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MODEL OF THE POLAR ION EXOSPHERE 

by 

J. LEMAIRE and M. SCHERER. 

Summary 

A model of a polar-ion exosphere in which the geomagnetic field 
lines are open, is developed. The electrostatic electric field in this 
region has been calculated, by taking into account two fundemental condi-
tions : (1) quasi-neutrality has to be satisfied everywhere in the 
exosphere; (2) evaporative fluxes of electrons and ions have to be equal. 
The density distributions are calculated for different evaporative models 

+ + + 
in the case of two (0 and e) and three (0 , H and e) constituents. 
In addition, the mean velocity, pressure and temperature distributions 
of the several constituents are derived. 

Résumé 

On a obtenu des modèles de l'exosphère ionique polaire en tenant 
compte du fait que les lignes de force du champ geomagriétique y sont 
"ouvertes". Le champ électrostatique dans cette partie de l'ionosphere a 
été calculé de telle sorte que (1) la condition de quasi-neutralité soit 
satisfaite en tout point de celle-ci et (2) que les flux d'échappement des 
électrons et des ions soient égaux. La distribution de densité a été 
calculée pour différents modèles évaporatifs dans le cas d'une exosphere 
constituée d'électrons et d'ions 0+. Des modèles à trois constituants 
(0+- H+- e) ont également été donnés. Les distributions radiales de la 
vitesse moyenne, de la pression et de la temperature sont déterminées 
analytiquement. 



Samenvatting 

Gebruik makend van de twee basisvoorwaarden : (1) de quasi-neutra-
liteit en (2) de gelijkheid der totale ionenflux en electronenflux, werd 
het elektrostatische veld berekend in de polaire, ionaire exosfeer. 
De dichtheidsverdeling in de exosfeer werd bepaald voor verscheidene 
modellen in het geval van twee (0+ en e) en drie (0*, H + en e) bestanddelen. 
Ten slotte werden nog de gemiddelde snelheid en de druk-en temperatuur -
verdelingen berekend voor de verschillende soorten deeltjes. 

Zusammenfassung 

Das elektrostatische Feld in der Polarexosphäre wird festgestellt 
so dass (1) die Evaporationsflusse der positieven une negativen geladeten 
Teilchen gleich sind und (2) dass die Quasineutralitätsgleichung erfüllt 
ist. Die Dichtverteilung wird für verschiedene Modele mit zwei (0+ und e) + + 
oder drei (0 , H und e) sorte Teilchen berechnet. Weiter, werden noch 
die mittlere Geschwindigkeit und die Druck-und Temperaturverteilungen für 
die verschiedene Bestandteile berechtnet.. 



1.- INTRODUCTION 

Recently, the model ion-exosphere of Eviatar, Lenchek, and Singer 
2 

for a nonrotating planet has been generalized by Hartle , by permetting 
the density and temperature to vary over the baropause. In both papers the 
density, pressure and temperature distributions of the thermal particles 
are calculated in the stable trapping region of a centered-dipole magnetic 
field, i.e, along closed lines of force. Moreover, they assumed that all the 
charged particles of the exosphere have emerged from the barosphere, and 
that the electrostatic polarization potential and field are given by the 

3 4 Pannekoek or Rosseland formula : 

• » - - • i ^ V 0 ' (1> 

with E = - V<i> and g = - V<t E g 

+ In formula (1) m and m are respectively the electron and mean ion 
masses, g is the gravitational acceleration, <D and $ are the electric and § 
gravitational potentials. 

In this paper we consider the case of the polar ion-exosphere where 
the magnetic field lines are open and connected with the magnetotail. It is 
clear that for such a model not all charged particles are trapped and some 
can escape if their kinetic energy is high enough. In order to calculate the 
electric potential in the exosphere we use the quasi-neutrality condition b 
and require that the escape fluxes of positive and negative charged particles 
are equal. We consider three models : 
1. an "untrapped-model" (UT) where it is assumed that all exospheric particles, 

emerge from the baropause, and can escape along the open field lines. 
2. a "trapped-model" (T) where it is assumed that the exosphere is also popu-

lated by trapped particles, which are in thermal equilibrium with those 
emerging from the barosphere. 

3. the well-known barometric model (B) where there is no restriction on the 
energy values nor on the pitch angles of the exospheri,c particles. 



For each model we determine the density n, the escape flux F, the 

mean velocity w ; the pressure tensor components p^ , p^ , and the temperatures 

T„ a n d T1• 

Moreover, in order to simplify the problem we consider that the 

transition layer separating the barosphere (where the mean free path 1 of the 

particles is small compared with the electron density scale height H ) and the 

exosphere (where 1 > > H ) is reduced to a spherical surface. Experimental 
e 5-8 

electron density profiles in the polar ionosphere show that such a spherical 

surface (the baropause) may be taken about 2000 kilometers above the summer 

polar cap. 

