INSTITUT

D'AERONOMIE SPATIALE DE BELGIQUE

3 - Avenue Circulaire

B - 1180 BRUXELLES

AERONOMICA ACTA

A - N° 75 - 1970

Structure de rotation des bandes 0-0 à 13-0 du système de Schumann-Runge de la molécule d'oxygène

par F. BIAUME

BELGISCH

VOOR RUIMTE-AERONOMIE

3 - Ringlaan B - 1180 BRUSSEL

INSTITUUT

AVANT-PROPOS

Les résultats complets d'une analyse effectuée au laboratoire des bandes d'absorption du système de Schumann-Runge de la molécule d'oxygène sont présentés. Cette analyse détaillée a été requise par les besoins d'observations aéronomiques dans la stratosphère et dans la mésosphère.

VOORWOORD

De volledige resultaten van een laboratorium analyse van absorptie banden in het Schumann-Runge systeem van de zuurstofmolecule worden weergegeven. Deze nauwkeurige analyse was noodzakelijk voor aëronomische waarnemingen in de strato- en mesosfeer.

FOREWORD

The paper "Structure de rotation des bandes 0-0 à 13-0 du système de Schumann-Runge de la molécule d'oxygène" describes the complete results of a laboratory determination of the absorption bands of the Schumann-Runge system which is needed for aeronomic observations in the stratosphere and mesosphere.

VORWORT

Die vollständige Resultaten einer Laboratorium Analyse der Absorptionsbande im Schumann-Runge System der Sauerstoffmolekul werden vorgestellt. Solche Analyse ist notwendig für aeronomische Beobachtungen in der Stratosphäre und in der Mesosphäre.

STRUCTURE DE ROTATION DES BANDES 0-0 à 13-0

DU SYS	STEME DE	SCHUMANN-RI	JNGE
DE I	LA MOLECI	JLE D'OXYGEI	NE

par

F. BIAUME

Résumé

Une nouvelle étude de la structure de rotation des bandes 0-0 à 13-0 du système de Schumann-Runge de 0_2 a été réalisé à l'aide d'un spectrographe à haut pouvoir résolvant. La bande 0-0 a été mesurée pour la première fois et des valeurs précises des constantes moléculaires ont été déterminés pour les bandes 7-0 à 11-0. Des résultats antérieurs dérivés de spectres obtenus à haute résolution sont confirmés et des mesures importantes concernant l'élargissement des raies par prédissociation sont également présentées.

Samenvatting

Een neiuwe studie van de rotatiestructuur van de banden 0-0 tot 13-0 van het 0₂ Schumann-Runge systeem werd gemaakt met behulp van een spectrograaf met hoog oplossingsvermogen. Voor de eerste maal, werd de band 0-0 gemeten en nauwkeurige waarden van de moleculaire constanten werden bepaald voor de banden 7-0 tot 11-0. Vroegere resultaten afgeleid van spectra bekomen met een hoog oplossingsvermogen worden bevestigd voor andere banden. Belangrijke metingen in verband met lijnverbreding door predissociatie worden ook weergegeven.

Abstract

A new study of the rotational structure of the 0-0 to 13-0 bands of the 0₂ Schumann-Runge system has been performed using a high resolution spectrograph. The 0-0 band has been measured for the first time and precise values of molecular constants for the 7-0 to 11-0 bands have been determined. Previous results derived from high resolution spectra are confirmed and important measurements concerning predissociation line broadening are also presented.

Zusammenfassung

Eine neue Untersuchung der Rotationstruktur der 0-0 zur 13-0 Banden des O₂ Schumann-Runge systemen wurde mit Hilfe eines mit höhem Auflösungsvermögen Spektrographs durchgeführt. Zum ersten Mahl, wurden die 0-0 Bande gemessen und die molekularen Konstanten für die 7-0 zu 11-0 Banden sehr genau bestimmt. Frühere Ergebnisse, die von höhen Auflösung Spektren abgeleitet wurden, sind für anderen Banden hier bestätigt. Wichtige Messungen, die der Linienverbreitung durch Prädissoziation betreffen, werden auch hergegeben.

2 . -

Le spectre d'absorption de l'oxygène moléculaire dans le système des bandes de Schumann-Runge (B ${}^{3}\Sigma_{u} - X {}^{3}\Sigma_{g}$) qui jouent un rôle important en aéronomie a été, depuis de nombreuses années, le sujet de diverses études spectroscopiques.

Observées par Runge (1921) dans la région de 3000 à 4500 Å, ces bandes furent analysées en émission par Lochte-Holtgreven et Dieke (1929) et par Feast (1949,1950).

Dans la région de 1750 à 2000 Å, leur analyse fut entreprise en absorption par Curry et Herzberg (1934) étudiant la structure de rotation des bandes 1-0 à 5-0 et 4-1 à 7-1, par Knauss et Ballard (1935) observant les bandes 4-0 à 15-0 et enfin par Brix et Herzberg (1954) qui, lors d'une étude détaillée des bandes 12-0 à 21-0, ont donné pour la limite de dissociation du système la valeur de 57128 \pm 5 cm⁻¹ (1750,5 \pm 0,2 Å).

Récemment, Ogawa (1966), Hudson et Carter (1968) et en particulier Ackerman, Biaumé et Nicolet (1969) ont fait remarquer que des mesures plus précises que les longueurs d'onde disponibles dans la littérature s'avéraient nécessairespour plusieurs bandes du système de Schumann-Runge.

Cette remarque concerne particulièrement les mesures de Knauss et Ballard (1935) qui présentent d'une part des erreurs accidentelles dues probablement au trop faible pouvoir résolvant de leur spectrographe et d'autre part une différence systématique d'environ - 0,07 Å (mentionnée par Hudson et Carter, 1968) avec les mesures de Curry et Herzberg (1934) et Brix et Herzberg (1954). Comme il est requis, dans une détermination des valeurs absolues de l'absorption des raies de rotation, de connaître les longueurs d'onde avec une grande précision, nous avons entrepris de nouvelles mesures des longueurs d'onde du spectre d'absorption de O_2 , de la bande O-O à la bande 13-0, afin de les relier aux données de Brix et Herzberg (1954).

Nos résultats ont été déjà essentiellement décrits dans un travail précédent (Ackerman et Biaumé, 1970). Cependant, il est nécessaire de présenter les détails relatifs au mode opératoire, à la méthode de calcul et également aux phénomènes de prédissociation présents dans les bandes. C'est l'objet de ce travail.

II.- PARTIE EXPERIMENTALE

a. Le spectrographe à vide du type Eagle de 3m. de distance focale, de la Division de Physique pure du Conseil National de Recherches du Canada à Ottawa, a été utilisé. Son schéma est repris à la figure 1. A quelques légères modifications près, cet appareil présente l'avantage d'être le même instrument que celui qu'ont utilisé Brix et Herzberg (1954).

5.-

ĩ

Le spectrographe était équipé d'un réseau concave Bausch et Lomb de 299,83 cm de distance focale renforcé à 21,6° soit 6000 Å dans le premier ordre. Ce réseau présentait une surface aluminisée utile de 150 x 65 cm gravée de 1200 traits par mm et recouverte de MgF₂. Il était utilisé dans le quatrième ordre.

Dans le cas particulier de mesures, en absorption, il est essentiel d'éliminer du spectre le chevauchement des ordres inférieurs. Ceci a été réalisé au moyen d'un petit prisme cylindrique décrit par Curry et Herzberg (1934), qui placé à distance adéquate de la fente du spectrographe, y projette une image linéaire de la source lumineuse dans un domaine de longueur d'onde restreint.

La fente du spectrographe, réglable en largeur de 0 à 500µm a été utilisée pour toutes les expériences avec une ouverture de 20µm sur une hauteur de 5 mm. A cette ouverture correspond un pouvoir résolvant de 0,012 Å, en considérant pour le quatrième ordre la dispersion moyenne égale à 0,6 Å/mm sur la plaque photographique.

La caméra contenant les plaques sensibles de 5 x 45 cm est réglable en hauteur par commande extérieure à l'instrument. Elle permet ainsi de prendre plusieurs spectres sur une même plaque sans modifier le vide réalisé à l'intérieur du spectrographe.

Fig. 1. - Schéma de l'appareil de mesure.

A : tube d'absorption, B : lentille de collimation,
C : prisme cylindrique, F : fente du spectrographe,
Fe : tube à cathode creuse, L : tube de Lyman,
M : miroir amovible, P : plaque photographique,
Si : tube à décharge sans électrode.

b. Le tube d'absorption en verre pyrex, d'une longueur de 1,25 m, était monté sur un banc d'optique. Il est séparé du spectrographe par le prisme cylindrique et de la source lumineuse par une lentille plan convexe destinée à réaliser un faisceau lumineux parallèle à l'intérieur du tube d'absorption. Le banc d'optique fixé par une extrémité à un pivot situé à la verticale du prisme cylindrique permet sans modifier l'appareil d'amener le dispositif (tube d'absorption et sources) dans des positions d'incidence correspondant à différentes régions spectrales dans les divers ordres du réseau. Chaque position du banc d'optique permet de couvrir dans le quatrième ordre un domaine d'environ 270 Å sur la plaque photographique.

Pour la mesure des bandes 13-0 à 2-0 les pressions d'oxygène requises dans le tube d'absorption ont été de 0,4 - 1 - 3 - 25 - 100 et 760 Torr. Les bandes 1-0 et 0-0 ont été analysées en remplissant le tube et le spectrographe avec de l'oxygène à la pression d'une atmosphère.

Dans ce large domaine de pression, nous avons pu observer également les bandes d'absorption correspondant aux transitions avec le niveau v" = 1 de l'état électronique fondamental, de la bande 13-1 à la bande 2-1.

c. Une source lumineuse du type de Lyman a été utilisée pour l'analyse du spectre d'absorption. A commande manuelle ou automatique, cette source produit des éclairs successifs par décharge à 12.000 Volts d'un condensateur de 2,5 μ f. Cette décharge a lieu au sein d'un cylindre en céramique de 3 mm de diamètre intérieur dans lequel circule un courant d'argon à basse pression.

Deux sources de raies ont été utilisées de manière à superposer au spectre d'absorption un spectre d'émission de référence. Il s'agit d'une part de l'arc au fer produit par un tube à cathode creuse et d'autre part d'une lampe à décharge sans électrode contenant du tétrachlorure de silicium et de l'hélium à basse pression (Biaumé, 1968).

Le tube à cathode creuse était placé dans le prolongement du tube de Lyman, tandis que la lampe au silicium était montée perpendiculairement au même tube dans lequel un petit miroir amovible permettait de renvoyer le faisceau lumineux dans la direction du spectrographe. La figure 2 montre les détails de cette disposition.

Le spectre de l'arc au fer a été analysé dans le deuxième ordre du réseau tandis que celui du silicium, comme le spectre d'absorption de l'oxygène, était analysé dans le quatrième ordre.

