1962) for gases of arbitrary temperature and par» 
ticle mass can be adapted into a convenient form which involves a ratio 
of particle masses, the difference in the gas thermal energies» and a 
collision frequency for energy transfer. An analysis is then made of 
the collision frequency in terms of an average momentum transfer cross 
section which is defined for conditions of thermal nonequilibrium. The 
general equations are next specialized to consider the problem of 
elastic electron collisions in heavy particle gases. To obtain useful 
numerical expressions for electron-neutral particle collision frequen-
cies and energy transfer rates« an analysis has been made of the momen-
tum transfer cross sections for N^, 0^, 0, H and He. Calculations have 
also been made of the @oulomb momentum transfer cross section, collision 
frequency« and energy transfer rate. 

Résumé 

Nous étudions le problême des collisions élastiques et dû 
transfert d'énergie entre des gaz ayant des distributions de vitesse 
maxwelliennes différentes. Nous montrons que l'expression de transfert 
d'énergie obtenue par Desloge (1962) pour un gaz de particules de tem-
perature et de masse arbitraires peut-être mise sous une forme commode, 
qui fait intervenir le rapport des masses des particules, la différence 
des énergies thermiques des gaz et une fréquence de collision pour le 
transfert d'énergie. Nous analysons ensuite la fréquence de collision en 
fonction d'une section efficace moyenne de transfert de moment, qui est 
définie pour des conditions de non-équilibre thermique. Les équations 
générales sont ensuite adaptées à l'étude du problèmes descollisions élasti-
ques d'électrons dans un gaz de particules lourdes. Afin d'obtenir des 
expressions numériques pratiques pour les fréquences de collision et pour 
les vitesses de transfert d'énergie entre électrons et particules neutres, 
nous., analysons les sections efficaces de transfert de moment pour les éléments 
N^, Og, 0, H et He. Nous avons également évalué la section efficace de 
transfert de moment, la fréquence de collisioniet la vitesse de transfert 
d'énergie pour des interactions coulombiennes. 
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Sasaenvatting 

In' des©' tekst worden de elastische botsingen en emergieoverdracht 
bestudeerd tussen twee gassen ragt verschillende maxwelliaanse snelheids- -
verdeling. Men bewijst vooreerst dat d@ uitdrukking van Desloge (1962) 
voor de emergieoverdrachtsmate bij gassen met willekeurige temperatuur en 
soortelijke massa omgevomd kan worden in een uitdrukking welke de ver-
houding der soortelijke massa's bevat evenals het verschil der thermische 
energieën en de botsingsfrekwentie voor energieoverdracht,, Vervolgens 
wordt deze frekwentie bestudeerd in funktie van een gemiddelde werkzame 
doorsnede.voor overdracht van hoeveelheid van beweging ingeval geen 
thermisch evenwicht is. Nadien worden de bijzóndere'vergelijkingen ge-
geven voor elastische-botsingen van electronen in-'zware gassen. Ten 
einde bruikbare numerieke uitdrukkingen te bekomen voor de botsings-
frekwentie en'de energieoverdrachtsmate tussen electronen en neutrale 
deeltjes, werd een bijzondere studie gewijd aan de werkzame doorsnede 
voorde overdracht van hoeveelheid van beweging ingeval van CL, 0, 
Hen He. • Er werden eveneens berekeningen gemaakt van de werkzame door= 
snede voor overdracht van hoeveelheid van energie bij coulombiaanse 
verstrooiing» van de botsingsfrekwentie en energieoverdrachtsmate. 

Zusaramenfassung 

Eine Abhandlung der elastischen 'ZusammenstSJsse und der Energie» 
Übertragung zwischen Gase mit verschiedenen Maxwell - Verteilungsfunktionen 
wird ausgeführt. Es wird gezeigt,. dass der Ausdruck der Energieübertra-
gung von DesMge (1962) für Gasen mit willkürlicher Temperatur und Masse 
in einer praktischen Form, die vom Verhältnis der Massen,von der Differenz 
in thermischen Energie und von einer Zusammenstossfrequenz abhängt, 
geschrieben werden kann. Die Zusammenstossfrequenz wird denn studiert mit 
Hilfe eines mittleren Momentumstreuquerschpittes, der für nicht ther-
mischen Equilibrin definiert ist. Die allgemeine Gleichungen werden auf 
die elastischen Zusammensttfsse zwischen Elektronen und schweren Teilchen 
angewendet. Um numerische Ausdrücke für der Energieübertragung und für 
der Zusammenstossfrequenz zwischen Electron und ungeladenen Teilchen zu 
erreichen, werden die Momentumstreuquerschkitte für N^, 0^, 0, H und Hè 
analysiert. Rechnungen werden auch"'für 'Sem Cô löipb̂ -;:' Moimentumstreuquer-
schnitte, für der Zusammenstossfrequenz und für der Energieübertragungs-
koeffizient durchgeführt.1 <"-••• & " : "••' 



1„- INTRODUCTION 

In order to understand the thermal behavior of ionized 
atoms or molecules which are subjected to selective heating pro-
cesses it is necessary to know the different rates of collisional 
energy transfer between charged and neutral particle species» Once 
these have been determined it is possible to use energy balance 
equations to derive appropriate temperatures for each of the species 
present. Hence, in all generality it is necessary to have expres-
sions for electron-ion, electron-neutral, and ion-ion energy transfer 
rates. The use of the full set of such energy transfer relations 
is currently required in the theoretical description of electron 
and ion temperatures in the upper atmosphere,, 

In this paper an investigation is made of elastic collisional 
energy transfer between mixed gases of arbitrary particle mass having 
separate Maxwellian velocity distributions„ It is shown in Section II 
that the exact equation for energy transfer, derived by Deslodge (1962) , 
can be separated into three fundamental factors, each of which depends 
upon a different aspect of the collision process and gas composition. 
The concept of a nonequilibrium collision frequency for energy trans-
fer is introduced for particle interactions of somewhat arbitrary 
cross section. In a similar manner the equations leading to the de-
velopment of:an average nonequilibrium momentum transfer cross section 
are derived„ 

Following the presentation of the general relations, which 
are valid for particles of arbitrary mass and temperature, the results 
are specialized to consider elastic collisions between electrons and 
heavy particles. In Section III we consider the difficulties invol-
ved in deriving average momentum transfer cross sections for electron -
heavy particle interactions. 
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For electron collisions with other charged particles it is found 

that the classical Rutherford differential scattering cross section 

can be used to arrive at results which are in accord with previous 

calculations. The problem of elastic electron collisions with neu-

tral particles is more difficult and it'is necessary to analyze 

both laboratory data and theoretical derivations in order to arrive 

at useful sections for 0 0 , He, and H. 