2.- THE GRAVITATIONAL AND ELECTROSTATIC POTENTIALS 

It is well known that the gravitational potential <K satisfies 
8 

Poisson's equation 

A = 4 n G 2 ̂  \ ra^, (2) 

where G is the gravitational constant, and the summation in the right hand 

side runs over all kinds of particles with mass m^ and density n^. The 

solution of (2) is 

0 (r) = <D(r) y, (3) 
8 

where 

y - ^ j *(r) - - G ^ , . '(4) 
r r o 

with M(r) the total mass inside ^ sphere of radius r. 

As the mass density is very small in the atmosphere, equation (2) 

can in a first approximation be reduced to the Laplace equation. In this 

case M(r) is the earth's mass and 4>(r) is a constant equal to 3> (r0). 5 
The gravitational acceleration is then given by 



4.-

d* (r) y
2 

g(r) = jf = <D (r ) — . (5) 5 V

 ' dr g o r 
° o 

In the exosphere where the collision frequency is very small the 
(3) 

electric potential can no longer be given by the Pannekoek's or 
(4) 

Rosseland's formula (1), since such an approximation is only valid in 

the barosphere where the particles subject to collisions are in hydrostatic 

equilibrium. If the diffusion equilibrium electric potential (1) is used 

for oxygen ions of mass m i , the escape flux of the thermal electrons of 
1/2 

mass m
g
 is at least (m^+/ m

c
) = 168 times larger than the ion evaporative 

flux. Hence, a positively charged layer at the baropause would appear, which 

would increase the electric field in the exosphere. In any case, this 

process would necessarily reduce the electron flux and would lead to the 

stationary state in which the flux of electrons is equal to the flux of the 

positive ions. 

The electrostatic potential $
E
 is a solution of Poisson's equation 

A*
e
 = - 4 * e E

k
 Z

k V
 (6) 

where is an integer : positive and equal to the degree of ionization for 

the ions and - 1 for the electrons. The summation runs over all kinds of 

particles with density i^. 

As the baropause is a discountinuity surface separating the baro-

sphere (collision dominated region) and the exosphere (collision free region) 

it i s possible to determine an appropriate constant $ and to calculate 

a function «^(r), such that the electric potential distribution is given by 

+ U(r-r
Q
) + , (7) V

r )

 -
$ + $.(r) U(r-r ) 
o i o 

r 
o 

r 

o 
is the radial distance to the baropause and U(x) is the wellknown 

Heaviside step-function defined by : U(x < 0) = 0 , and U(x > 0) = 1; ®
3
 is 

an arbitrary constant ; <t>
Q
 + <t> (?) + + $

3
 is the electric potential at the 

base of the exosphere and + $
3
 at the top of the barosphere. In appendix I 

it is shown that for an isothermal ion-barosphere in hydrostatic equilibrium, 



is given by 

°
 S

j
 Z

J "j^VV (8) 

Finally *
x
(r) is related to the electric space charge in the 

exosphere. Indeed from (6) and (7) one obtains for r > r , 
o 

4 n e Z, Z, n. = - ^ A <t> - ^f • V ) 
k k k r \ 1 r* 1/ 

(9) 

As the charge excess, E^ although minute, is not strictly zero, is 

a non-linear function of the radial distance, in the same way as $(r) varies 

in equation (3) and (4) when n^ ra^ ̂  0, i.e, when M(r) is an increasing 

function of r. 

The electric field corresponding to the potential distribution (7) 

is given by 

Ef(7)=[[>
o
+ U(r-r

a
) ] ̂  - <S>

2
) 6(r-r

0
) U(r-r

0
)V (10) 

where 6(x) is the Dirac 6-function. 

3. THE EQUATION OF MOTION OF A CHARGED PARTICLE IN THE EXOSPHERE 

Following Eviatar et al. , the equation of motion can be determined 

by writing down the law.of conservation of the total energy in the static 

magnetic field and by using the first invariant in the guiding center appro-

ximation. 4 /\K<fij(i) + = c.cmaHw-J' 

Hence, wc have i 

Ze(<D
iy
+D

0
) 

v
2

(7) = v
2

(r„)+ 2 $
g
( r

0
) + a U(l-y)-(1 + p)y +

 m
 ^

 ( }
 U(y-l) 

sin
2

 9 = T) ̂ ^ sin
2

 9 , 
v

2

(r) 

, (ID 

(12) 



where 6 and 6 are respectively the pitch angles at radial distances r and r0, o 
T) is the relative magnetic field intensity along a line of force crossing the 
baropause at geomagnetic latitude A.̂ : 

t, - , . (13) 

Moreover, we have used the following parameters 

« " <V V» g 

P " 1 ? % + ( L 5 ) 
r n® (rB) o 1 ' g 

which will be called the first and second reduced electric potential 
energies of the particle (Z, m). 