Nous disposions ainsi d'un calibrage de la plaque photographique par les raies du fer comprises entre 4000 et 3000 Å et par les raies du silicium entre 2000 et 1500 Å.

Les longueurs d'onde des raies du fer données pour l'air par les tables de Harrisson (1939) ont été converties pour le vide en utilisant les tables de conversion de Edlén (1953). Ces valeurs divisées par un facteur 2 fournissent des longueurs d'onde standards pour le quatrième ordre.

Tous les spectres ont été photographiés sur plaques Ilford Q2 et un nombre d'éclairs variant de 100 à 450 fut nécessaire pour l'observation des bandes. Pour les spectres de référence, des temps d'exposition de 1 à 20 min. furent requis. Le détail de ces données est repris au Tableau I.

Spectre n ^o	Pression 0 ₂ (Torr)	Fente (µm)	Nbre.d'éclairs	t.exp.Si. (min)	t.exp.Fe. (min)	Bandes mesurées
1	. 760*	20	450	2,0	4	0-0, 1-0
2	760	20	100	0,5	1,5	1-0, 2-0
3	100	20	150	1,0	1,5	2-0, 3-0, 4-0
4	25	20	150	1,0	1,5	3-0, 4-0, 5-0
5	10	20	150	1,0	1,5	5-0, 6-0
6	· 3	20	150	1,0	1,5	6-0, 7-0, 8-0
7	. 1	20	150	1,0	1,5	7-0, 8-0, 9-0
8	0,4	20	225	20,0	2,0	9.0 , 10.0, 11.0, 12.0 , 13.0

TABLEAU IDétail des données expérimentales.

760^{*} : le signe ^(*) indique que le tube d'absorption et le spectrographe étaient remplis d'oxygène à 760 Torr.

Fe : tube à cathode creuse, L : tube de Lyman, M : miroir amoviale,

Si : tube à décharge sans électrode.

III.- DETERMINATION DES LONGUEURS D'ONDE

Chaque plaque photographique a été analysée au moyen d'un microcomparateur équipé d'un système de positionnement photoélectrique du type décrit par Tomkins et Fred (1951). Il permet, sur une longueur de 20 cm, d'effectuer des mesures à 0,5µm près. Cet appareil est couplé à une console perforatrice de cartes destinées au programme de calcul des longueurs d'onde effectué sur ordinateur.

Les raies standards de l'arc au fer ont servi de référence pour établir, par interpolation, les courbes de dispersion pour chaque plaque photographique. Des polynnômes du troisième ou du quatrième degré, suivant le cas, ont été utilisés pour obtenir la meilleure courbe de dispersion à partir des données expérimentales.

Les longueurs d'onde des raies de rotation du spectre de l'oxygène ainsi que celles du silicium ont été déterminées à partir de ces polynômes. Les longueurs d'onde des raies du silicium ont été reprises du travail de Radziemski, Andrew, Kaufman et Litzén (1967) ; leurs valeurs de standard ont permis de définir la précision de nos mesures pour le spectre de l'oxygène. Comme le montre le Tableau II, les longueurs d'onde des raies du silicium ont été déterminées à $\pm 0,005$ Å (0,1 cm⁻¹) par rapport aux raies du fer. On peut donc s'attendre à la même précision en valeur absolue pour les raies fines et non renforcées du spectre de l'oxygène. En valeur relative, les longueurs d'onde de telles raies sont reproductibles à $\pm 0,002$ Å (0,05 cm⁻¹).

e pour les l	ongueurs	d'onde	standards	des raies d
gueur d'ond	es observ	rés Δλ	= (λ _{std} -	- λ _{mes}) (Å)
Spectre 2	Spectre	3	Spectre 6	Spectre

Longueurs d'onde					Ecarts	
standards	Ecarts de l	ongueur a ona	es observes Δ	$\Lambda = (\Lambda_{std} -$	$\Lambda_{\rm mes}$ (A)	moyens
$\lambda_{std}(A)$	Spectre I	Spectre 2	Spectre 3	Spectre 6	Spectre 7	$\left \overline{\Delta \lambda} \right (\dot{A})$
1991,8537		+ 0,0007		e e e e e e e e e e e e e e e e e e e		0,0007
1988,9937	- 0,0003	- 0,0028				0,0016
1986,3640	+ 0,0008	-0,0021		,		0,0015
1983,2330	- 0,0004	- 0,0031	0,0002			0,0012
1980,6185	0,0004	- 0,0020	- 0,0009			0,0011
1979,2056	0,0002	- 0,0034	- 0,0014	1		0,0017
1977,5978	+ 0,0003	- 0,0028	- 0,0007			0,0013
1954,9681		- 0,0010			~	0,0010
1904,6647		+ 0,0017			· .	0,0017
1901,3377		- 0,0011	- 0,0028	- 0,0029		0,0023
1893,2520*		- 0,0067		- 0,0041	· .	0,0054
1881,8538	Spectre 4	- 0,0069	Spectre 5	- 0,0024		0,0047
1874,8423			<u>spectre s</u>	- 0,0028		0,0028
1852,4717	- 0,0035	- 0,0032	- 0,0043	- 0,0045	- 0,0027	0,0036
1851,7829		- 0,0002				0,0002
1850,6719		- 0,0020	- 0,0071	- 0,0062	- 0,0055	0,0052
1848,7480	- 0,0018	- 0,0032	- 0,0042		- 0,0036	0,0026
1848,1504		- 0,0036	+ 0,0028	- 0,0020	- 0,0023	0,0027
1,847,4737		- 0,0031				0,0031
1846,1118		- 0,0015	- 0,0025	- 0,0038	- 0,0035	0,0028
1845,5203				-0,0032		0,0032
1843,7700		+ 0,0018	1	- 0,0018	- 0,0008	0,0015
1841,4490	- 0,0025	- 0,0021	- 0,0018	-0,0017	- 0,0028	0,0022
1841,1520	Spectre 8	+ 0,0007	- 0,0008	+ 0,0032	- 0,0019	0,0016
1836,5102	<u>specie o</u>		+ 0,0003			0,0003
1816,9278*	+ 0,0031					0,0031
1808,0117*	+ 0,0022					0,0022
1770,9223	+ 0,0018	1				0,0018
1770,6295	+ 0,0013					0,0013
1849,4994*				- 0,0018	- 0,0003	0,0011

7 Précision de mesure obtenue lu silicium.

Les valeurs marquées du signe (*) sont reprises de Kaufman, Radziemski et Andrew (1966) pour les raies du silicium et de Wilkinson et Andrew (1963) pour la raie 1849 Å du mercure.

IV.- ANALYSE SPECTRALE

Les spectres étant déjà connus, la classification des raies de rotation appartenant aux branches principales P et R des différentes bandes fut très aisée grâce aux mesures de Curry et Herzberg (1934), Knauss et Ballard (1935) et Brix et Herzberg (1954). Quant aux branches satellites principalement observées par Brix et Herzberg (1954) à basse température (77°K) pour les petites valeurs de N" nous n'avons pu les observer d'une manière rigoureuse en raison de la température (300°K) à laquelle nous avons travaillé et du fait que, dans les bandes inférieures à 12-0, la décomposition triplet des raies principales associées à la transition (B ${}^{3}\Sigma_{u}^{-} - X \, {}^{3}\Sigma_{g}^{-}$) est de plus en plus faible tandis que leur élargissement par prédissociation devient plus important. Ces faits rendent difficile l'observation de raies voisines d'une tête de bande principalement lorsqu'il s'agit de raies de faible intensité.

La reproduction des spectres obtenus est présentée aux figures 3 à 7. La liste des raies observées est donnée par longueurs d'onde croissantes au Tableau III et leur classification par bandes est fournie au Tableau IV. L'appartenance dans le Tableau IV du même nombre d'onde pour deux ou plusieurs raies, signifie qu'elles n'ont pu être séparées sur les spectres.

Fig. 3.- Aspect du spectre d'absorption de 0_2 dans la région de 1960 à 2040 Å. Sur la portion de spectre obtenue à 760^{*} Torr, les bandes 0-0, 2-1 et 3-1 apparaissent faiblement.

14.

Fig. 4.- Aspect du spectre d'absorption de 0_2 dans la région de 1900 à 1980 Å. Sur la portion inférieure du spectre, l'aspect diffus des raies de la bande 4-0 est évident.

Fig. 5.- Aspect du spectre d'absorption de 0_2 dans la région de 1860 à 1910 Å. Sur la portion de spectre obtenue à 25 Torr, on distingue la présence des bandes 8-1, 9-1 et 10-1.

Fig. 6.- Aspect du spectre d'absorption de 0₂ dans la région de 1830 à 1875 Å. Sur la portion de spectre obtenue à 25 Torr, on distingue la présence des bandes 10-1, 11-0, 12-1 et 13-1.

Fig. 7.- Aspect du spectre d'absorption de 0₂ dans la région de 1780 à 1830 Å. Sur la portion élargie des bandes 12-0 et 13-0 on distingue nettement la décomposition triplet des raies de rotation.

LONGUEURS	D*ONDE	ΕT	NOMBRES	D+ONDE	DES	RAIES	OBSERVEES
LONGUEURS DIONDE	5	NI D	OMBRES ONDE	C L BAND E	ASS:	IFICAT	ION RAIE
1782.986		56	085.70	13-0		1R	(2,3)
1783.028	• • •	,	084.37			1R	(1)
1783.136			080.97	• •		1 P	(1)
1783.209			078.69			3R	(2,3)
1783.248	۰.		077.46			3 R	(1)
1783.441		(071.38			3P	(2,3)
1783.481		l	070.13			3 P	(1)
1783.663		. (064.39			5R	2,3)
1783.705		(063.09			5R	(1)
1784.029		(052.91			5P	(2,3)
1784.068		(051.67			5P	(1)
1784.351	,	(042.78	: / · · ·		7R (2,3)
1784.401		(041.23			7 R	(1)
1784.851		. (27.09			7P	2,3)
1784.895		. (025.71			7 P .	(1)
1785.275		C	13.79		•	9R ((2,3)
1785.330		(012.05	•		9R	(1)
1785.907		559	993.95	·		9P (2,3)
1785.956			992.41		•	9P	(1)
1786.437		¢	977.36			11R (2,3)
1786.495		Q	975.52			11R-	(1)
1787.198			953.51			110	2,3)
1787.255		Ģ	951.72			11P	(1)

•

(SUITE)