The application of the cross section data is made in 

Section IV to obtain expressions for momentum transfer collision 

frequencies and rates of electron energy transfer, A comparison 

is then made between the present results and those which have been 

used in earlier studies of electron energy transfer rates as applied 

to the problems of the ionospheric energy balance. 

Section V is devoted to a general summary of the results 

of this study,, 

2o- BASIC EQUATIONS 

1 „ General Derivation 

energy exchange between two gases with Maxwellian velocity distributions 

having different temperatures and particle masses has been made by Des-

lodge (1962)„ By applying velocity distribution techniques to the 

mechanics of elastic collisions he was able to evaluate, the average 

rate of change of the total kinetic energy of one gas as 

The derivation of the equation which describes the rate of 

dU 1/2 

dt 
1 

( mj+ m 2) 2 (2nk) 
3/2 (m T + m T ) 5/2 1 1 2 2 (1) 



where 

" i - / i v 2 i f i d V i ( 2 a > 

2kT 2kT 

( 2 b ) 

q Q(g) = 2 n / cr(g,0) (1-cos 0) sin 0 d0 (2c) 

and 

U - gas tot^l kinetic energy 

n - particle number density 

m - particle mass 

T - Maxwellian temperature 

k - Boltzmann's constant 

g - relative velocity between particles 

q Q(g) - velocity dependent momentum transfer cross section 

v - particle velocity in laboratory system 

3-A 

d v - velocity space volume element 

0 - center of mass scattering angle 

" differential scattering cross section 

f - velocity distribution function. 

Equation (1) is valid for conditions where separate Maxwellian velocity 

distributions can be maintained and where a suitable momentum transfer 

cross section can be found. In particulars Deslodge (1962) has shown 

that this equation accurately describes the energy transfer rates for 

both elastic spheres and Coulomb particles. 

In the interests of further clarity, it will now be shown 

that it is possible to rearrange equation (1) in such a way that a 

deeper physical insight can be obtained into the problem of elastic 

collisional energy transfer between Maxwellian distributions of par-

ticles . 
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As a brief guide, thé . following discussion is based upon a simple 

model of energy transfer for a single particle moving in a gas. 

By defining an appropriate collision frequency for energy transfer 

and a momentum transfer cross section it is possible to derive 

a general functional form for the energy exchange rate between two 

gases. Such a form can be compared with equation (1) to obtain 

specific equations for the collision frequency and momentum trans-

fer cross section which are applicable to the problem of energy 

transfer. 

We consider first the average energy loss per collision 

of a single particle of mass m^ and kinetic e^traveling through 

a gas composed of particles of mass m^ and average energy e^. The 

average loss of kinetic energy per collision, , for this single 

particle is, as shown by Crompton and Huxley (1962), 

W < 3 ) 

To describe the rate at which the single particle losses 

energy per unit time we may introduce the concept of the single par-

ticle collision frequency given by 

v 5:5 n £ q . (4) 12 2 V 

with n^ the ambient gas number density. Since this quantity repre-

sents the collision rate of a single particle in a gas we may now 

combine equations (3) and (4) to obtain the average rate at which 

the single particle losses energy as 

Ae 2m m _ 

- - - < V e 2 ) v 1 2 . (5) 
At (m^Hhm^) 
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If, instead of a single particle, we have a large number 
of particles combining to form a Maxwellian gas mixed with the ori-
ginal gas, we may approximate the total average energy exchange rate 
by the expression 

. „ 2 mi m2 
dt (nyHi^) 

2 ni ( e r V V12 ( 6 ) 

"l 2 — 
ui " T mivi = niei ( 7 ) 

where e^ is now an average energy which corresponds to the Maxwellian 
distribution of single particles which we permitted to become the 
mixed gas. Likewise, v ^ is now an average collision frequency which, 
unlike equation (4), must now be suitably defined to take account of 
the many different relative velocities between the various gas particles, 

The derivation leading to equation (6) is not rigorous since 
the proper averaging techniques of kinetic theory needed to arrive 
at an exact expression have not been used. It gives, however, a 
functional form for the energy exchange rate between two gases which 
can be used to decompose the original exact result of Deslodge (1962), 
given in equation (1), into three factors 5 a ratio of masses, a diffe-
rence in average particle energies, and an energy transfer collision 
frequency. The first two quantities are independent of the mode of 
interaction between the two gas species, depending only upon the 
appropriate masses and average gas thermal energies. It is thus the 
collision frequency which must contain the factors which relate to the 
interparticle forces. 

In order that the correct form for an average collision 
frequency may be synthesized from the comparison of equations (1) and 
(6) we require that the functional form of the average collision 
frequency be 



v
1 2

~ n
2
g Q

D
 (8) 

which allows for the.presence of an arbitrary numerical factor in ; 

the final result for v ^ . The quantity g is the Maxwellian ave-

rage relative velocity between the particles of the two gases while 

Q^ is the defined average momentum transfer cross section appropriate 

for conditions of thermal nonequilibrium. The quantity g can be de-

rived directly for the motions of two gases having distribution functions 

f^ and f^ by the equation 

® S f f
 f

l
f

2 ' V ~
?

2 I
 ( 9 ) 

3-» 
where d v

 9
 are the respective velocity space volume elements for the 

1 »2 

two velocity distributions. For f^ and f^ representing separate 

Maxwellian velocity distribution functions it is possible to inte-

grate equation (9) to obtain, 

8ks 1/2 r T
1
 T

2
n 

n j L n^
 +

 n y 

1/2 
(10) 

p 

the subscripts applying to the parameters of each respective gas. 