In order to calculate the density and flux at a given altitude in 
the exosphere one has to classify the charged particles in several groups. 
According to their velocity and pitch angle there are trapped, incoming, 
escaping, and ballistic particles. These different classes of particles are 
summarized In table I i»f°r the two cases encountered in this study. ci y D 

In the case (a) (table I ) the velocity v is a decreasing function A 
of the altitude (1 + a > (1 + (3) y > o). This occurs for the heavy oxygen 
ions which are bound to the earth by the gravitational force. In table 1^, 
on the contrary, the velocity v is increasing with altitude. This is the 
case of protons accelerated outwards in the exosphere by an electric force 
which for these particles is larger than the gravitational force. Any ion 
gas for wich 1 + a < (1 + (3) y < o is therefore blown out of the ionosphere 
by the exospheric electric field. 

4.- VELOCITY DISTRIBUTION FUNCTION 

In the assumption that above the baropause there are no collisions, 
Liouville's theorem can be applied to obtain the velocity distribution of the 
thermal particles in the exosphere 10. Moreover, since in the barosphere the 



collision frequency is expected to be large enough to obtain rapid 

redistribution of particles, we will assume a Maxwellian velocity distri-

bution function in this region. Hence the velocity distribution in the 

exosphere is given by ; 

f(v,r,X) = n < r - A o ) ( ^ n r ï f ^ y ) 3 / 2 e x p [- q - 2 k ^ r . , * . ) ] l ( v ' 9 ) ' ( 1 6 ) 

where for y < 1, 

q-= A [1 + « - (1 + |3) y], 

m ®a(r0) } 
A = -

(17) 

k T(r 0,\ 0) 

Furthermore, in the formula (16), I(v,8) is a function wich depends 

on the population of the different classes of particles at a level r in the 

exosphere. Under the assumption that the incoming particles which reach the 

baropause have the same Maxwellian velocity distribution as the barospheric 

particles, we introduce a parameter £ such that [n(r0^A.0)]^ncom^ng~ Cn(ro>^o)' 

If C = 0 there are no incoming particles in the exosphere, and for £ = 1 one 

has a model exosphere in which the incoming particles are in thermal equili-

brium with those escaping from the barosphere. 

In a quite similar way we introduce a parameter in order to take 

into account the particles which are trapped above the baropause, 

[n(r0,\0) ] t r a pp e (j = S n(r0,Xc). When £ = 0, we consider that no trapped 

particles are present above the baropause (UT), and if £ = 1, on the contrary, 

we assume that trapped particles are in thermal equilibrium with those emerging 

from the baropause (T). If £ = £ = 1, all classes of particles are present and 

they are in thermal equilibrium, i.e. I(v,9)= lj we have then a barometric 

model (B). 

It is easy to show that in the case (a), I(v,0) is given by 



8 

i(v.e) - u ( w ) . u ( e - e ) + u (v - v) + u(v-v ) . u ( v -v)fu(e - e ) + u (e + 0 - n ) l 
0 0 m y y 00 m m 

+ C u(v-v ) . u ( e - e „ ) u o ( v -v).u(v-v ) . u ( e ^ e ) .u(n-e -9) , ( 18 ) 
0 0 . n 00 y m m 

where v , v , and 9 are defined in Table I . 
oo' y' m a 

On the other hand, in the case (b) , i .e . when 1 + a ;(1 + p) y < 0 

we have 

I (v ,6) = U(v-v ).U(9 - 9) + d U(v - v)+U(v-v ).U(9 - 0 ) 
z m L z z m . , (19) 

where v is defined in Table I . . If the incoming particles are in thermal 
Z D 

equilibrium with the barospheric ones, £ a 1, hence I (v ,9)= 1 and we have 

once more a barometric model (B). 

5. ESCAPE FLUX 

The number of particles flowing each second through a unit surface 

normal to the magnetic field lines is given by 

F(r,\) =J vNf(v,r). d3v. (20) 

In the case (a) where 1 -«- a >(1 + P) y > 0 , using the expressions (16) and 

(18) we obtain 

F(r,X) - k n (r . ,X . ) c0 t) (1 - C)[l+A (1+a) ]exp[-A(14tx) ], (21) 

with 

C o . r s j L l l r ^ l ] \ ( 2 2 ) 

L. n m J 

Using the expressions (16) and (19), however, we obtain the 

evaporative flux in the case (b), where 1 + o < (1 + P)y < 0 

F(r,X) = k n(r„,\.) c, t) (1 - Ç). (23) 



It is worthwile to note that F is indépendant on the Ç-value, 

i.e. on the population parameter of the trapped particles, and that in both 

cases (a) and (b), the evaporative flux vanishes in the barometric model, 

i.e. when Ç = 1. 

To avoid any steady electric charge accumulation a necessary 

çondition is given by the equality of the electron flux and the total positive 

ion-flux % 

E. F.(r,\) = F (r,\). (24) j j e 

This equality must be satisfied at every point (r,X) in the exosphere. 

The condition (24) yields a relation between a^ and all the other a^ and will 

fix the value of (G> - G> ). o i. 

Moreover as can easily be seen from the definitions (14) and (17), 

the a. and A. for each kind of ion are related to a and A by i i e e 
Z ^ m^Tg G M m e 

a. = - a J A. = A — = r i A = . (25) i e m . ' i e m T . ' e r 0k T l e i e 

Hence for fixed values of n (r0,X0), n e(r 0,X 0), T^r^X,,) and T e(r o,X 0) at the 
baropause, the value of oĉ  can be calculated by means of (24). 