LONGUEURS D IONDE	NOMBRES DIONDE	CLASSI BANDE	FICATION RAIE
1787.821	55934.01	13-0	13R(3)
1787.839	933.46		13R(2)
1787.901	931.52		13R(1)
1788.730	905.58		13P(2,3)
1788.791	903.69		13P(1)
1789.456	882.91		15R(3)
1789.477	882.24		15R(2)
1789.545	880.13		15R(1)
1790.488	850.69		15P(3)
1790.501	850+30		15P(2)
1790.566	848.25		15P(1)
1791.329	824.49		17R(3)
1791.360	823.51		17R(2)
1791.433	821.24	•	17R(1)
1792.495	788.15		17P(3)
1792.516	787.52		17P(2)
1792.588	785.26	13-0,12-0	17P(1),1R(2
1792.617	784.35	12-0	1R(1)
1792.734	780.72		1P(1)
1792.802	778.60		3R(2,3)
1792.819	778.07		3R(1)
1793.054	770.78		3P(2,3)
1793.073	770.18		3P(1)

,3)

LONGUEURS	NOMBRES	CLASS	SIFICATION
DFUNDE	D * UND E.	BANDE	RAIE
1793.236	55765.11	12-0	5R(2,3)
1793.254	764.56		5R (1)
1793.454	758.32	13-0	19R(3)
1793.492	757.16		19R(2)
1793.568	754.80		19R(1)
1793.635	752.71	12-0	5P(2,3)
1793.648	752.30		5P(1)
1793.899	744.51		7R(2,3)
1793.919	743.87		7R(1)
1794.439	727.73		7P(2,3)
1794.456	727.19		7P(1)
1794.780	717.15		9R(2,3)
1794.811	716.18		9R(1)
1795.470	695.73		9P(2,3)
1795.489	695.13	·	9P(1)
1795.895	682.55	• • •	11R(2,3)
1795。934	681.33		11R(1)
1796.728	656.74	. •	11P(2,3)
1796.757	655.84		11P(1)
1797.239	640.89		13R(2,3)
1797.282	639.56		13R(1)
1798.215	610.71		13P(2,3)
1798.249	609.65		13P(1)

LONGUEURS DIONDE	NOMBRES D'ONDE	CLAS BANDE	SSIFICATION RAIE
1798.815	55592.16	12-0	15R(2,3)
1798.864	590.63		15R(1)
1799.932	557.64		15P(2,3)
1799.976	556.31		15P(1)
1800.626	536.23		17R(2,3)
1800.679	534.61		17R(1)
1801.885	497.45		17P(2,3)
1801.934	495.94		17P(1)
1802.672	473.20		19R(2,3)
1802.730	471.43		19R(1)
1803.770	439.44	11-0	1 R
1803.890	435.76	ц т ан салаган.	1 P
1803.956	433.74	:	3R
1804.070	430.22	12-0	19P(2,3)
1804.130	428.39		19P(1)
1804.233	425.20	11-0	3P
1804.370	421.00		5R.
1804.798	407.86		5P
1805.009	401.40		7R
1805.588	383.61		7P
1805.862	375.22		9R
1806.600	352.61		9 P
1806.941	342.15		11R

LONGUEURS D'ONDE	NOMBRES D'ONDE	CLASS BANDE	IFICATION RAIE
1807.833	55314.84	11-0	11P
1808.241	302.35		13R
1809.290	270.31	· ·	13P
1809.752	256.18		15R(2,3)
1809.777	255.43		15R(1)
1810.952	219.58	•	15P(2,3)
1810.976	218.83		15P(1)
1811.496	202.98	· .	17R(2,3)
1811.538	201.71		17R(1)
1812.855	161.60		17P(2,3)
1812.894	160.43		17P(1)
1813.480	142.60	t i Maria	19R(-2,3)
1813.518	141.44		19R(1)
1814.989	096.74		19P(2,3)
1815.024	095.69	: :	19P(1)
1815.710	074.86		21R(2,3)
1815.791	072.41		21R(1)
1816.477	051.62	10-0	1R
1816.596	048.01	х х х	1 P
1816.654	046.27		3R
1816.944	037.46		3P
1817.051	034.23		5R
1817.507	020.43		. 5 P

(SUITE)

÷

LONGUEURS D'ONDE	NOMBRES DIONDE	CLASS BANDE	SIFICATION RAIE
1817.666	55015.60	10-0	7R
1818.285	54996.89		7 P
1818.499	990.41		9R
1819.281	966.77		9P
1819.544	958.82		11R
1820.496	930.10		11P
1820.803	920.82		13R(2,3)
1820.815	920.45		13R (11)
1821.928	886.92		13P
1822.287	876.09	·	15R(2,3)
1822.304	875.58		15R(1)
1823.567	837.57	;	15P(2,3)
1823.580	837.20		15P(1)
1823.988	824.92		17R(2+3)
1824.009	824.29		17R(1)
1825.433	781.53		17P(2,3)
1825.455	780.87		17P(1)
1825.903	767.43		19R(2,3)
1825.928	766.67		19R(1)
1827.521	718.92		19P(2,3)
1827.543	718.27		19P(1)
1828.063	702.71		21R(2,3)
1828.093	701.82		21R(1)

. '

LONGUEURS D'ONDE	NOMBRES DIONDE	CLAS BANDE	SIFICATION RAIE
1829.836	54649.70	10-0	21P(2,3)
1829.862	648.94		21P(1)
1830.432	631.92		23R(2,3)
1830.468	630.84		23R(1)
1830.723	623.24	9-0	1R
1830.854	619.31		1P
1830.897	618.03		3R
1831.207	608.78	·	3Р
1831.283	606 <u>.</u> 53		5R
1831.766	592°14		5P
1831.880	588.74	* * * .	7R
1832.371	574.10	10-0	23P(2,3)
1832.411	572.91		23P(1)
1832.537	569.17	9-0	7 P
1832.691	56456		9R
1833.047	553.98	10-0	25R(2,3)
1833.085	552.83		25R(1)
1833.520	539.89	9-0	·9P
1833.712	534.19		11R
1034.717	504.31	· ·	11P
1834。940	497.68		13R(2,3)
1834 .9 49	497.42		13R(1)
1835.162	491.09	10-0	25P(2,3)

LONGUEURS	NOMBRES	CLASSIFICATION		
DIONDE	D I OND E	BANDE	RAIE	
1835.186	54490.39	10-0	25P(1)	
1835.895	469.34		27R(2,3)	
1835.937	468.11		27R:(1)	
1836.122	462.62	9-0	13P(2,3)	
1836.131	462.35		13P(1)	
1836.387	454.76		15R(2,3)	
1836.397	454.46		15R(1)	
1837.749	414.39		15P(2,3)	
1837.754	414.24		15P(1)	
1838.045	405.63	•	17R(2,3)	
1838.064	405°06		17R(1)	
1838.159	402.27	10-0	27P(2,3)	
1838.200	401.03		27P(1)	
1838.977	378.05		29R(2,3)	
1839.019	376.81		29R(1)	
1839.580	360.22	9-0	17P(2,3)	
1839.601	359.60	•	17P(1)	
1839.932	349.82		19R(2,3)	
1839。957	349.11		19R(1)	
1841。409	306.24	10-0	29P(2,3)	
1841。451	304。99		29P(1)	
1841.641	299。41	9-0	19P(2,3)	
1841.661	298.82		19P(1)	

(SUITE)

L ON GUEUR S D º OND E	NOMBRES DIONDE	CLAS BANDE	SIFICATION RAIE
1842.031	54287.90	9-0	21R(2,3)
1842.057	287.14		21R(1)
1842.338	278.85	10-0	31R(2,3)
1842.376	277.73		31R(1)
1843.919	232.31	9-0	21P(2,3)
1843.945	231.54		21P(1)
1844.356	219.46		23R(2,3)
1844。384	218.63		23R(1)
1846。417	158.95		23P(2,3)
1846.452	157.91		23P(1)
1846464	157.56	8-0	1R
1846.632	152.063		1P,3R
1846.960	143.03		3P
1847.004	141.73	·	5R
1847.520	126.62	· .	5P
1847.589	124.58		7R
1848.291	104.03		7P
1848.379	101.45		9R:
1849。265	075.53		9P
1849.382	072.13		11R
1850.444	041.07		11P
1850.592	036.76		13R
1851。847	000.15		13P

TABLEAU III

LONGUEURS D TONDE	NOMBRES DIONDE	CLAS BANDE	SIFICATION RAIF
1852.017	53995.18	8-0	1.5R
1952 (50	-52052 20		150
1000.402	22422.0 20		106
1853.649	947.66		17R
1855.273	900.43		17P
1855.496	893.95		19R
1857.302	841.55		19P
1857.551	834.31		21R
1859.561	776.12		21P
1859.839	768.09		23R
1862.029	704.87		23P
1862.341	695.85		25R
1863,675	657.41	7-0	1R
1863.825	653.10		1P,3R
1864.183	642.81		3P,5R
1864.724	627.25	8-0	25P
1864.742	626.71	7-0	5P,7R
1865.053	617.78	8-0	27R
1865.500	604.94	7-0	7P
1865.522	604.30		9R
1866.464	577.24		9P
1866.514	575.80		11R
1867.648	543.028		11P
1867.708	541.57		13R

LONGUEURS DIONDE	NOMBRES D'ONDE	CLASS BANDE	SIFICATION RAIE
1869.032	53503-63	7-0	13P
1869.102	501.63		15R
1870.624	458.10		15P
1870.718	455.40		<u>1</u> 7R
1872.427	406.61		17P
1872.536	403.52		19R
1874.448	349.05		19P
1874.573	345.48		21R
1876.0682	285.54		21P
1876.829	281.36		23R
1879.121	216.38		23P
1879.295	211.44	to Discont	25R
1881.788	140.96		25P
1882.001	134.93		27R
1882.386	124.07	6-0	1R
1882.539	119.75		3R+1P
1882.890	109.86		5R+3P
1883.450	094.05		7R,5P
1884.214	072.54		9R,7P
1885.184	045.22		11R,9P
1886.361	012.12		13R,11P
1887.741	52973.36	,	15R,13P
1889.330	928.81		17R,15P

· · · ·

LONGUEURS D ONDE	NOMBRES D * OND E	CLAS BANDE	SIFICATION RAIE
1891.135	52878.31	6-0	19R,17P
1893.131	822.55		21R,19P
1895.371	760.13		23R,21P
1897.781	693.11	• .	25R,23P
1900.426	619.77		27R,25P
1902.479	563.01	5-0	1R
1902.629	558.85		3R,1P
1902.976	549.28		5R
1903.001	548.57		3P
1903.536	533.82		7R
1903.569	532.89		5 P
1904.285	513.16	:.	9R
1904.334	511.79		7P
1905.255	486.42		11R
1905.307	484.98		9P
1906.414	454.49		13R
1906.472	452.92		11P
1907.799	416.41		15R
1907.855	414.89		13P
1909.375	373.17		17R
1909.438	371。44		15P
1911.160	324.25		19R
1911.238	322.12		17P