With this result it is now possible to synthesize the 

necessary expressions for the average energy transfer collision 

frequency and the average momentum transfer cross section. Through 

manipulation of equations (1)» (6)„ (8)„ and (10) the latter quantity 

becomes 

• OO 

Q
d
 - K

3

ƒ g
5

 q
D
(g) exp (-Kg

2

) (11) 

where, from (2b) 

r 2kT
 2 k T

o"l 
1 + - 1 (12) K = 

m

i
 m

2
 J 

— 3 — 3 
and it is assumed that e, ° r kT, and = — kT . 1 2 1 2 2 2 



Equation (11) is the generalization of thé momentum transfer cross 

section to situations where thermal equilibrium does not prevail 

between gases composed of particles with different masses and dif-

ferent Maxwellian distributions. Under a condition of equilibrium 

we may take T^ which reduces Q D immediately to the standard form for 

the average momentum transfer cross section given by Dalgarno, et al. 

(1958). 

In a similar manner the comparison of equations (1), (6), 

and (8) and (11) permits the recognition of the average momentum 

transfer collision frequency as 

v = — n g Q (13.) 
12 3 2 D 

or, using equation (10), 

4 / 8 k N 1/2 r T. T -.1/2 _ 
V12 

4 /ÖK v L/i r- 1 1 _ 

5 » 2 ( T ) L ^ J % ( l4) 

which represents the generalization to conditions of different 

Maxwellian velocity distributions of two gases. For an equilibrium 

state such as T andwith ̂ representing the two particle re-

duced mass, 

8kT \ 1/2 _ 
V 1 2 r a J n 2 V ^ r ; QD ' ( 1 5 ) 

which is a factor of 4/3 larger than the total scattering collision 

frequency derived by Chapman and Cowling (1952). This same factor has, 

however, been noted by Nicolet (1953) in an analysis of electron col-

lision frequencies based upon an analysis of collision intervals and 

diffusion coefficients derived by the velocity distribution method. 

As a final result it is now possible to express equation (1) 

in terms of the collision frequency, difference in energy, and mass 

factor as 
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dU.. m m _ 

i r = - 3 n i 7 ~ 7 k ( T r V vi 2- ( 1 6> 

This equation represents the final goal of the derivation since we now 

have decomposed the general equation into a form which relates to different 

aspects of the collision process for energy transfer. 

2. Application to Electron Energy Transfer 

We now extend the preceding equations to consider the pro-

blem of an electron gas mixed with another gas composed of heavy par-

ticles such that m « m_ . The equations derived for this situation will e 2 
be applicable to elastic electron-neutral and electron-ion collisions. 

From equation (11) the average momentum transfer cross sec-

tion becomes 
2 m v _ / m , 3 p «= _ _e 

J o v 5 q D(v e) e" 2kT e dv , (17) 

where v is the electron velocity since,, for m^ « m^, the relative 

velocity g is determined almost entirely by the motions of the e-

lectrons alone. 

The average electron collision frequency can likewise 

be obtained from equation (14)/under the assumption that 

T /m » T„/m. as e e 2 2 

4 / 8kT \ 1/2 _ 
Ve = 3 "2 V rt^J «D ' <18> e 

dependent upon the electron temperature alone. 

Finally, the rate of exchange of kinetic energy between the 

electron gas and the second gas is obtained from equation (16) as 
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dU m _ 

T ~ » - 3n — k (T - T„) v , (19) 
dt e m

2
 e 2 e '

 v

 ' 

or, in terms of Q^, 

dU m / 8kT \ l / 2 _ 

"7~ = - 4 n n„ — k ( ) Q (T - T ) (20) 
dt e 2 m . \ nm /

 X

D e 2 ' 
2 e 

It is interesting to note that the energy transfer collision 

frequency, v^, can be directly related to the theory of the electrical 

conductively of a plasma. From Shkarofsky, et al. (1961) the equiva-

lent collision frequency of electrons which limits- the conduction- of current 

in a plasma subjected to a weak electric field can be derived as 

f T Jo L v +
 w
 J 

2 
m v 
e 

2kT dv 
e 

v . = rr^ = z (21) 
equiv r

 0 0

 1
 m v 

J° VL 777-K^T*' 
where v^ is the velocity dependent electron collision frequency for 

momentum transfer defined in equation (4) and w is the angular fre-

quency of the applied electric field. It the radio frequency w is 

much larger than the 

equation reduces to 

2 2 
much larger than the collision frequency such that w » v this 

e 

2 
m v 

— m r 00 4 -
 e 

v

 •
 =

 TT^T" / v v c" 2kT dv (22) 
equiv 3kT ./ e e ' 

e
 u

 o 

which is exactly the same as the electron collision frequency given in 

equation (18). Thus, by means of high frequency radio experiments in 

dilute plasmas it should be possible to obtain experimental data which 

can be used directly to calculate elastic electron energy transfer rates, 
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.The application of the preceding equations to the problem 
of determining electron collision frequencies and energy exchange rates 
in heavy gases is made in the following sections. First, however, it 
is necessary'to adopt adequate expressions for the momentum transfer 
cross sections. For electron-neutral collisions there exist no con-
venient analytical results and it is necessary to analyze existing 
laboratory and theoretical results. The problem of Coulomb collisions, 
however, is amenable to a direct theoretical approach. 

Ill.- ELECTRON CROSS SECTIONS FOR MOMENTUM TRANSFER 

1. Cross Sections for Neutral Particles 

Since theoretical methods usually do not yield accurate values 
of q^ for low energy electron-neutral collisions it is necessary to 
rely,, upon the available experimental measurements„ Descriptions of the 

» i 

current methods used to obtain momentum transfer cross sections for 
electron-neutral collisions can be found in Massey and Burhop (1952), 
McDaniel (1964), and Hasted (1964). As has been emphasized, it is the 
collision cross section for momentum transfer which is of dominating 
importance in determining the form of the energy equations. Unfor-
tunately, most; early experiments were designed to give values c£ the 
total scattering cross section and it is only within the past 15 years, 
with the advent of the microwave conductivity and drift velocity methods, 
that accurate values of the momentum transfer cross section have been 
determined. 