+ + 
Considering an exosphere in which only 0 and H ions are present, 

numerical calculations show that 1 + and 1 + a g are positive, i.e. the 

exospheric oxygen plasma is bounded to the earth, and the evaporative fluxes 

F q + and F g are given by formula (21) (case (a)). For the protons, however, 

1 -I- is generaly negative. Hence F H + is given by (23) (case (b)) and the 

protons are all blown out of the exosphere by the large polarization electric 

field. Therefore condition (24) applied to an exosphere with 0 + and H + ions 
gives the following equation : 



10. 
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=[l+(l+a )A ]exp[-(l+a )A ] . (26) 
e e e e

J 

Table II shows the values of 1 + a. as a function of the relative 
J 

concentration n
H +
( r

0
, X

0
) / n

e
( r

0
, X

0
) for r

0
=(6371 + 2000)km and 

T j r
0
, X

0
) = T

Q +
( r

0
, X

0
) = T

H +
( r

0
, X

0
) = 3000°K. e 

As can be seen from this table the exospheric electric field depends 

very strongly on the concentration of the hydrogen ions even if they form only 

a minor constituent at the baropause. Hence ah increase of the number of 
9 

light ions (i.e. an increase of the total ion-escape-flux) diminishes 

t;he absolute value of the exospheric electrostatic potential l ^ l • 

Moreover, as shown in Table III, which gives the 1 + a values as 

a funct ion of the exospheric temperature for a constant ion-composition 
n

H
+ ( r

0
/ X

0
) / n

e
( r

0
, X

0
) = 0.10, the reduced first electric potential energy for 

the electrons a^ and the electric potential : ® |. decreases with decreasing 

temperature. 

6. DENSITY DISTRIBUTION 

By definition the density distribution of the particles is given 
by 

j 
n(r,X) = j f(r,

v
) d v. 

Taking into account (16) and (18) we find for the case (a), when 

l + o c > ( l + ( 3 ) y >
0 

n(r,X) - n(r
0
,X

0
) j(l + Q (oo) + (1 - £) K ^ V J 

- (1 - ti)
%

 [(1 - O K
2
(oo) + (1 + C - 2 O ^ ( X J ] exp (- exp (-

(28) 



11.-

where 

V ? = A ( 1 + P „ ; x 2 • • A <»»>T -Wl. ( 2 . ) 
OO OO I -T) 

The functions K (x) are defined in Appendix B. They can be expressed explicitly m 
in terms of exponential functions and the error function Erf(x). 

On the other hand, if 1 + a < (1 + ß)y < 0, (case (b)) substitution 
of formula (16) and (19) in (27) yield 

n(r,X) = n(r0,\0)|(l+C) K (oo) - (1-Ç) K [(-q)*] 

- (l^)(M)^K 2(oo). ^ [ ( ^ ^ j j e x p ^ y)jexp(-q). (30) 

It may be noted that for C a I • 1 both formula (28) and (30) reduce to a 
barometric model (B). 

The condition of quasi-neutrality in the exosphere implies that the 
relation 

Sk Zk nk ( r' X )~ ( 3 1 ) 

is satisfied * 

As the density distribution n^(r,\) of each constituant depends on 
p^(r,X), the equation (31) enables U3 to calculate the value of pg(r,\) 

as the p^ are related to Pg by 

Zj me 
p S - P „ (32) 1 m. 

J 

For Instance, in an (0+ - e)- exosphere,condition (31) yields 

n(H-<r' X 5 °0+' P(H> " ne (l' X ; V V ( 3 3 > 



1 2 . -

Hence us ing e q u a t i o n s (32) and (33) we can c a l c u l a t e 3 g , the 
reduced second e l e c t r i c p o t e n t i a l energy , f o r the e l e c t r o n s . 

In o r d e r t o ma in ta in the q u a s i - n e u t r a l i t y , and must be 
s lowly v a r y i n g f u n c t i o n s of the r a d i a l d i s t a n c e r . 

In f i g . 1 we have p l o t t e d the va lue 6 ( r ) as a f u n c t i o n of a l t i t u d e 
+ ® a t a geomagnetic l a t i t u d e of 90®, f o r an (0 - e) - exosphere and f o r 

r = (6371 + 2000)km, T = - 3000°K. Two models have been cons ide red : o e o+ 
The "un t rapped" rnoddel (UT) t o r which c, = £ = o and the " t r apped" model (T) 
f o r which £ = 0 , £ = 1. 