LONGUEURS D'ONDE	NOMBRES D'ONDE	CLASSIFICATION BANDE RAIE	
1913.152	52269.76	5-0 21R	
1913.239	267.39	19P	
1915.366	209.34	23R	
1915.452	206 • 99	21 P	
1917.783	143.55	25R	
1917.878	140。96	23P	
1920.382	072.98	27R	
1920.538	068.75	25P	
1924.156	51970.85	4-0 1R	
1924.278	967.55	3R,1P	
1924.622	958.26	5R	
1924.667	957.03	ЗР	
1925.195	942.80	7 R	
1925.231	941.81	5P	
1925。924	923.14	9R	
1925.977	921.70	7 P	
1926.872	897.59	11R	
1926.974	894.84	9P	
1928.048	865.93	13R	
1928.156	863.03	11P	
1929.394	829.75	15R	
1929.536	825.94	13P	
1930.978	787.24	17R	

LONGUEURS D'ONDE	NOMBRES D'ONDE	CLASS BANDE	IFICATION RAIE	
1931.135	51783.02	4-0	15P	
1932.728	740.35		19R	
1932.920	735.19		17P	
1934.715	687.20		21R	
1934.931	681.43		19P	
1936.917	628.43		23R	
1937.135	622.62		21P	
1947.268	353.99	3-0	1R	
1947.412	350.20	·	3R	
1947.430	349.72		1P	
1947.748	341.35		5R	
1947.802	339.93	· · ·	3P	
1948.295	326.92		.7R	
1948.385	324.56		5P	
1949.037	307.40		9R	
1949.167	303.96		7P	
1949.983	282.49		11R	
1950.136	278。47		9P	
1951.139	252.12		13R	
1951.326	247.21		11P	
1952.491	216.63	,	15R	
1952.716	210.73	-	13P	
1954.060	175.51		17R	

LONGUEURS D'ONDE	NOMBRES DIONDE	CLASSIFICATION BANDE RAIE		
1954.313	51168.87	3-0	15P	
1955.818	129.49		19R	
1956.115	121.74		17P	
1957.809	077.50		21R	
1958.119	069.41		19P	
1960.010	020.16		23R	
1960.333	011.73		21P	
1962.408 "	50957.81		25R	
1962.766	948.52		23P	
1965.007	890.40		27R	
1965.404	880.12	•	25P	
1967.807	818.00		29R	
1968.252	806.51		27 P	
1971.898	712.57	2-0	1R	
1972.027	709.25		3R	
1972.073	708.06		1P	
1972.360	700.69		5R	
1972.454	698.27		3P	
1972,898	686.85		7 R	
1973.034	683.36		5P	
1973.641	667.77		9R	
1973.813	663.36		7 P	
1974.587	643.50		11R	

(SUITE)

 $\mathbf{\hat{p}}$

LONGUEURS D'ONDE	NOMBRES DIONDE	CLASS BANDE	SIFICATION RAIE
1974.801	50638.02	2-0	9P
1975.738	614.00	•	13R
1975.994	607.44		11P
1977.096	579.24		15R
1977.391	571.68		13P
1978.659	539.28		17R
1978-994	530.73	• •	15P
1980.425	494.20		19R
1980.804	484.54		17P
1982.410	443.66	•	21R
1982.823	433.14		1.9P
1984.600	388.00		23R
1985.053	376.49	· · ·	21P
1986.982	327.57	·	25R
1987.490	314.73		23P
1998.102	047。49	1-0.	1R
1998.222	044•48		3R
1998.285	042.90		19
1998.555	036.15		5R
1998.673	033.19		3P
1999.091	022.73	· · · · · ·	7 R
1999.257	018.59		5P
1999.830	004.25		9 R.
TABLEAU III

(SUITE)

LONGUEURS DIONDE	NOMBRES D I ONDE	CLAS BANDE	SIFICATION RAIE
2000.047	49998.82	1-0	7 P
2000.776	49980.61		11R
2001.043	973.93		9P
2001.925	951.92		13R
2002.245	943.95		11P
2003.285	918.01	. ,	15R
2003.653	908.85		13P
2004.847	879.12	•	17R
2005.268	868.65		15P
2006.621	835.02		19R
2007.094	823.28		17P
2008.610	785.67		21R
2009.128	772.83		19P
2010.798	731.51		23R
2011.369	717.39	· ·	21P
2025.927	360.12	0-0	1R
2026.051	357.10		3R
2026.126	355.27		1P
2026 • 376	349.18		5R
2026.514	345.83	•	3P
2026.911	336.16		7 R
2027.109	331.33		5P
2027.653	318.11		9R

TABLEAU III

(SUITE)

LONGUEURS	NOMBRES	CLASS	IFICATION
D OND E	DIONDE	BANDE	RAIE
2027.914	49311.75	0-0	7 P
2028.599	295.11		11R
2028.920	287.31		9P
2029.747	267.22		13R
2030.139	257.72		11P
2031.111	234.13		15R
2031.561	223.24		13P
2032.687	195.97		17R
2033。192	183.75		15P
2034。421	154.03		19R
2035.030	139.32		17P

÷.,

TABLEAU	IV
---------	----

Nombres d'onde des raies observées.

· · ·	Bande 0 - 0 $\nu_0 = 49358,15 \text{ cm}^{-1}$		Bande 1 - 0 $\nu_0 = 50045,68 \text{ cm}^{-1}$		Bande 2 - 0 $\nu_{o} = 50710,83 \text{ cm}^{-1}$	
N "	Р.	R	Р	R	Р	R
1	49355,27	49360,12	50042,90	50047,49	50708.06	50712,57
3	345,83	357,10	033,19	044,48	698,27	709,25
5	331,33	349,18	018,59	036,15	683,36	700,69
• 7	311,75	336,16	49998,82	022,73	663,36	686,85
9	287,31	318,11	973,93	004,25	638,02	667,77
11	257,72	295,11	943,95	49980,61	607,44	643,50
13	223,24	267,22	908,85	951,92	571,68	614,00
15	183,75	234,13	868,65	918,01	530,73	579,24
17	139,32	195,97	823,28	879,12	484,54	539,28
19	1	154,03	772,83	835,02	433,14	494,20
21			717,39	785,67	376,49	443,66
23				731,51	314,73	388,00
25						327,57

(suite)

	Bande 3 $\nu_{o} = 51352,$,26 cm ⁻¹	Bande 4 - 0 $\nu_0 = 51969,81 \text{ cm}^{-1}$		Bande $\nu_0 = 5256$	2 5 - 0 1,39 cm ⁻¹
N"	Р	R	Р	R	·P	R
1	51349,72	51353,99	51967,55	51970,85	52558,85	52563,01
3	339,93	350,20	957,03	967,55	548,57	558,85
5	324,56	341,35	941,81	958,26	532,89	549,28
7	303,96	326,92	921,70	942,80	511,79	533,82
9	278,47	307,40	894,84	923,14	484,98	513,16
11	247,21	282,49	863,03	897,59	452,92	486,42
13	210,73	252,12	825,94	865,93	414,89	454,49
15	168,87	216,63	783,02	829,75	371,44	416,41
17	121,74	175,51	735,19	787,24	322,12	373,17
19	069,41	129,49	681,43	740,35	267,39	324,25
21	011,73	• 077,50	622,62	687,20	206,99	269,76
23	50948,52	020,16		628,43	140,96	209,34
25	880,12	50957,81			068,75	143,55
27	806,51	890,40			· .	072,98
29	•	818,00				
			A		1	

(suite)

Bande 6 - 0 $\nu_{\rm o} = 53122,79 \ {\rm cm}^{-1}$

ł

 $\nu_{\rm o} = 53656,27 \,{\rm cm}^{-1}$

Bande 7 · 0

Bande 8 - 0 $\nu_{o} = 54156,28 \text{ cm}^{-1}$

N"	Р	R	Р	R	Р	R
1	53119,75	52124,07	53653,10	53657,41	54152,63	54157,56
3	109,86	119,75	642,81	653,10	143,03	152,63
5	094,05	109,86	626,71	642,81	126,62	141,73
7	072,54	094,05	604,94	626,71	104,03	124,58
9	045,22	072,54	577,24	604,30	075,53	101,45
11	012,12	045,22	543,28	575,80	041,07	072,13
13	52973,36	012,12	503,63	541,57	000,15	036,76
15	928,81	52973,36	458,10	501,63	53953,38	53995,18
17	878,31	928,81	406,61	455,40	900,43	947,66
19	822,55	878,31	349,05	403,52	841,55	893,95
21	760,13	822,55	285,54	345,48	776,12	834,31
23	693,11	760,13	216,38	281,36	704,87	768,09
25	619,77	693,11	140,96	211,44	627,25	695,85
27	· ·	619,77		134,93		617,78
		1	1	1	ł	1

(suite)

Bande 9 - 0

 $\nu_{\rm o} = 54622,17 \,{\rm cm}^{-1}$

N"	P ₁	P ₂	P ₃	R	R ₂	R ₃
1	54619,31			54623,24	54623,24	54623,24
3	608,78	54608,78	54608,78	. 618,03	618,03	618,03
5 ⁻	592,14	592,14	592,14	606,53	606,53	606,53
7	569,17	569,17	569,17	588,74	588,74	588,74
9.	539,89	539,89	539,89	564,56	564,56	564,56
11	504,31	504,31	504,31	534,19	534,19	534,19
13	462,35	462,62	462,62	497,42	497,68	497,68
15	414,24	414,39	414,39	454,46	454,46	454,76
17	359,60	360,22	360,22	405,06	405,63	405,63
19	298,82	299,41	299,41	349,11	349,82	349,82
21	231,54	232,31	232,31	287,14	287,90	287,90
23	157,91	158,95	158,95	218,63	219,46	219,46
l				. .		· ·

TABLEAU IV (suite)

Bande 10 - 0

 $\nu_{\rm o} = 55050,90 \ {\rm cm}^{-1}$

N"	P ₁	P ₂	P ₃	R ₁	R ₂	R ₃
1	55048,01			55051,62	55051,62	55051,62
3	037,46	55037,46	55037,46	046,27	046,27	046,27
5	020,43	020,43	020,43	034,23	034,23	034,23
7	54996,89	54996,89	54996,89	015,60	015,60	015,60
9	966,77	966,77	966,77	54990,41	54990,41	54990,41
11	930,10	930,10	930,10	958,82	958,82	958,82
13	886,92	886,92	886,92	920,45	920,82	920,82
15	837,20	837,57	837,57	875,58	876,09	876,09
17	780,87	781,53	781,53	824,29	824,92	824,92
19	718,27	718,92	718,92	766,67	767,43	767,43
21	648,94	649,70	649,70	701,82	702,71	702,71
23	572,91	574,10	574,10	630,84	631,92	631,92
25	490,39	491,09	491,09	552,83	553,98	553,98
27	401,03	402,27	402,27	468,11	469,34	469,34
29 ·	304,99	306,24	306,24	376,81	378,05	378,05
31				277,73	278,85	278,85