• In the following sections each atmospheric gas is considered 
separately with respect to electron collisions and appropriate expressions 
for the momentum transfer section are adopted. 
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1.1 Molecular Nitrogen 

The results of theoretical studies and experimental measurements 
for qD by various workers over the past 28 years are given by Shkarofsky, 
et al. (1961). Corrections have been made by these authors for the velo-
city distributions of the colliding electrons in ail the previous experi-
ments. Nevertheless, the values of the measured cross sections vary by 
as much as 65%. More recent studies have been based upon microwave 
and electron mobility experiments„ These methods have tended to produce 
much more consistent data and are capable of covering a wide range of 
electron energies. The results of recent experiments are presented in 
Figure 1. 

At low electron energies in the range 0.003 to 0.05 ev, Pack 
and Phelps (1961) have measured the drift velocity of electrons under 
the influence of a constant electric field. Their data on the momen-
tum cross section agree well with the earlier measurements of Pack, 
et al. (1951) who used a microwave conductivity device over the energy 
range 0.02 to 0.03 ev. Anderson and Goldstein (1956a), employing a 
slightly different microwave technique, obtained results which diverge 
from other work, showing a substantial increase in q at low electron D 
energies. When the work of Crompton and Huxley, as reported by 
Shkarofsky, et al. '(1961), and Crompton and Sutton (1952) is con-
sidered, it appears that experimental errors probably exist in 
Anderson and Goldstein's work. Further, Huxley (1956) obtained re-
sults consistent with the earlier measurements of Crompton and Sutton 
and the later data of Pack and Phelps. 

Frost and Phelps (1962) and Englehardt, et al. (1964) have 
used a method of integrating the Boltzmann equation to choose proper 
values for q . Their method consisted of adopting appropriate sets of D 
elastic and inelastic cross sections and then solving the Boltzmann 



| • ! | i 1 

24,0 MOMENTUM TRANSFER CROSS SECTION 

MOLECULAR NITROGEN 

— 

20,0 

ENGLEHARDT, ET AL. (1964) / 

— 

cx 16,0 
PACK and PHELPS (1961) / 
HUXLEY (1956) / — 

2. 
CJ CROMPTON and HUXLEY (1952) / 

CD 

x 12,0 
o 

a~ 

CROMPTON and SUTTON (1952) / / 
/ / 

— ' / 

// 
— 

8,0 — 

A,0 — 

0 J 1 1 I i l l 
0,01 0,02 0,05 0,1 0,2 0,5 1,0 2,0 5,0 10 

ELECTRON ENERGY E (ev) ; 

Fig. I»- Energy Dependent Momentum Transfer Cross Section for Electrons in Molecular Nitrogen. 
— All curves represent experimental data. 
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equation for the equilibrium electron velocity distribution function 

in the presence of an electric field energy source. Next, they com-

puted the electron mobilities and diffusion coefficients. Since these 

are experimentally known quantities, the theoretical results could 

be compared with the measurements. When differences existed, sui-

table changes were made in the cross sections until consistent re-

sults followed. 

For electron energies between 0.02 ev and 0.1 ev the data 

of Pack and Phelps (1961) can be represented by the equation 

q D = 18.8 x 10" 1 6 e 1 / 2 cm2 , (23) 

where e is the electron energy measured in electron volts (ev). For 

energies above 0.1 ev this expression leads to an overestimate of the 

true cross section. From the data of Englehardt, et al. (1964) a sui-

table generalization to include the region 0.1 - 1.0 ev is 

q D - (18.3 - 7.3 e 1 / 2 ) e 1 / 2 x l o " 1 6 cm 2. (24) 

Applying equation (17) to equation (24) yields 

Q_(N.) - (2.82 - 3.41 x 10 _ 4T ) T 1 / 2 x 10 _ 1 7 cm 2 (25) D e e 
In essence, this result represents the first correction to the work 

of Pack and Phelps (1961) such that the collision frequency and energy 

loss rate can now be evaluated over the range 100° ^ T ^ 4500°K. For 
-4 e 

low tempera Cures llie correction term, 3.41 x 10 T , is small. At e 
temperatures above 2000°K, however, there is a significant reduction 

of the cross section below that which follows from the original cross 

section of Pack and Phelps. 

1.2 Molecular Oxygen 

The results of all experimental and theoretical studies of 

the electron-molecular oxygen momentum transfer cross section conducted 
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prior to 1958 have been compiled by Shkarofsky, et al. (1961). In 
general, the various results do not yield consistent values. How-
ever, the early work of Crompton and Huxley, as reported by Cook and 
Lorents (1960), over the energy range 0.2 to 2.0 ev has been found 
to agree well with later data. In particular, Phelps (1960) ana-
lyzed the 9.3 Ms microwave conductivity data given by Van Lint (1959) 
and matched it to an assumed first power dependence upon t-the electron 
velocity to determine a single particle collision cross section. 
Recently, Mentzoni (1965) has made a direct measurement of the elec-
tron collision frequency. By assuming the cross section to be pro-
portional to the electron energy, he found a collision cross section 
which was a factor of 1.6 smaller than that given by Phelps. 