As S g i s approximate ly a l i n e a r f u n c t i o n of r (up t o 10.000 km) 
i t can be seen from equa t i on (15) t h a t <J> ( r ) i s a l s o a q u a s i - l i n e a r f u n c t i o n 

» + • 

of the a l t i t u d e . The re fo re the e l e c t r i c f i e l d iiiim (0 - e ) - exosphere , given by 
equa t ion (10 ) , o r by 

™ g(r> i 
E ( r ) = 2 e (B ^ - r V B) (34) 

i s p r a c t i c a l l y equa l t o (mg - m Q + ) g / 2 e . At h i g h e r a l t i t u d e s however 
the r a t i o e E ( r ) / ( m e - m Q > ) g ( r ) i s l a r g e r than the Pannekoek-Rosse land ' s 
va lue 0 . 5 , and tends t o a c o n s t a n t . 

2 2 
I t can a l s o be v e r i f i e d t h a t d ^ / d r i s ex t remely small so t h a t 

equa t ion (9) and (31) a re c o n s i s t e n t t o a high degree of a ccu racy . 
7 . THE MEAN EXPANSION VELOCITY 

The mean v e l o c i t y w of the p a r t i c l e s i s p a r a l l e l to the magnet ic 
f i e l d l i n e s and i s d e f i n e d by the r e l a t i o n 

w(r ,X) = F ( r , A ) / n ( r , A ) . (35) 
Moreover the mean mass motion in the exosphere which i s given by 

u ( r ,A) = E k r ^ ^ w ^ n f c v 



i s e q u a l t o z e r o f o r £ = 1„ I n t h e t r a p p e d a n d u n t r a p p e d m o d e l s , w a n d u 

a r e i n c r e a s i n g f u n c t i o n s o f r „ T h e m e a n v e l o c i t i e s w a n d u v a n i s h i n a 

b a r o m e t r i c m o d e l e x o s p h e r e . 

8 . P R E S S U R E T E N S O R S AND T E M P E R A T U R E S 

T h e l o n g i t u d i n a l a n d t r a n s v e r s e m o m e n t u m f l u x t e n s o r s P a n d P ^ 

a r e r e s p e c t i v e l y d e f i n e d b y 

f 2 3 
P ( ( = m / v | ( f ( v , r ) d v 

p 4 . d 3 y 

( 3 6 ) 

a n d i n t h e c a s e ( a ) , w h e n 1 + a > ( 1 + ( 3 ) y > 0 , o n e f i n d s , 

P | f ( r , \ ) = J p ( r 0 , A 0 ) | ( l + C ) - K 4 ( o o ) + ( 1 - O - " [ ( 1 - C ) . K 4 ( o o ) 

• + ( 1 + C - 2 O . K . (X ) ] . ( 1 - r ] ) 3 / 2 e x p ( - t 3 - ) } e x p ( - q ) , ( 3 7 ) 

q- oo 1-T) J 

P L ( r , A ) = f p ( r 0 , ^ 0 ) , j ( l + C ) - K 4 ( o o ) + ( 1 - C ) - ^ O M - ( 1 + ( l - V ) 
[ ( 1 - C ) . K 4 ( « ) + ( ! + C - 2 5 ) . V V ^ 6 X P ' 2 11 q ( 1 " ^ 

[ ( 1 - O . K 2 ( o o ) + ( 1 + C - 2 U . V X o o ^ e x p ( " e x p ( " q ) ' ( 3 8 ) 

w h e r e p ( r 0 , A 0 ) = n ( r 0 , A . 0 ) k T (r0,\„). 

I f o n t h e c o n t r a r y , 1 + a < ( 1 + (B) y < 0 , w e o b t a i n 

P M ( r , X ) = | p ( r 0 , \ . ) | ( l + O . K 4 ( ~ ) - d ' C ) . K 4 [ ( - q ) % ] 

K 4 ( o o ) - K 4 e x p ( - | e x p ( - q ) , ( 3 9 ) - ( 1 - O ( 1 - t i ) 3 / 2 



V r ' À ) = f P ^ « " ^ { ( L + & K
4(°°)-d - C)K 4 [(-q) %] 

- <1 - b u + \ )  ( i  -

- \ t) q (1 - O U - T))" % 

exp (- — ) 

exp }- exp (-q). (40) 

Using the results (37) to (40) the longitudinal and transverse 

pressures can be calculated by means of 

2 
p = P - n m w , (41) 
« ii ' 

P x = P A . (42) 

The longitudinal and transverse temperatures are defined by 

k Th " k T x « ^ ( « > 

and may be calculated from (28), (37), (38), ,(3S). (40), (41) and (42). 