(suite)

	Bande 11 - 0	
v	= 55438,90 cm	•1

N"	P ₁	P ₂	P ₃	R ₁	R ₂	R ₃
1	55435,76			55439,44	55439,44	55439,44
3	425,20	55425,20	55425,20	433,74	433,74	433,74
5	407,86	407,86	407,86	421,00	421,00	421,00
7	883,61	883,61	883,61	401,40	401,40	401,40
9	352,61	352,61	352,61	375,22	375,22	375,22
11	314,84	314,84	314,84	342,15	342,15	342,15
13	270,31	270,31	270,31	302,35	302,35	302,35
15	218,83	219,58	219,58	255,43	256,18	256,18
17	160,43	161,60	161,60	201,71	202,98	202,98
19	095,69	096,74	096,74	141,44	142,60	142,60
21				072,41	074,86	074,86

(suite)

Bande 12 - 0
$v_{\rm o} = 55784,57 {\rm cm}^{-1}$

N"	P ₁	P ₂	P ₃	R ₁	R ₂	R ₃
1	55780,72	,		55784,35	55785,26	55785,26
3	770,18	55770,78	55770,78	778,07	778,60	778,60
5	752,30	752,71	752,71	764,56	765,11	765,11
7	727,19	727,73	727,73	743,87	744,51	744,51
9	695,13	695,73	695,73	716,18	717,15	717,15
11	655,84	656,74	656,74	681,33	682,55	682,55
13	609,65	610,71	610,71	639,56	640,89	640,89
15	556,31	557,64	557,64	590,63	592,16	592,16
17	495,94	497,45	497,45	534,61	536,23	536,23
19	428,39	430,22	. 430,22	471,43	473,20	473,20

Ż

(suite)

Bande 13 - 0 $\nu_{o} = 56085,47 \text{ cm}^{-1}$

N"	P	P ₂	P ₃	R ₁	R ₂	R ₃
1	56080,97			56084,37	56085,70	56085,70
3	070,13	56071,38	56071,38	077,46	078,69	078,69
5	051,67	052,91	052,91	063,09	064,09	064,39
- 7	025,71	027,09	027,09	041,23	042,78	042,78
9	55992,41	55993,95	55993,95	012,05	013,79	013,79
11	951,72	953,51	953,51	55975,52	55977,36	55977,36
13	903,69	905,58	905,58	931,52	933,46	934,01
15	848,25	850,30	850,69	880,13	882,24	882,91
17	785,26	787,52	788,15	821,24	823,51	824,49
19				754,80	757,16	758,32

V.- DETERMINATION DES CONSTANTES MOLECULAIRES

Les nombres d'onde v_0 correspondant à l'origine des bandes ainsi que les constantes de rotation B_v' et D_v' ont été déterminés par méthode graphique à partir des données du tableau IV. Cette méthode décrite par Herzberg (1950) a été utilisée par Ogawa (1966) pour effectuer un travail analogue.

Le calcul des origines des bandes a été effectué en utilisant l'équation

$$R(N'') + P(N'') - 2(\overline{B_{v}' - B_{v}''}) N''(N'' + 1)$$

= 2(v_o + B_v') + 2 $\Delta(\overline{B_{v}' - B_{v}''}) N''(N'' + 1)$ (1)

dans laquelle :

$$(\overline{B_{v}^{\dagger} - B_{v}^{''}}) + \Delta(\overline{B_{v}^{\dagger} - B_{v}^{''}}) = B_{v}^{\dagger} - B_{v}^{''}$$
(2)

où $(\overline{B_v' - B_v''})$ est la différence approximative arrondie au 0,005 cm⁻¹ entre les constantes de rotation des états supérieur et inférieur et $\Delta(\overline{B_v' - B_v''})$ la correction à apporter à cette dernière pour obtenir la différence réelle.

Le terme correctif $\Delta(\overline{B_v' - B_v'})$ peut être déterminé d'une manière plus précise en utilisant la relation

$$[R(N'') + P(N'') - 2(\overline{B_{v}' - B_{v}''}) N''(N'' + 1) - 2(v_{o} + B_{v}')]/N''(N'' + 1)$$
$$= 2 \Delta(\overline{B_{v}' - B_{v}''}) + 2(D_{v}' - D_{v}'') N''(N'' + 1)$$
(3)

dans laquelle le terme d'anharmonicité est pris en considération et d'où la différence $(D_v' - D_v'')$ peut être obtenue.

. . . .

Les données expérimentales utilisées dans cette méthode de calcul sont fournies au Tableau V et les graphiques qui ont servi à la détermination de ces constantes sont présentés aux figures 8 à 21. Les constantes de rotation de l'état fondamental B_V'' et D_V'' déterminées avec grande précision par Babcock et L. Herzberg (1948) ont été utilisées avec les valeurs de B_V' déterminées par Curry et Herzberg (1934), Knauss et Ballard (1935), Brix et Herzberg (1954) et Ogawa (1966) pour obtenir les différences approximatives $(\overline{B_V'} - \overline{B_V''})$. Ces valeurs ont été introduites dans les équations (1), (2) et (3) pour calculer v_O , B_V' et D_V' . Dans les bandes où les éléments des triplets des raies ont pu être résolus 9-0 à 13-0, les nombres d'onde correspondant aux transitions entre les niveaux F_2 pour lesquels N = J ont été utilisés dans le calcul.

Les origines des bandes ainsi que les constantes de rotation sont présentées au Tableau VI et les valeurs obtenues par les précédents auteurs y sont indiquées en vue de permettre d'effectuer des comparaisons. Données expérimentales utilisées dans le calcul des constantes moléculaires ν_0 , B_v , et D_v .

a N" (N" + 1)	b R(N'') + P(N'')	$c = 2(\overline{B_{v}' - B_{v}''}) \times a$	(b — c)	(b-c)-2(v _o +B _v ')	$\frac{(b-c)-2(\nu_{o}+B_{V})}{a}$
2	98715,39	- 2,50	98717,89	- 0.04	- 0,0200
.12	702,93	- 15,00	717,93	0,00	0,0000
30	680,51	- 37,50	718,01	-+- 0,08	+ 0,0027
56	647,91	- 70,00	717,91	- 0,02	- 0,0004
90	605,42	- 112,50	717,92	- 0,01	- 0,0001
132	552,83	- 165,00	717,83	-0,10	- 0,0008
182 *	490,46	227,50	717,96	+ 0,03	+ 0,0002
240	417,88	300,00	717,88	- 0,05	- 0,0002
306	335,29	- 382,50	717,79	- 0,14	- 0,0005

Bande 0–0						
$2 (\overline{B_v' - B_v''}) =$	2 (0,813 - 1,43777) = -1,24954 = -1,250					

Fig. 8. - Détermination graphique de l'origine (v_0) de la bande 0-0 et des constantes de rotation (B ' et D ') du niveau v'= 0 de l'état B ${}^{3}\Sigma_{u}^{-}$ de 0₂.

(suite)

Bande 1–0						
$2 (\overline{B_{v}' - B_{v}''}) =$	2 (0,798 -	1,43777) = -	1,27954 = -	1,280		

a N" (N" + 1)	b R(N'') + P(N'')	с 2(<mark>B_v' – B_v'')</mark> ×а	(b – c)	(bc)2(v _o +B _v ')	$\frac{(b-c)-2(\nu_{o}+B_{v}')}{a}$
. 2 .	100090,39	- 2,56	100092,95	- 0,01	- 0,0050
12	077,67	- 15,36	093,03	+ 0,07	+ 0,0058
30	054,74	- 38,40	093,14	+ 0,18	+ 0,0060
56	021,55	- 71,68	093,23	+ 0,27	+0,0048
90	99978,18	- 115,20	093,38	+ 0,42	+ 0,0047
132	924,56	168,96	093,52	+ 0,56	+ 0,0042
182	860,77	- 232,96	093,73	+ 0,77	+ 0,0042
240 .	786,66	- 307,20 ⁻	093,86	+ 0,90	+ 0,0038
306	702,40	- 391,68	094,08	+ 1,12	+ 0,0037
380	607,85	486,40	094,25	+ 1,29	+ 0,0034
462	503,06	- 591,36	094,42	+ 1,46	+ 0,0032

Fig. 9.- Détermination graphique de l'origine (v_0) de la bande 1-0 et des constantes de rotation (B ' et D ') du niveau v'= 1 de l'état B ${}^{3}\Sigma_{u}^{-}$ de 0_{2}^{-} .

(suite)

а	· b	C	(b - c)	$(b-c)-2(\nu_{o}+B_{v})$	$(b-c)-2(\nu_{o}+B_{v})$
N" (N" + 1)	R(N'') + P(N'')	$2(\overline{B_{v}'} - \overline{B_{v}''}) \times a$			a
.2	101420,63	- 2.61	101423,24	+ 0,01	+ 0,0050
12	407,52	- 15,66	423,18	- 0,05	- 0,0042
30	384,05	- 3,9,15	423,20	- 0,03	- 0,0010
56	350,21	- 73,08	423,29	+ 0,06	+ 0,0011
90	305,79	- 117,45	423,24	+ 0,01	+ 0,0001
132	250,94	- 172,26	423,20	- 0,03	- 0,0002
182	185,68	- 237,51	423,19	- 0,04	- 0,0002
240	109,97	- 313,20	423,17	- 0,06	- 0,0003
306	023,82	- 399,33	423,15	- 0,08	- 0,0003
380	100927,34	- 495,90	423,24	+ 0,01	0,0000
462	820,15	- 602,91	423,06	- 0,17	- 0,0004
552	702,73	- 720,36	423,09	-0,14	- 0,0003
		•			

Bande 2-0 2 $(\overline{B_v' - B_v''}) = 2 (0.785 - 1.43777) = -1.30554 = -1.305$

5

Fig. 10. - Détermination graphique de l'origine (v_0) de la bande 2-0 et des constantes de rotation $(B_v' \text{ et } D_v')$ du niveau v'= 2de l'état $B \frac{3\Sigma}{u}$ de 0₂.