Phelps (1963) conducted an analysis using the Boltzmann e-
quation to evaluate the drift velocity and ratio of the diffusion 
coefficient to the electron mobility. By adjusting the various 
cross sections, he was able to find agreement between predicted and 
measured values. Phelps and Hake (1965) repeated the analysis using 
more refined measurements of electron mobility and diffusion coefficients 
Their results, shown in Figure 2, should be accurate to within 20% 
in the electron energy- range 0.2 £ e £ 2.0 ev. A difficulty arises^ 
in adopting a simple expression to represent the energy dependence 
of the cross section. As a first approximation a good fit to the 
experimental data is 

q D =• (2.2 -5- 5.1 e1/2) x 10~16 cm2 (26) 

over the energy range 0.02 ^ e ^ 1.0 ev. From equation (1$) Q^ is 
given by 

— -16 -2 1/2 2 
Q d (0.,) » 2.2 x 10 (1 + 3.6 x 10 T q ) cm , (27) 

and applies for 150° & T ^ 5000®. 
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Fig. 2.- Energy Dependent Momentum Transfer Cross Section for Electrons in Molecular Oxygen, 
The data of Phelps (1963) and Phelps and Hake (1965) are based upon best solutions 
to Boltzmann's equation using experimental values of electron transport coefficients. 

i 
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1.3. Atomic Oxygen 

There are several experimental results for the values of 
the total scattering cross section, q^, in atomic oxygen, but none 
for the momentum transfer cross section since the chemical acti-
vity of oxygen makes measurements difficult in any closed container. 
Neynaber, et al. (1961) conducted a total scattering experiment but 
no data were taken below electron energies of 2 ev, far above the 

thermal energies of the upper atmosphere. At this energy it was 
' -16 2 

found that q^ ~ 5.5 x 10 cm . Another experiment by Lin and 
Kivel (1959) was made at a lower energy. They found a momentum 
transfer cross 
gy of 0.5 ev. 

-16 2 transfer cross section of 1.5 x 10 cm at a mean electron ener-

' From quantum theory, Klein and Bruckner (1958) derived a 
method of relating scattering phase shifts to measurements of photo-
detachment cross sections. It was later pointed out by Cooper and 
Martin (1$62) that the calculated photodetachment cross sections did 
not match recent results and, further, that the effective range theory 
used by Klein and Bruckner was not valid at low electron energies. 
Cooper and Martin then recalculated the entire problem, obtaining 
new values of the phase shifts. In the absence of direct experi-
mental results these values can be used to obtain an expression for 
the momentum transfer cross section according to the relation (McDaniel, 
1964) 

r—i 2 
(L + i) sin (6l- 6 l + 1 ) , (28) 

27im v ' L 
Where k. == . 8 6 is the quantum mechanical wave number of relative 1 h 
motion, h is Planck's constant, L is the angular momentum quantum 
number, and 6 is the L-th wave partial wave phase shifts of the ra-L 
dial :eol5Stion- to SchrOdinger's equation. 
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Tamkin (1958) also approached the problem in a theoretical 
manner and made a calculation of the S-wave contribution to the total 
scattering cross section. He compared his results with those of 
Bates and Massey (1947) and concluded that the true value of the 
total scattering cross section was bracketed by the two calculations. 
The results of these calculations are shown in Figure 3. To give an 
indication of the true value of q^, the values of P-wave phase shifts 
given by Cooper and Martin have been added to the S-wave values of 
Temkin, and Bates and Massey. The values for the scattering phase 
shifts given by Cooper and Martin are accepted here as providing a 
basis for determining the momentum transfer cross section for atomic 
oxygen» Extrapolating from the good agreement found by these authors 
for the problem of negative ion photodetachment, it appears that the 
error involved in using the theoretical phase shifts for determining 

should be less than 30% for electron energies below 0.5 ev. Thus, 
it does not appear unreasonable to accept an average value of 

-16 2 
q = (3.4 + 1.0) x 10 cm for electrons in atomic oxygen. Using 
this expression the average momentum transfer cross section becomes 

- 1 6 2 

QD(0) = (3.4 ± 1.0) x 10 cm , (29) 

independent of the electron temperature for Tg < 4000°K. 

1.4. Atomic Hydrogen 

No experimental measurements have been made for the electron-
hydrogen momentum transfer cross section. However, recent theoretical 
treatments of electron scattering in hydrogen have produced predicted 
total cross sections which are in good agreement with the measured 
total cross section as determined by Neyaber, et al. (1961) and 
Brackman, et al. (1958), Thus, the error involved in using the same 
partial wave phase shifts to determine the momentum transfer cross 
section by means of equation (28) should not be large. Two similar 



ELECTRON ENERGY E (ev ) o 
Fig. 3.- Energy Dependent Cross Sections for Electrons in Atomic Oxygen. The data of Klein and Bruckner 1 

(1958) and Neynaber, et al. (1961) apply to the total scattering cross section. The phase shift 
data of Cooper and Martin (1962) are used here to calculate values of qD. The data of Temkin (1957) 
and Bates and Massey originally included only S-wave phase shifts. These have been expanded for 
the purposes of comparison u'sing the P-wave shifts of Cooper and Martin (1962), to obtain qD-
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theoretical calculations of the scattering phase shifts for electrons 
in atomic hydrogen have been published by Smith, et al. (1962) and Burke 
and Schey (1962). Both derivations employ a close coupling approcimation 
where the scattering wave function is expanded in terms of hydrogen 
atom stationary eigenstates. For the present treatment, the results 
of Smith et al. are used. 

In calculating q^ from the partial wave phase shifts for 
atomic hydrogen it is necessary to include both the singlet and 
triplet contributions to the scattering. Using equation (28) with 
the proper weighting factors yields a form for q^ shown in Figure 4. 
A suitable analytic expression for the energy dependence is 

qQ = (54.7 - 28.7 e) x l o " 1 6 cm2, (30) 

which gives a cross section considerably larger than that found for 
the other atmospheric constituents. Using this expression the average 
momentum transfer cross section is 

Q (H) = (54.7 - 7.45 x 10~3 T ) x l o " 1 6 cm2 , (31) D 6 
over the temperature range 150® & 5000°. It is difficult to assess 
the error involved in deriving Q but an arbitrary estimate of + 25%, 1J 
based on the correspondance between theoretical and experimental results 
for the total cross section, should give a reasonable indication. A 
difficulty is noted, however, in that there exist no reported measurements 
of the scattering cross section below l^ev, and it is possible that there 
may be errors in the application of theoretical values to this region. 