9. DISCUSSION 

In all our formulas we have not yet specified the function 

ri(r,\) which according to (13) is the ratio of the magnetic field strength 

taken at two different points of a field line. As the dipole configuration 

is a fairly good approximation up to a radial distance of about four earth's 
11-12 

radii we have used this geometry to determine t)(r,X) in the region 

between 2000 km and 18000 km. Hence 

/ , N 3 (4-3. cos 2\)^ 
T ) ( r ,^ )=  y 7 - ^ 7 . (44) 

(4-3 cos X ()2 

To obtain the density and mean velocity along the radial direction 

corresponding to a geomagnetic latitude k,\ 0 has to be defined by 
i, 

\ 0 = arcos (y 2cos \). 
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In Fig. 2 we have plotted the relative radial density distributions 
in an (0+- e)- exosphere at a geomagnetic latitude of 90°. At the baropause 
which is situated at an altitude of 2000 km, we have assumed that the ion 
and electron temperatures are both equal to 3000°K. Moreover we considered 
three different models : 
- the untrapped model, equation (28) where £ = £ = o, (UT-model) 
- the trapped model, equation (28) where £ = o and £ = 1 (T-model) 
- the barometric model, equation (28) where £ = £ = 1. (B-model) 

We have also considered an exosphere build-up of electrons and 
+ + oxygen and hydrogen ions (0 - H - e). In this case we calculated numericaly 

the density and mean velocity for each constituent along a given field line, 
-k i.e. for \ = arcos (y cos A.0). Note that if \e the geomagnetic latitude at 

the baropause is smaller than the lower limit, X . ̂ , (K , ~ 60°), the field ' rain ' min 
lines of the magnetosphere are closed and all the particles are trapped. 
In this case one must use the model ion-exosphere proposed by Eviatar et al.̂ " 

2 or by Hartle 

In Fig. 3 we have plotted the density distributions along a line of 
force crossing the baropause at the geomagnetic latitude X0= 80°. Furthermore, 
considering the untrapped and trapped models we made the calculations for the 
following concentrations : ne(r0,X0)= 103cm~3, n0+(ro,A.o)= 9 102 cm , 

2 
nH+(r0,A.0)=' 10 cm" , with the temperatures Te(r0,\0)= T0+(ro,A.o)= TH+(r0,\0) = 
3000° K. From Table II, we immediately find <Xg= 7.991 103j a Q + = - 0.272; 

= - 4.352. 
To obtain at each level r the appropriate value of such that the 

quasi-neutrality condition is satisfied, we calculated the solutions of 
equation (31) by means of an iterative process. The density distributions 
are respectively given by (28) for the electrons and oxygen ions, and by (30) 
for the protons. 

It can be seen that the 0* concentration decreases much more rapidly 
when light 

ions are present in the exosphere. Note that the trapped particles 
do not contribute much to increase the 0 + density below an altitude of 6000 km. 
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For the barospheric conditions we used in this paper, the 0 + ions remain 

the most abundant constituant up to an altitude of 6300 km. 

- 3 

At large distances the electronic density decreases as r due to 

the dipolar geometry of the magnetic field. 

Finally it is worthwile to mention that for boundary conditions 

at the baropause which are independent of latitude, the density distributions 

along an open field line do not differ significantly with the choice of the 

field line (75° < XQ < 90°) ; e .g . (17000 km, 75°) is only 4% smaller 

than n (17000 km, 90 ° ) . 
H.+ 

Fig. 4 shows the mean velocities of 0 + , H+ and e under the same 

conditions as for Fig. 3. It can be seen that w~ remains quite small (< 20 
-1 

cm sec ) comparatively tb the mean velocity of the protons which are acce-

lerated by the electric field to supersonic velocities reaching 20 km sec"1 

at large distances. At an altitude of 3000 km, w„A is equal to 11 km sec"1 

in both of our"untrapped and trapped models". These results are in good 

agreement with the 10 km sec-1 value reported by Dessler and Cloutier^13^ . 

7 —2 

In both models the fluxes at the baropause are Fg = 2 .0 x 10 cm 

sec" 1 , FQ + = 2.4 x 10" Icm"2sec"1 and FR + = 2 .0 x 10? cm~2sec-1. Fig. 5 gives the altitude dependence of 8 for the three 
e 

components ion-exosphere. Comparison with Fig. 1 shows that an amount of 

only. 10% hydrogen ions at the baropause level reduces by a large factor the 

value of 6 and the electric potential . 
e 1 

In Fig. 6 we compare the intensity of the electric field in two 

"untrapped models" along the field line, Aq = 90°, firstly in the case of 

a pure 0 exosphere and secondly for an (0+ - H + - e) atmosphere. It can be 

seen that in the first case the ratio of the electric (eE) and gravitational 

(-8 mG
+) force is, up to 18.000 km, practically equal to 1/2 as in Pannekoek's 

theory. However a small percentage of light ions at the baropause reduces 

|eE/g n^ J to mH+/2m0+ = 0,03125 at the high altitudes where H + becomes the 

most abundant constituant. Therefore at large distances, eE, becomes equal 

to - 1/2 g 11^+. 
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CONCLUSION : 

The model ion-exosphere which we have proposed in this paper can 
be used for aapa  magnetic field with open field lines. The electric potential 
and the corresponding radial electric field in this region have been obtained 
by requiring quasi-neutrality and equality between the electron and positive 
ion fluxes i.e. the zero electric current condition. The exospheric poten-

3 4 tial calculated is different from that of Pannekoek and Rosseland 
Using a magnetic dipole field, we have made numerical calculations of the 
density distributions and mean velocities of the different constituents. 
The mean expansion velocity of the thermal protons is in our models of the 
order of 11 km sec ^ at an altitude of 3000 km. 