52,-

		- (-)	· · ·		
a	Ъ	c	(b - c)	$(b-c)-2(\nu_{o}+B_{v})$	$(b-c)-2(\nu_{o}+B_{v})$
N" (N" + 1)	R(N'') + P(N'')	$2(\overline{B_{v}' - B_{v}''}) \times a$			a
2	102703,71	- 2,67	102706,38	+ 0,32	+ 0,1600
12	690,13	- 16,02	706,15	+ 0,09	+ 0,0075
30	665,91	- 40,05	705,96	- 0,10	- 0,0033
56	630,88	- 74,76	705,64	- 0,42	- 0,0075
90	585,87	- 120,15	706,02	- 0,04	- 0,0004
132	529,70	_ 176,22	705,92	- 0,14	- 0,0011
182	462,85	- 242,97	705,82	- 0,24	- 0,0013
240	385,50	- 320,40	705,90	-0,16	- 0,0007
306	297,25	- 408,51	705,76	- 0,30	- 0,0010
380	198,90	- 507,30	706,20	+ 0,14	+ 0,0004
462	089,23	-616,77	706,00	- 0,06	- 0,0001
552	101968,68	- 736,92	705,60	- 0,46	- 0,0008
650	837,93	- 867,75	705,68	-0,38	- 0,0006
756	696,91	-1009,26	706,17	+ 0,11	+ 0,0001
				-	

l

Bande 3–0 2 $(\overline{B_v' - B_v''}) = 2 (0,770 - 1,43777) = -1,33554 = -1,335$

Fig. 11. - Détermination graphique de l'origine (v_0) de la bande 3-0 et des constantes de rotation (B' et D') du niveau v'= 3 de l'état $B \frac{3\Sigma}{u} de 0_2$.

(suite)

a N" (N" + 1)	b R(N'') + P(N'')	c $2(\overline{B_{u'} - B_{u''}}) \times a$	(b - c)	$(b-c)-2(\nu_{o}+B_{v})$	$\frac{(b-c)-2(\nu_{o}+B_{v}')}{a}$
				·	
2	103938,40	- 2,73	103941,13	+ 0,01	+ 0,0050
12	924,58	- 16,38	940,96	- 0,16	- 0,0133
30	900,07	- 40,95	941,02	= 0,10	- 0,0033
56	864,50	- 76,44	940,94	-0,18	- 0,0032
90	817,98	- 122,85	940,83	- 0,29	- 0,0032
132	760,68	- 180,18	940,86	- 0,26	- 0,0020
182	691,87	- 248,43	940,30	-0,82	- 0,0045
240	612,77	- 327,60	940,37	- 0,75	- 0,0031
306	522,43	- 417.69	940,12	- 1,00	- 0,0033
380	421,78	- 518,70	940,48	- 0,64	- 0,0017
462	309,82	630,63	940,45	- 0,67	- 0,0015
	(, , , , , , , , , , , , , , , , , , ,				

Bande 4–0 2 $(\overline{B_v' - B_v''}) = 2 (0,754 - 1,43777) = -1,36754 = -1,365$

Fig. 12. - Détermination graphique de l'origine (v_0) de la bande 4-0 et des constantes de rotation (B ' et D ') du niveau v'= 4 de l'état B ${}^{3}\Sigma_{u}^{-}$ de 0₂.

(suite)

	• • •				•
· a	b	C	(b – c)	$(b-c)-2(\nu_{o}+B_{v})$	$(b-c)-2(\nu_{o}+B_{v})$
N" (N" + 1)	R(N'') + P(N'')	$2(\overline{B_v' - B_v''}) \times a$			8
2	105121,86	- 2,81	105124,67	+ 0,42	+ 0,2100
12	107,42	- 16,86	124,28	+ 0,03	+ 0,0025
30	082,17	- 42,15	124,32	+ 0,07	+ 0,0023
56	045,61	- 78,68	124,29	+ 0,04	+ 0,0007
90	104998,14	- 126,45	124,59	+ 0,34	+ 0,0038
. 132	939,34	- 185,46	1 24 ,80	+ 0,55	+ 0,0042
182	869,38	- 255,71	125,09	+ 0,84	+ 0,0046
240	787,85	- 337,20	125,05	+ 0,80	+ 0,0033
306	695,29	- 429,93	125,22	+ 0,97	+ 0,0032
380	591,64	- 533,90	125,54	+ 1,29	+ 0,0034
462	476,75	- 649,11	125,86	+ 1,61	+ 0,0035
552	350,30	- 775,56	. 125,86	+ 1,61	+ 0,0029
650	212,30	- 913,25	125,55	+ 1,30	+ 0,0020

Bande 5-0 2 $(\overline{B_v' - B_v''}) = 2 (0.735 - 1.43777) = -1.40554 = -1.405$

Fig. 13. - Détermination graphique de l'origine (v_0) de la bande 5-0 et des constantes de rotation (B' et D') du niveau v'= 5 de l'état $B {}^{3}\Sigma_{u}^{-}$ de 0_{2}^{-} .

a N" (N" + 1)	b R(N'') + P(N'')	с 2(<mark>B_v' — B_v'')</mark> × а	(b – c)	(bc)2(v _o +B _v ')	$\frac{(b-c)-2(\nu_{o}+B_{v}')}{a}$
2	106243,82	2,87	106246,69	- 0,33	- 0,1650
12	229,61	- 17,22	246,83	- 0,19	- 0,1583
30	203,91	- 43,05	246,96	- 0,06	- 0,0020
56	166,59	- 80,36	246,95	- 0,07	- 0,0013
90	117,76	129,15	246,91	- 0,11	- 0,0012
132	057,34	- 189,42	246,76	- 0,26	- 0,0020
182	105985,48	261,17	246,65	- 0,37	- 0,0020
240	902,17	- 344,40	246,57	- 0.45	- 0,0019
306	807,12	- 439,11	246,23	- 0,79	- 0,0026
380	700,82	- 545,30	246,12	- 0,90	- 0,0024
462	582,68	- 662,97	245,65	- 1,37	- 0,0030
552	453,24	- 792,12	245,36	- 1,66	- 0,0030
650	312,88	- 932,75	245,63	- 1,39	- 0,0021
I					

Bande 6–0 2 $(\overline{B_v' - B_v''}) = 2 (0,719 - 1,43777) = -1,43754 = -1,435$

Fig. 14. - Détermination graphique de l'origine (v_0) de la bande 6-0 et des constantes de rotation (B' et D') du niveau v'= 6 de l'état $B \frac{3\Sigma}{u}$ de 0₂.

TABLEAU V (suite)

	Bande 7–0						
2	$(\overline{B_v' - B_v''}) = 2 (0.6978 - 1.43777) = -1.47994 = -1.48$	0					

a	b	c	(b – c)	$(b-c)-2(v_{0}+B_{v})$	$(b-c)-2(\nu_{0}+B_{v})$
N"(N" + 1)	R(N'') + P(N'')	$2(\overline{B_{v}'-B_{v}''}) \times a$			a
2	107310,51	- 2,96	107313,47	- 0,47	- 0,2350
12	295,91	- 17,76	313,67	- 0,27	- 0,0225
30	269,52	- 44,40	313,92	- 0,03	- 0,0010
56	231,65	- 82,88	314,53	+ 0,59	+ 0,0105
90	181,54	- 133,20	314,74	+ 0,80	+ 0,0089
132	119,08	- 195,36	314,44	+ 0,50	+ 0,0038
182	045,20	- 269,36	314,56	+ 0,62	+ 0,0034
240	106959,73	- 355,20	314,93	+ 0,99	+ 0,0041
306	862,01	- 452,88	314,89	+ 0,95	+ 0,0031
· 380	752,57	- 562,40	314,97	+ 1,03	+ 0,0027
462	631,02	- 683,76	314,78	·† 0,84	+ 0,0018
552	497,74	- 816,96	314,70	+ 0,76	+ 0,0014
650	352,40	- 962,00	314,40	+ 0,46	+ 0,0007

Fig. 15. - Détermination graphique de l'origine (v_0) de la bande 7-0 et des constantes de rotation (B' et D') du niveau v'= 7 de l'état B ${}^{3}\Sigma_{u}^{-}$ de 0₂.

(suite)

•	Bande 8-0)
$2 (\overline{B_v' - B_v''}) =$	2 (0,6749 - 1,4377	(7) = -1,52574 = -1,525

8	b	C .	(b — c)	$(b-c)-2(\nu_{0}+B_{V})$	$(b-c)-2(v_{o}+B_{v}')$
N"(N" + 1)	R(N'') + P(N'')	$2(\overline{B_v'-B_v''}) \times a$	1		· a
2	108310,19	- 3,05	108313,24	- 0,68	0,3400
12	295,66	- 18,30	313,96	+ 0,04	+ 0,0033
30	268,35	- 45.75	314,10	+ 0,18	+ 0,0060
56	228,61	85,40	314,01	+ 0,09	+ 0,0016
90	176,98	- 137,25	314,23	+ 0,31	+ 0,0034
132	113,20	- 201,30	314,50	+ 0,58	+ 0,0044
182	036,91	277,55	314,46	+ 0,54	+ 0,0030
240	107948,56	- 366,00	314,56	+ 0,64	+ 0,0027
306	848,09	466,65	314,74	+ 0,82	+ 0,0027
380	735,50	- 579,50	315,00	+ 1,08	+ 0,0028
462	610,43	704,55	314,98	^{-l.} 1,06	+ 0,0023
552	472,96		314,76	+ 0.84	+ 0,0015
650	323,10	991,25	314,35	+ 0,43	+ 0,0006
		1		ł .	

Fig. 16. - Détermination graphique de l'origine (v_0) de la bande 8-0 et des constantes de rotation (B' et D') du niveau v'= 8de l'état $B \ {}^{3}\Sigma_{u}^{-}$ de 0_{2} .

(suite)

Bande 9–0	
$2(\overline{B_{y'} - B_{y'}}) = 2(0,6508 - 1,43777) = -1,57394$	= -1,570

à	b	c	(b - c)	$(b-c)-2(\nu_{o}+B_{v}')$	$(b-c)-2(\nu_{o}+B_{v}')$
N"(N" + 1)	R(N'') + P(N'')	$2(\overline{B_v' - B_v''}) \times a$			a
2	109242,55	- 3,14	109245,69	+ 0,04	+ 0,0200
12	226,81	- 18,84	245,65	0,00	0,0000
30	198,67	- 47,10	245,77	+ 0,12	+ 0,0040
56	157,91	- 87,92	245,83	+ 0,18	+ 0,0032
90	104,45	- 141,30	245,75	+ 0,10	+ 0,0011
132	038,50	- 207,24	245,74	+ 0,09	+ 0,0007
182	108960,30	- 285,74	246,04	+ 0,39	+ 0,0021
240	869,15	- 376,80	245,95	+ 0,30	+ 0,0013
306	765,85	- 480,42	246,27	+ 0,62	+ 0,0020
380	649,23	- 596,60	245,83	+ 0,18	+ 0,0005
462	520,21	- 725,34	245,55	-0,10	- 0,0002
552	378,41	- 866,64	245,05	- 0,60	- 0,0011

-

Fig. 17.- Détermination graphique de l'origine (v_0) de la bande 9-0 et des constantes de rotation $(B_v' \text{ et } D_v')$ du niveau v'= 9 de l'état $B {}^{3}\Sigma_{u}^{-}$ de O_2 .