1.5. Helium 

The experimentally determined values for q^ are in good agreement. 
Pack and Phelps (1961) conducted an electron drift experiment over the 
energy range 0.003 < e < 0.05 ev obtaining a constant cross section of 



4o- Energy Dependent Momentum Transfer Cross Section for Electrons in Atomic Hydrogen. The 
— curve is calculated on the basis of phase shifts given by Smith, et al, {1962). 
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-16 2 
5.6 x 10 cm . Phelps, et al. (1951) performed a microwave conductivity 
experiment over the range 0.02 < e < 0.04 ev, finding virtually the 
same value. Gould and Brown (1954) made a separate determination by -16 2 
a different microwave technique which gave the value 5.2 x 10 cm 
for all energies between 0.0 and 4.0 ev. Anderson and Goldstein (1956b) 
made microwave conductivity measurements down to electron energies of 0.05 ev , -16 2 and found a constant cross section of 6.8 x 10 cm . 

Thus, for the case of electron-helium scattering, it appears 
-16 2 

reasonable to accept the value = (5.6 + 0.6) x 10 cm , corres-
ponding to an uncertainty of 10%, over the energy range 0.0 to 5.0 ev. 
The average momentum transfer cross section is 

— —16 2 .... Qd(He) = (5.6 + 0.6) x 10 cm , (32) 

independent of the electron temperature. 

The values of Q for the different gases considered here are D 
shown in Figure 5 as a function of electron temperature. The largest 
cross sections are associated with H and N-, these reaching values 

-16 2 —16 2 of 60 x 10" cm and 12 x 10 ca , respectively. The cross sections 
of He an 0 are essentially constant over the range of temperatures in-
dicated here. However, there must exist some uncertainly in the 
velocity dependence of q^ for several gases. For N^ and 0^ the un-. 
certainty in Q should be less than 20% (Englehardt, et al. 1964 ; 
Phelps and Hake, 1965) while for He a value of 10% is adequate. It 
is difficult to assess the possible error in the quantum calculations 
of qD for H and 0 but the previous arbitrary estimates of + 25% and + 
30%, respectively, should be reasonable. In fact, further experimen-
tal studies of H and 0 are needed to cheek the theoretical cross sec-
tions presented here. , 



Fig. 5.- Average Momentum Transfer Crass Sections for Electrons. These curves result from applying 
the velocity averaging techniques described in the text to the experimental and theoretical 
electron cross section data. ' 
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2„ Cross Section for Charged Particles 

The momentum transfer cross section for charged particles 

of arbitrary mass can be derived through a knowledge of the differen-

tial scattering cross section and application of equations (2c) and 
- 2 

(11). For electrical forces the interaction varies as r and the 

Rutherford differential scattering cross section applies in the 

form (McDaniel, 1964) 

a(0,g) sin" 4( , (33) 
2[ig 

where fi is the two particle reduced mass, Z. . are the respective atomic l,z 

charges, e is the electron charge, and 0 is the center of mass scattering 

angle. Applying this to equation (2) yields 

Z,Z„e 2 

q D = 8 n ( " ^ V ) l n [ l - cos0„ ] 

1 

| (34) 
m 

The normal limits of integration for equation (2) should cover all 

scattering angles between 0 and n radians. However, it is found that 

the use of zero for the lower limit causes the Coulomb integral to 

diverge. .To prevent this, the integration is arbitrarily truncated at 

a minimum angle, 0 , whose value must be determined from the para-
m 

meters of the charged particle gas. From Bachynski (1965) the relation 

between the impact parameter, b, the scattering angle, 0 , and the 

relative velocity,g, is given by 

(1 - cos 0) = , (35) 
1 + (b/b ) 

Z Z e 2 ° 
1 2 

where b = — using previously defined quantities. From this 
o 2 ug 

equation it i§ seen that the minimum scattering angle, 0 , is deter-
in 

mined by the maximum value of the impact parameter b. As discussed 

bu Montgomery and Tidman (1964)s collisions leading to large scattering 
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angles are rare in a plasma since the long range Coulomb force tends 
to deflect the slow thermal particles only through small angles. A 
good approximation is that b » b^, with the result that equation (34) 
becomes 

/b 2 
(1 - cos0 ) - 2( ~ ) (36) m \ b / 1 

where b^ is the maximum impact parameter corresponding to 

Several different approaches have been taken to relate the 
characteristic parameters of the plasma to the maximum impact para-
meter b^. Chapman and Cowling (1952) assumed that the'maximum inter-
action distance was limited to the average interparticle spacing. 
This ignored, however, the influence of the longer range collisions 
which are responsible for the small angular deviations of the electrons. 
A more accurate treatment was introduced by Cohen, et. al. (1950) who 
took into consideration the shielding of charge due to electrostatic 
polarization effects. By means of Poisson"s equation in conjunction 
with the Boltzmann equation for nearly equilibrium conditions, it 
can be shown (Salpeter, 1963) that the potential, «p(r) of a particle 
of charge Z^e at an origin of coordinates within a plasma is given by 

Z.e 
cp(r) = ™ e x p (.-r/Xfi . (37) 

where r is the radial separation distance and a^ is the Debye shielding 

distance, defined as 

with T, - the respective Maxwellian temperatures and n $ the number 1,2 L i-i. 

densities. For a plasma, the Debye length represents the maximum 
distance over which microscopic density fluctuations are correlated 
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by random electric fields. The Debye length can also be interpreted 

as a measure of the* effective range of the Coulomb interaction between 

two charged particles. Cohen, et al. (1950) essentially prove this 

and conclude that the Debye length should be used in equation (34) as the 

maximum impact parameter. Therefore, 

_ _ 2 2 2 
/ W \ r ^g - i 

= 1 6 n v ~ V y l n 7 ~ 2 v J 2jig 
(39) 

Z.e 
i 

for the velocity dependent momentum transfer cross section. This 

equation is a general relation for particles of arbitrary mass and 

can be used for electron-ion, electron-electron, and ion-ion inter-

actions. 

The argument of the logarithm in equation (39) can be 

rewriten in terms of the energy e of two colliding particles, as 

viewed in the center of mass system, in the form 

2 
Hg 2e 

A = T T ^ X D = ~ T T V ( 4 0 ) 

1 2 6 Z l V 

This term is common to all calculations of ionized gases and, accor-

ding to Chapman (1956), can introduce a possible error of 10% into 

the derivation of the cross section. Table 1 lists the values of 
Ct 

ln A for various particle energies and Debye lengths. 