2 Moreover by putting Z = o (leading to a = (3 = o) and t](r,A.)= y we 
e 

recover the well-known neutral exospheric models. Indeed with the above 
10, 

assumption our "untrapped" model with £ = Z, = o reduces to the Opik-Singer ' 
model where the satellite (or trapped) particles were neglected.and the 
"trapped" model, where £ = o and Z, = yields Chamberlain s model where 
these latter particles contribute to the density in the exosphere. 
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APPENDIX A : Polarization electric field and excess of charge concentration. 

In an isothermal ionized atmosphere which is in hydrostatic and 

diffusion equilibrium the density distributions satisfy the equation 

k T V n = m. n. g + Z . n . e E . ( A l ) 
J J J J J J 

The electrostatic field, E, preventing a significart charge separation is 

given by 

e E = - n(r) g, (A 2) 

where 

u(r) = (E. Z. m T n./kT.)/(£. Z 2 n./kT.). (A 3) 
K w J J " J J J J J J J 

Applying the differential operator V to (A.2) and using Poisson's 

equations (2) and (4) we obtain : 

£ Z .m.n./kT. 
2 - - J J J J J 

4ne £ . Z. n.= 4ti Gn(r) £. m. n,-g.V ( 7. 1 : ) (A 4) 
J J J k "k k s z 2 y 

J J J J 

Taking into account (A.l) and(A.2) we can calculate the second term in the 

right hand side of (A.5). Finally the electric charge density is given by : 

r g 2 n j ( mj" Zi 11)2 

E. Z. n. = 'Sr fi(r) £. m. n. - • — = ^ . (A 5) . . - . — . i r\1 / iJ • • 11 • 9 / 9 9 
J .J J e

 J J J 4ne L-* (kT.) E.Z 2 n./kT. 
j J i l l i 

In the case of a pure hydrogen isothermal atmosphere and with the 

n that T + = H 
effects is very small 

assumption that T„+ = T = constant, the charge excess due to gravitational 
H 6 

V - n e G m V ^ 4 1 0-37 
n " 9 0

2 
e 2 e 

+ 2 
In a pure 0 isothermal atmosphere it would be 256, e.g. (m 0 +/m H +), 

times larger but still remain minute. It can be shown that the addition of 

a third kind of ioreindiffusion equilibrium does not change the order of 
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magnitude of this result and that quasi-neutrality in the barospheric region 
where equations (A.l) are valid is always satisfied, i.e. 

Z k Z k n k - 0 . (A.6) 

In the exosphere where the equation (Al, A2, A3) are not applicable, 
the charge excess is no longer given by eq. (A4). In this case (9> has to 
t>e used. From our models exosphereswhere has been calculated we have 
evaluated the excess of charge concentration. It comes out that Z^ 
is negative and smaller than - 10 ^ except for a small transition layer close 
to the baropause. Hence, the quasi-neutrality condition (A6) is also satisfied 
in the exosphere to a very high degree of accuracy. 
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APPENDIX B : Km (b) - function. 

The functions K (b) are defined by m 

o P b 2 ,, /t_\ 2 / m x K m(b) = x e dx. (B 1) 

Partial integration yields immediately the recurrence formula 

1 h1""1 ? 
K m ( b ) = T " K m - 2 ( b ) " ~ T 6 X P ( " b >' ( B 2 ) 

n 

which enables calculation of K (b) in terms of the well-known error function. • m ' 
and in terms of exponential functions. 

Indeed, straightforward calculations yield 

K Q(b) = Erf (b), (B 3) 

K ^ b ) = n'h[l - exp (-b 2)] „ 

Note also that K (oo) = 1.3.5... (m - l)/2 m / 2 if m is even and 

K (oo) = 2.4.6... (m - l)/(2(m"1)/27i^) if m is odd. m 
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TABLE I Classes of particles which have a decreasing velocity with altitude (1 + a > (1 + 0) y > 0)f 

class v(r„> e(r„) v(r) e(r) Properties. 

al [v
o
(r.),-l

C a > 

[o;f] [o,9
n
(r)]^> escaping particles. 

a2 •v
y
(r„),v

o
(r

0
)]

( b ) 

[»."] Cv
y
(r) ,«.(,)]<» [o,9

m
(r)J[n-9

m
(r),n] ballistic particles reaching Level r with 3 < @(r
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a3 >
x
( r . ) , v

y
( r

0
) ]

( c ) 

[o,9
n
(r.)]

<

?
)

:[n-e
ii|
(r.),n] [°,v

y
(r>] [»,"] ballistic particles reaching level r with 0 > 6(r

0
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a4 to,v
x
(r.)] [•»«] - — r . 