(suite)

Bande 10–0					
$2(\overline{B_v' - B_v''}) =$	2 (0,6243 -	1,43777) = -	1,62694	= - 1,62	5

à	b	. C	(b — c)	$(b-c)-2(v_{o}+B_{v})$	$(b-c)-2(\nu_{0}+B_{v})$
N"(N" + 1)	R(N'') + P(N'')	$2(\overline{B_v' - B_v''}) \times a$			a
2	110099,63	- 3,25	110102,88	-0,18	0,0900
12	083,73	- 19,50	103.23	+ 0,17	+ 0,0142
30	054,66	- 48,75	103,41	+ 0,29	+ 0,0117
56	012,49	- 91,00	103,49	+ 0,43	+ 0,0077
90	• 109957,18	- 146,25	103,43	+ 0,37	+ 0,0041
132	882,92	- 214,50	103,42	+ 0,36	+ 0,0027
182	807,74	- 295,75	103,49	+ 0,43	+ 0,0024
240	713,66	- 390,00	103,66	+ 0,60	+ 0,0025
306	606,45	- 497,25	103,70	+ 0,64	+ 0,0021
380	486,35	- 617,50	103,85	+ 0,79	+ 0,0021
462	352,41	- 750,75	103,16	+ 0,10	+ 0,0002
552	206,02	- 897,00	103,02	- 0,04	- 0,0001
650	045,07	-1056,25	101,32	1,74	- 0,0027
756	108871,61	-1228,50	100,11	- 2,95	- 0,0039
870	684,29	-1413,75	098,04	- 5,02	- 0,0058

Fig. 18. - Détermination graphique de l'origine (v_0) de la bande 10-0 et des constantes de rotation (B ' et D ') du niveau v'= 10 de l'état B ${}^{3}\Sigma_{u}^{-}$ de 0.

(suite)

	• •				
a	b	C	(b - c)	(b-c)-2(v _o +B _v ')	$(b-c)-2(\nu_{o}+B_{v})$
<u>N" (N" + 1)</u>	R(N'') + P(N'')	$2(\overline{B_{v}}' - \overline{B_{v}}'') \times a$		`	8
2	110875,20	- 3,37	110878,57	- 0,43	- 0,2250
12	858,94	- 20,22	879,16	+ 0,16	+ 0,0132
<u>3</u> 0	828,86	- 50,55	879,41	+ 0,41	+ 0,0137
56	785,01	- 94,36	879,37	+ 0,37	+ 0,0066
90	727,83	- 151,65	879,48	+ 0,48	+ 0,0053
132	656,99	- 222,42	879,41	· + 0,41	+ 0,0031
182 ·	572,66	- 306,67	879,33	+ 0,33	+ 0,0018
240	475,76	- 404,40	880,16	+ 1,16	+ 0,0048
306	364,58	- 515,61	880,19	+ 1,19	+ 0,0039
380	239,34	- 640,30	879,64	+ 0,64	+ 0,0017
	4	1		l	

Bande 11–0 2 $(\overline{B_v' - B_v''}) = 2 (0.593 - 1.43777) = -1.68954 = -1.685$

Fig. 19. - Détermination graphique de l'origine (v_0) de la bande 11-0 et des constantes de rotation (B ' et D ') du niveau v'= 11 de l'état B ${}^{3}\Sigma_{u}^{-}$ de O_{2}^{-} .
TABLEAU V

(suite)

Bande 12--0 2 $(\overline{B_v' - B_v''}) = 2 (0.5625 - 1.43777) = -1.75054 = -1.750$

a	b	C	(b - c)	$(b-c)-2(\nu_{o}+B_{v})$	$(b-c)-2(v_{0}+B_{v})$
N"(N"+1)	R(N'') + P(N'')	2(B _v ' B _v '') × a			a
2		- 3,50			
12	111549,38	- 21,00	111570,38	+ 0,11	+ 0,0092
30	517,82	- 52,50	570,32	+ 0,05	+ 0,0017
56	472,24	- 98,00	570;24	- 0,03	+ 0,0005
90.	412,88	157,50	570,38	+ 0,11	+ 0,0012
132	339,29	- 231,00	570,29	+ 0,02	+ 0,0002
182	251,60	- 318,50	570,10	- 0,17	- 0,0009
240	149,80	- 420,00	569,80	0,47	- 0,0020
306	033,68	- 535,50	569,18	-1,09	- 0,0036
380	110903.42	- 665,00	568,42	1,85	0.0049

71.-

: ;)

3

Fig. 20.- Détermination graphique de l'origine (v_0) de la bande 12-0 et des constantes de rotation (B_v ' et D_v ') du niveau v'= 12 de l'état $B_u^{3}\Sigma_u^{-}$ de 0_2 .

TABLEAU V

(suite)

Bande 13–0 2 $(\overline{B_v' - B_v''}) = 2 (0.5247 - 1.43777) = -1.82614 = -1.825$

:•

а	b	C .	(b - c)	$(b-c)-2(\nu_{o}+B_{v})$	$(b-c)-2(\nu_{0}+B_{v})$
N" (N" + 1)	R(N'') + P(N'')	$2(\overline{B_v'-B_v''}) \times a$			<u>a</u>
2	· .	- 3,65	:		
12	112150,07	- 21,90	112171,97	- 0,03	- 0,0025
30	117,30	- 54,75	172,05	+ 0,05	+ 0,0017
56	069,87	- 102,20	172,07	+ 0,07	+ 0,0013
90	007,74	- 164,25	171,99	- 0,01	- 0,0001
132	111930,87	- 240,90	171,77	- 0,23	- 0,0017
182	839,04	- 332,51	171,55	- 0,45	- 0,0025
240	732,54	- 438,00	170,54	- 1,46	- 0,0061
306	611,03	— 558,45	169,48	- 2,52	- 0,0082

Fig. 21, - Détermination graphique de l'origine (v_0) de la bande 13-0 et des constantes de rotation $(B_v' \text{ et } D_v')$ du niveau v'= 13 de l'état $B \frac{3\Sigma}{u}$ de 0₂.

TABLEAU VI

Origines des bandes, quanta de vibration et constantes de rotation des bandes d'absorption de Schumann-Runge

	$v_{0} (\text{cm}^{-1})$		$\Delta G'(v' + \frac{1}{2})(cm^{-1})$		B _v , (cm [•] 1)			D _v '(10 ⁻⁶ cm ⁻¹)							
v '	KB	CH BH	OC .	ce travail	KB	СН ВН	OC	ce travail	КВ	СН ВН	0	ce travail	СН ВН	0	ce travail
0		49357,6		49358,15		688,05		687,53		0,813		0,8127	\mathbf{v}		5,06
- 1		50045,65		50045,68		665,1		665,15		0,798		0,8001			6,61
2		50710,75		50710,83		641,45		641,43		0,785		0,7852			5,10
3		51352,2		. 51352,26		617,64	-	617,55		0,770		0,7699	\ 4,38		4,54
4	51969,6	51969,84		51969,81	593,0	591,81		591,58		0,754		0,7537			3,56
5	52562,6	52561,65	52560,8	52561,39	561,7	561,15	561,7	561,40		0,735	0,7367	0,7372		4,5	5,71
6	53124,3	. 53122,8	53122,5	53122,79	534,2	534,0	533,6	533,48	0,719	0,719	0,7183	0,7194	/	4,75	5,71
7	53658,5	53656,8	53656,1	53656,27	500,4		500,0	500,01	0,703	0,702	0,6978	0,6997		5,3	6,96
8	54158,9		54156,1	54156,28	465,5		466,4	465,89	0,671		0,6749	0,6771		5,9	6,71
9	54624,4		54622,5	54622,17	428,9		429,2	428,73	0,651		0,6508	0,6538		4,9	7,21
10	55053,3		55051,7	55050,90	388,2		387,5	388,00	0,633		0,6243	0,6270	•	9,5	9,75
11	55441,5		55439,2	55438,90	345,4		346,5	345,67	0,593			0,5980			9,31
12	55786,9	55784,59	55785,7	55784,57	300,7	300,92	300,1	300,90	0,554	0,5625		0,5640	13		14,16
13	56087,6	56085,51	56085,8	56085,47	255,0	254,96	255,0		0,523	0,5247		0,5269	16,8		23,91
14	56342,6	56340,47	56340,8		208,4	210,07			0,492	0,4836			21,2		
15	56551,0	56550,54	•			168,96			0,431	0,4399			25,7		
16		56719,50				132,91				0,3953			34,3		
17		56852,41				102,13				0,347			45		
18		56954,54				75,64				0,296			152		
19		57030,18				52,65				0,258			49		
20		57082,83				31,94				0,207		*	76		
21		57114,77								0,159	· ·		105		
		1			·			1 · ·	1						í · i

KB : Knauss et Ballard (1935)

CH : Curry et Herzberg (1934)

BH : Brix et Herzberg (1954)

OC : Ogawa et Chang (1969)

O : Ogawa (1966)

ŧ

С

VI.- ETUDES DES PHENOMENES DE PREDISSOCIATION

Les phénomènes de prédissociation qui se manifestent en absorption par un élargissement notable des raies de rotation et en émission par l'absence apparemment anormale de certaines bandes, ont été mis en évidence dans les bandes de Schumann-Runge par Flory (1936).

Il faisait remarquer qu'aucune bande correspondant à des transitions avec les niveaux v' > 2 n'avait pu être observée en émission et que les bandes 3-0, 4-0, 5-1 et 6-1 analysées en absorption par Curry et Herzberg (1934) présentaient des raies larges et diffuses. Il concluait alors à la prédissociation de l'Etat B ${}^{3}\varepsilon_{u}^{-}$ dans les niveaux v' > 2 en avançant les arguments photochimiques basés d'une part sur la formation d'ozone à partir d'oxygène moléculaire photodissocié par la raie 1849 Å du mercure et d'autre part, sur l'étude de la réaction photochimique hydrogène-oxygène entreprise aux longueurs d'onde de l'aluminium (1854Å - 1862Å) par Smith et Kistiakowsky (1935). Etudiant également cette réaction à 1849 Å, Volman (1956) fournit un argument de plus en faveur de la prédissociation.

Quoique Feast (1949) ait observé en émission certaines bandes très peu intenses susceptibles de correspondre à des transitions avec le niveau v' = 3, l'hypothèse de Flory (1936) reste toujours valable aujourd'hui (Hudson et Carter 1968, 1969 et Hudson, Carter et Breig 1969).

Par l'analyse de spectres obtenus à haute résolution dans les bandes supérieures à 11-0, Wilkinson et Mulliken (1957) ont observé un élargissement notable des raies au niveau de v' = 12, mais pas de prédissociation détectable au dessus de cette limite. Carroll (1962) confirma ces observations en examinant avec soin les spectres obtenus par Brix et Herzberg (1954). Il mit également en évidence une très forte prédissociation centrée à v' = 4 et établit comme suit l'ordre de diffusion dans les bandes : 4-1 plus diffuse que 5-1 et 3-1, 4-1 plus diffuse que 8-0, plus diffuse que 11-0, plus diffuse que 10-0, plus diffuse que 12-0, semblable à 9-0.