For the ionospheric conditions of particle energies and 

Debye lengths, it is found that most normal variations lie within 

the indicated uncertainty of 10% at 15.0 + 1.5. However, for some 

problems involving very energetic photoelectrons, a higher value 

may. be required. 
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Table 1 Values of In A 

(cm) 
e (ev)Vx\^ 0.1 0.5 i. 2 i 5. 10. 20. 50. 100. 

lxio"2 9.5 11.1 11.8 •12 ,5 13.5 14.1 14.8 15.8 16.4 
5xl0-2 11.1 '12-.8 I- 13.5 14 1 • 15.1 15.8 16.4 17.4 18.1 
lxio"1 11.8 •13.5 14.1 14 8 15.8 16.4 [ 17.1 18.1 18.8 
5xl0_1 13.5 15.1 15.8 16 4 17.4 18.1 18.8 19.7 20.4 
1x10° 14.1 15.8 16.4 17 1 18.1 18.8 19.4 20.4 21.1 
5x10° 15.8 17.4 18.1 18 8 19.7 20.4 21.1 22.0 22.7 
lxlO1 16.4 18.1 18.8 19 4 20.4 21.1 21.7 22.7 23.4 
SxlO1 18.1 ' '19.7 20.4 21 1 22.0 22.7 23.4 24.3 25.0 
lxlO2 18.8 20.4 21.0 21 7 22.6 23.4 24.0 24.9 25.7 

With equations (20) and (39) it is possible to derive Q^ for 
two gases in the different Maxwellian temperatures. The result is 

2 2 , . In, A 
(41) - s * / Z l Z 2 e \ 

QD 13 2 V ti 
\m, m_ 1 2 

and is valid for particles of arbitrary mass and charge. An interesting 
feature of this cross section is its-rapid decrease with increasing gas 
temperatures. 

For electron-ion scattering this equation may be reduced by 
taking T e/m e » T^/m^j Z^ «= 1, Z^ = giving 

Q d (e-i) - 2 

dependent only upon the electron temperature, 
with In A = 15/ 

(42) 

Numerically this becomes, 
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Q (e-i) = (6.6+0.6) 10~5/T2 cm2 (43) 
D - e 

A brief comparison can be made here regarding the relative 
importance of electron-neutral and electron-ion collisions„ For nu-

- 1 6 2 

merical purposes a general electron-neutral cross section of 5x10 cm 
is adequate. Thus, the ratio of the electron-neutral cross sections 
can be written as 

R - Q ./Q = 1.3 x 1011/ T 2 . (44) ei en e 

Since the electron temperature, T , generally assumes values between 
e 

250° and 3600°K in the upper atmosphere, we see that the ratio of the 
6 4 cross sections varies from 2x10 to 1x10 . This implies that the 

effects of electron-ion collisions will become important when the 
-7 -4 

ratios of the ion to neutral densities reach 5x10 and 1x10 , 
respectively. 

4.- ELECTRON COLLISION FREQUENCIES AND ENERGY TRANSFER RATES 

1. Neutral Gases 

The momentum transfer cross sections for electron-neutral 
collisions which were adopted in the previous section can be used 
to arrive at expressions for the electron energy transfer collision 
frequencies and energy transfer rates* Tables 2 and 3, respectively, 
give the final results. 

A comparison of these values can be made with those previously 
reported. Care must be taken, however, to consider only elastic energy loss 
processes since, as shown by Gerjuoy and Stein (1955) and Frost and Phelps 
(1962) , the impact exciatation cf rotational and vibrational states in 
diatomic molecules can be an efficient energy loss process for an elec-
tron gas. 



Table 2 • Electron Collision Frequencies (see ) 

N2 

°2 

0 

H 

He 

_ < Y • •» 
v - 2„33x10" n(N_) [l - 1.21x10 T ] T e 2 e e 
V = 1.82xX0"1P n(0 ) [1 + 3.6xlO°2 T 1 / 2 ] T 1 / 2 
e Z e e 

v - 2.8xI0'10 n(0) T 1 / 2 
e e 

v - 4.5x10 n(H) [l - 1..35xlO~ T ] T e e e 
V = 4.6xl0"10 n(He) T 1 / 2 
e e 

1/2 

-3 -1 Table 3 Elastic Electron Energy Transfer Rates (ev cm sec ) 

N„ : dU /at = - 1.77xlO_19 n n(N„) [l - 1.21xl0~4 T ] T (T - T) 2 e e 2 e e e 

0. : dU /dt = - 1.21xl0"18 n n(0„) [l + 3.6xlo"2 T 1 / 2 ] T 1 / 2 (T - T) 2 e e 2 L e e e 

0 : dU /dt - - 3.74xl0"18 n n(0) T 1 / 2 (T - T) e e e e 

H : dU /dt = - 9.63xl0"16 n n(H) [1 T ] T 1 / 2 (T - T) e e e e e 
-17 1/2 

He : dU /dt = - 2.46x10 n ra(He) T (T - T) e e e e 

For N̂ ., Dalgarno, et al. (1963) used an energy loss equation 
which was based upon the cross section measurements of Pack and 
Phelps (1961). This gave 

dU (N ) 2 0 =3 -1 
— , = - 9.85x10 T (T - T) n(N ) n ev cm sec (45) 

dt- - y . e e 2 e 
A discrepancy is noted, however, if one uses the value of Q^, given 
in equation (25), which is also valid for the low temperatures where 
the data of Pack and Phelps (1961) apply. It appears that equation (45) 
is a factor of 1/2 smaller than would be found through application of 
the energy transfer rate given by Equation (18). Hence, it is found 
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that equation (45) underestimates the elastic energy transfer rate 

for T < 3600°K. e 

In considering , Dalgarno, et al. (1963) adopted the value 

dU (0 ) 2 3 1 
— - - 6.1x10 T (T - T) n(0„)n ev cm sec , (46) 
dt e e 2 e 

based upon the microwave studies of A.V. Phelps (Dalgarno, 1961). 