"ballistic particles not,reaching. Level.r. 

t aS [v (r
0
),v (r

0
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x y
 J [6 (r„),n-9 (r

0
)] 

31 (D — — ' 

"ballistic particles not,reaching. Level.r. 

t 

a6 [vjr),»] [n-8 (r) ,nj. 
CQv -

incoming particles, reaching:: the* baropause;^ 
h 

a7 • — — incoming:particles »never*reachingitheabaropause. 
t-

aS — . — [v
y
(r>,vjr)]. 

i 

ftrapped'particles., 

<•)»
 2

<r.i.- - 2(1 + «>• (r.)j (b) v'
2

(r.) - t ^ j (c) v
 2

(r*> -.Rj. (d) sin
2
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2
 - - M f ^ r j • (e) v
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2

9 (r) ° t) " R - - 2 [l +.«.- (1 + P)y] *
o
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y

 v (r)
 8 

• p & (1 + ct)
 1

 - l for v (r) £ w (r) . 



Table I - Classes of particles for which the velocity Is an Increasing function of altitude (1 + a < (1 + p) y < 0). 

class v(r.) 9(r.) v(r) 9(r) Properties. 

bl [o,f] [o,em(r)]<"> escaping parClcles. 

b2 [o,oo] [v2(r),~] [n-9n(r),it] incoming particles reaching the baropause. 

b3 — — [v2(r),»] [9m(r),n-9m(r)] incoming particles never 

reaching the baropause. M — — [o,v zCO] [o,n] 

incoming particles never 

reaching the baropause. 

(a) v z
2(r) = - R; (b) s l n ^ r ) = r) v ^ + R ; R = - 2 [l + a - (1 + p) y] » (r„) 



•+ + TABLE II.- Values of (1 + oti) in a (0 - H - e) exosphere, as a function of the ratio 

njj+(ro^o)/ne(r0,X0); Baropause altitude is 2000 km and Te(r0>\0) = 

T0+(r-o,Xo) = 3000 °K. 

1 + a e 1 +V 1 + V n^+Cr „, Ka )/TL̂  (rG,\Q ) 

0.000 1.733 104 0.410 - 8.440 1 . 0 0 0 

0.001 1.285 104 0.563 „ 5.998 0.999 

0.010 1.044 104 0.644 = 4.688 0.990 

0.100 7.992 103 0.728 «a 3.352 0.900 

0.500 6.229 103 0.788 = 2.392 0.500 

1.000 5.450 103 0.814 1.968 0 . 0 0 0 



TABLE IXX„- Values of (1 + ctj) as a function of the exospheric temperatures at the 

baropause for n^+Cro^A.,,)/ n (r 0 ,\ 0)#= 0.10 and r0
 3 8371 km. 

T e ( r 0 ,\ 0 ) TQ+(r0pX,,)® T .j.(r0>X0) 1 + a 
e 1 + v 1 + V r . 

1000°K 1000°K 2.663 103 
0.909 0.450 

2000°K 2000°K 5.327 103 
0.818 => 1.901 

3000°K 3000°K 7.991 103 
0.728 = 3.352 

4000°K 4000°K 1.065 104 
0.637 - 4.803 

5000°K 5000°K 1.332 io4 
0.546 - 6.253 

3000 °K 2000°K 8.210 104 
0.720 3.471 
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Fig.l.- Values of the second reduced electrical potential (3 in an(0 - e) 

exosphere versus altitude above the geomagnetic pole (A. = 90°) for 
the "trapped" and "untrapped" models. The altitude of the baropause 
is 2000 kmj -Te(r0,\o) = T0+(ro,\e) = 3000°K; a = 1.733 x 104 

(cf. Table II)j P Q + = - P e me/m0+. 
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ALTITUDE (lO^Km) 

Fig„2 o" Density ratio n Q +(r,A.)/n 0 +(r o,\ 0) versus altitude along 

a magnetic field line crossing the baropause at 2000 km 

and at 90° latitude (\ = X0 = 90°) for the "trapped", 

"untrapped" and barometric models. The baropause tempe-

ratures are T . = T = 3000"K. 
0 T e 
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Fig.3.» Density distributions in an (0 » H - e)- exosphere versus altitude 

along a dipole magnetic field line crossing the baropause at 80° 

latitude. The solid and dashed lines correspond to the "untrapped" 

and "trapped" models respectively. The baropause temperatures and 

concentrations are ; T
e

= T
0 +

 = T H + = 3 0 0 0° K ? n
e

s n o + s n
H +

= 10:9 si. 



A L T I T U D E ( 10 k m ) + + 
Fig„4.- Mean velocities in an (0 - H - e)~ exosphere versus altitudej along a dipole 

magnetic field line crossing the baropause at 80° latitude. The solid and dashed 
lines correspond to the "untrapped" and "trapped" models respectively„ In both 
cases, the baropause temperatures and concentrations ares Tg = = T H + = 3000°Kj 
ne s "0+ ! V - ° 1 0 ? 9 s . 
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Fig„6„= Ratio of the electric force (eE) and gravitational force (g m
 +
) acting upon an 0 ion versus 
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altitude above the geomagnetic pole (X = À
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 « 90®) for two "untrapped" models ; (0 ~ e) and 
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0 = H = e) for the same temperature and concentration conditions as in Fig. 1 » 5. 