This equation yields energy loss rates which are 20 to 30% larger 

than those given in Table 3. This difference arises from the use 

here of newer cross section data and the application of the exact 

energy transfer equation. 

The problem of electron energy loss in atomic oxygen has 

been considered by Hanson and Johnson (1961) and Hanson (1963). In 

the latter paper a cross sectj 

to an energy transfer rate of 

_ 2 the latter paper a cross section of 2x10 cm was adopted, leading 

d U * ( 0 ) -18 1/2 -3 1 — 7 " - - 1.42x10 T (T - T) n(0)n ev cm sec . dt e e e 
(47) 

If, however, equation (18) had been applied with the stated cross 

section, this rate would be a factor of 1.55 greater. In the same 

way, Dalgarno, et al. (1963) t 

and arrived at the expression 

-17 2 way, Dalgarno, et al. (1963) took a cross section of 6x10 cm 

d U e ( 0 ) - 1 8 1 / 2 - 3 -l — 7 1 — - - 1.3x10 T (T - T) n(0)n ev cm sec . dt e e e 
(48) 

Again, the direct use of their cross section in equation (18) leads 
to the value 

d V ° > -19 1/2 -3 -1 — 7 7 — » - 6.6x10 T (T - T) n(0)n ev cm sec . (49) dt e e e 



which is a factor-of 5«7 lower than the. present rate» However, if the 
rate given by equation (48.) Is their-final results then the actual mo= 
men turn transfer cros.-s section used was'l.o.8xl©' effl which is close'to 
the value adopted, hare-

For atomic hydrogen and helium- there appear to be no de-
terminations of energy transfer rates which 'could be used for compa-
rison with this 

2. Charged Particles Gases 

Using the previous value for the charged particle col-
lision frequency of a particle of mass iff in a gas of particles of ' l. 
mass m^ is 

2 2 4 / Z ^ e \ In A I - T n \ -V12 = 5* *** a 2 V ~ T ™ J / " k T ~ k i r . 3/2 • ( 5 0 ) 

I < i • — 
a, ®L A £ 

To reduce this to electron-ion -scattering we'take T /m »'T./m. e i i 
and Z- - 1 giving • • • ' ' ' 1 

• .V ' •„• (Z} A 2 . .In 'A 

<e 
or, numerically with In A-i-15oS 

+ 5.)n,/T ' -sec . (52) . e 1 e , • 
This result agrees with that derived by Nicolet (1953) from the -
work of Chapman and Cowling (1952).. . 

. . • • 

There have been three experimental studies which have sub-
stantiated the expression adopted here, Anderson and Goldstein (19S6a) 
conducted microwave -exper-iafeats* in a decaying nitrogen plasma and 
found a collision frequency which agrees with equation (32) to within 10%, 
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Chen (1964) has reported a more refined experimental technique which 
permitted him to measure the electron-ion collision frequency in a 
neon plasma. He found that equation (52) correctly represents the 
collision frequency over a wide range of temperatures and ion den-
sities. The numerical results of his experiments agree to within 6%. 
Mentzoni (1965) has also been able to confirm the validity of 
equation (52) to within the indicated accuracy of 107o. 

The energy transfer rate between two charged gases having 
Maxwellian velocity distributions but no restriction on the tempera-
tures or masses is 

dU (Z Z e2)2 In A 
— — = - 4 VSn n n„ — — k(T - T ) — r— , (53) dt 1 1 2 n y ^ 1 2 , k ^ kT^ 3/2 ' K ' 

m, + m. 1 2 
which, for electron-ion energy transfer, reduces to the well known form, 

1/2 2 2 dU m (Z e ) In A 
— ^ = - 4 f E n n k(T - T ) — - j — . (54) dt e i m i e i ^ ^3/2 

e 
Numerically, this becomes for singly charged ions„ 

d Ue -6 (Te" Ti ) »3 -1 - — = - (7.7 + 0.8) x 10 n n. 0 ev cm sec (55) dt - e x A T 3/2 
i e 

where A. is the ion atomic mass in amu„ 
i 

It is interesting to note that for a fixed temperature T^ 
in equation (53) there occurs a maximum energy transfer rate which, 
for the general case, is found at a temperature T^ - (3 + 2m^/m2)T^-
For electron-ion energy transfer this reduces to the usual result that 
T = 3T.. This analysis ignores, however, the contribution of the e i 



temperature dependence of the term In A. For electron-ion energy 
transfer inclusion of this effect leads» for In A -15» to the 
relation T^ = 3.5 T^, an increase in the critical temperature by 16%. 

The importance of equation (53) lies in the possibility of 
describing all charged particle energy transfer in terms of one general 
result ; the reduction to electron-ion, electron-electron, or ion-ion 
cases being made simply through a proper choice^of subscripts,: charges and 
mass ratios. 

V.- SUMMARY AND CONCLUSIONS 

It has been shown that a suitable synthesis can be made 
of the elastic energy transfer equation such that a generalized 
energy transfer collision frequency can be defined for conditions 
of thermal nonequilibrium. In considering the specific problem of 
electron-neutral collisions it was necessary to analyze both labo-
ratory data and theoretical studies of scattering phase shifts in 
order to arrive at satisfactory expressions for the average momen-
tum transfer cross sections. Thus, while Q^ for N^J 0^, and He are 
founded upon experimental results, the values for 0 and H have been 
newly derived from the recent theoretical calculations of scattering 
phase shifts. 

The derivation of the charged particle momentum transfer cross 
section was shown to follow from the standard expression for the Rutherford 
differential scattering cross section and the final expressions are 
valid for charged gases of arbitrary temperatures and particle masses, 
relativistic effects being *ignored. A comparison of the electron-ion 
and electron-neutral cross sections was made to indicate the much lar-
ger value which is associated with charged particle collisions. 
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Using the different momentum transfer cross sections 

electron-neutral collision frequencies and energy transfer rates 

were derived and compared with expressions previously used. In 

general,, the differences between various authors can be as large 

as a factor of two. 

The problem of ion collision frequencies and energy 

transfer will be discussed in a subsequent paper. 
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