Dans son travail, Carroll préconise également qu'une étude théorique, basée sur les connaissances pratiques, soit entreprise pour étudier la probabilité de prédissociation dans les bandes. Riess et Ben Aryeh (1969) et Murrel et Taylor (1969) ont abordé le problème dans ce sens. En calculant, pour divers modèles, la probabilité de prédissociation à chacun des niveaux de vibration, ils ont caractérisé la forme de la courbe de potentiel de l'état répulsif ³ Tu (déjà mentionné par Flory, 1936) et situé son point d'intersection avec la courbe de l'état B ${}^{3}\Sigma_{-}^{-}$.

Comme nous disposions de spectres à haute résolution dans toutes les bandes de Schumann-Runge, nous avons effectué des mesures assez précises de la demi-largueur des raies sur les enregistrements microphotométriques de nos plaques photographiques. Ces enregistrements présentés aux figures 22 à 27 pour les bandes 4-0 à 8-0 et 13-0 montrent notamment que les raies de rotation ont une largeur dans tous les cas supérieure au pouvoir résolvant du spectrographe (0,012 Å), que l'élargissement des raies ne peut être du à la pression et que les raies d'émission du silicium représentées aux figures 28 et 29 au voisinage des bandes 2-0 et 4-1, ont en moyenne la même largeur (0,65 cm⁻¹) que celle donnée pour les mêmes raies par Radziemski et Andrew(1965).

Les demi-largeurs mesurées sont fournies au tableau VII et représentées à la figure 30 en même temps que la courbe de variation des facteurs de Franck-Condon calculés pour la prédissociation par Murrel et Taylor (1969). Cette courbe de variation, traduite en demi-largeur est normalisée à v' = 4 où l'élargissement des raies est le plus important.

Une similitude frappante est mise en évidence entre la variation de largeur des raies de rotation en fonction de v' et l'allure générale de la courbe de Murrel et Taylor (1969). Il ne faut néanmoins pas considérer nos mesures comme une confirmation pratique de leur théorie, car dans certaines bandes, telles les 5-0, 6-0 et 7-0, où les branches P et R sont mal séparées, la mesure des largeurs est assez difficile. De même, dans les bandes 9-0, 10-0 et 11-0, la résolution incomplète des éléments du triplet peut faire apparaître les raies trop larges.

Notons cependant que nos mesures confirment largement les observations des divers auteurs dont les résultats ont été utilisés par Murrel et Taylor (1969) et par Riess et Ben Aryeh (1969) pour établir la base de leurs études théoriques.

Remarquons encore que vu cet élargissement des raies par prédissociation, la précision des mesures de nombres d'onde est fortement limitée dans les bandes où les raies sont très élargies et que la précision de \pm 0,1 cm⁻¹ annoncée au chapitre III n'est pas valable pour la bande 4-0 par exemple où 1'on ne peut s'attendre à mieux que \pm 0,4 cm⁻¹. Le graphique de la figure 30 donne en plus des largeurs de raies, une idée de la précision à laquelle on peut s'attendre dans chacune des bandes.

Fig. 26.= Enregistrement microphotométrique de la bande 8-0. La comparaison des deux raies voisines 9P et 11R à la raie 1849 Å du mercure met en évidence la différence de profil entre une raie atomique normale et des raies moléculaires élargies par prédissociation.

Fig. 27.- Enregistrement microphotométrique de la bande 13-0. La décomposition triplet des raies de rotation apparaît nettement en queue de bande tandis que leur finesse dénote à ce niveau la décroissance de la prédissociation.

Fig. 28.- Enregistrement microphotométrique des raies d'émission du silicium au voisinage de la bande 2-0. La finesse des raies d'émission comparée à la largeur des raies d'absorption permet même de supposer que la bande 2-0 présente des indices de prédissociation.

Fig. 29.- Enregistrement microphotométrique des raies d'émission du silicium au voisinage de la bande 4-1. La largeur des raies de la bande 4-1, comparéeà celle des raies d'émission et des raies de la bande 2-0 qui apparaissent également, montre bien l'importance de la prédissociation à v' = 4.

TABLEAU VII

Demi-largeurs	des raies	de rotation	$\Delta \nu \ (cm^{-1})$	déten	minées à j	partir
des en	registreme	nts microph	otométrique	s des	spectres.	

	Spectre	Pression	$\Delta \mu$	$\Delta \nu (\text{cm}^{-1})$
Bande	n ^o	(Torr)	(cm ⁻¹)	Valeurs moyennes
0 - 0	1	760 *	1,0	1,0 <u>+</u> 0,1
1 - 0	1 2	760 * 760	1,4 1,1	1,2 <u>+</u> 0,2
2 - 0	2 3	760 100	1, 3 1,1	1,2 <u>+</u> 0,2
3 - 0	3 4	100 25	2,2 2,0	2,1 <u>+</u> 0,2
4 - 0	3 -4	100 [′] 25	3,9 3,6	3,7 <u>+</u> 0,2
5 - 0	4	25 10	2,7 2,3	2,5 ± 0,2
6 - 0	5 6	10 3	2,2 1,7	1,9 ± 0,2
7 - 0	6 7	3 1	2,4 2,0	2,2 ± 0,2
8 - 0	6 7	3 1	2,2 2,0	2,1 ± 0,2
9 - 0	7 8	1 0,4	1,2 1,1	1,1 <u>+</u> 0,1
10 - 0	8	0,4	1,7	1,7 <u>+</u> 0,1
11 - 0 [.]	8	0,4	2,0	2,0 ± 0,1
12 - 0	8	0,4	1,0	1,0 <u>+</u> 0,1
13 - 0	8	0,4	0,6	0,6 <u>+</u> 0,1
14 - 0	8	0,4	0,5	0,5 <u>+</u> 0,1
15 - 0	8	0,4	0,6	0,6 <u>+</u> 0,1

760 * : le signe (*) indique que le tube d'absorption et le spectrographe étaient remplis d'oxygène à une pression de 760 Torr.

Fig. 30. Demi-largeur apparente Δν(cm⁻¹) des raies de rotation en fonction du nombre quantique de vibration (v') de l'état B Σ de O₂. La courbe continue représente la variation des facteurs de Franck-Condon calculés pour la prédissociation par Murrel et Taylor (1969).

VII.- DISCUSSION

Les nombres d'onde des raies de la bande 0-0, mesurés pour la première fois, et fournis au Tableau IV conduisent à une valeur de l'origine de bande en accord avec le travail de Curry et Herzberg (1934). Ceci apporte une conclusion à la différence subsistant toujours entre ces auteurs et Knauss et Ballard (1935) qui, par extrapolation, obtenaient une valeur fortement différente.

Les origines des bandes obtenues dans ce travail sont en excellent accord avec les autres valeurs déduites de spectres à haute résolution (Curry et Herzberg, 1934, Brix et Herzberg, 1954). Par contre, maintenant que de telles valeurs sont disponibles pour tout le spectre d'absorption, on remarquera, par comparaison, une différence relativement grande avec toutes les valeurs de Knauss et Ballard (1935). Les différences augmentent de v' = 4 vers les plus grandes valeurs de v' et diminuent ensuite légèrement. Etant donné que cette variation est faible, les valeurs de $\Delta G'$ en sont peu affectées et leur précision peut être considérée avec confiance.

De manière à illustrer l'ensemble des meilleurs résultats, à partir de nos données pour $(0 \le v' \le 12)$ associées à celles de Brix et Herzberg (1954) pour $(13 \le v' \le 20)$, nous avons déterminé par la méthode des moindres carrés la formule numérique suivante :

 $\Delta G'_{e} = 680,703 - 6,3054(v'+1/2) - 3,0541(v'+1/2)^{2} + 0,088033(v'+1/2)^{3}$ (4)

représentant $\Delta G'$ en fonction de (v' + 1/2). Elle est portée en graphique à la figure 31 en même temps que les points expérimentaux.

La figure 32 montre en fonction de (v' + 1/2) les valeurs mesurées $\Delta G'_m$ et calculées $\Delta G'_c$ et met en évidence la dispersion des résultats. En plus de cette dispersion, ce graphique révèle une discontinuité dans les valeurs de $\Delta G'$ à v' = 5 et 6 qui apparaît également à la figure 33 représentant les différences secondes $\Delta^2 G'$. Pour illustrer la dispersion des mesures de $B_{\ensuremath{\mathbf{v}}}$, la formule suivante :

$$B_v'c = 0,80615 - 7,1389 \times 10^{-3}(v') - 1,1207 \times 10^{-3}(v')^2$$

 $-1,2170 \times 10^{-6} (v')^{3}$

a été établie par la méthode des moindres carrés, également à partir de nos mesures pour $(0 \le v' \le 13)$ et de celles de Brix et Herzberg (1954) pour $(14 \le v' \le 21)$. Cette équation est représentée à la figure 34 avec l'ensemble des valeurs expérimentales tandis que les différences entre les $B_{v'm}$ (mesurées) et les $B_{v'c}$ (calculées) sont représentées à la figure 35.

Les valeurs de $\Delta G'_c$, $\Delta G'_m$, B'_v , B'_v ainsi que leurs différences respectives sont données au Tableau VIII et les différences secondes $\Delta^2 G'$ obtenues à partir des données expérimentales des différents auteurs au Tableau IX.

De toute évidence, les équations (4) et (5) du 3e degré ne peuvent représenter valablement les données expérimentales de $\Delta G'$ et de B_v' et même, si on utilise des équations d'ordres supérieurs, on ne parvient pas à une représentation correcte. Ce fait peut probablement être attribué à une perturbation de l'état B ${}^3\Sigma_u^-$ par un autre état, étant donné que le désaccord entre les valeurs mesurées et calculées ne peut être expliqué par les incertitudes expérimentales.

(5)

TABLEAU VIII

Quanta de vibration $\Delta G'$ et constantes de rotation B_v' (cm⁻¹) de l'état B ${}^{3}\Sigma_{u}^{\cdot}$ de la molécule d'oxygène

v'	∆G' _m	∆G' _c	$\Delta G'_m - \Delta G'_c$	B', v m	B _{vc}	$B_{vm} - B_{vc}$
0	687,53	676,80	+ 10,73	0,8127	0,8062	+ 0,0065
1	665,15	664,67	+ 0,48	0,8001	0,7979	+ 0,0022
2	641,43	647,23	- 5,80	0,7852	0,7874	. – 0,0022
3	617,55	625,00	- 7,45	0,7699	0,7746	- 0,0047
4	591,58	598,50	- 6,92	0,7537	0,7596	- 0,0059
5	561,40	568,28	- 6,88	0,7372	0,7423	- 0,0051
6	-533,48	534,86	- 1,38	0,7194	0,7227	0,0033
7	500,01	498,76	+ 1,25	0,6997	0,7008	- 0,0011
8	466,39	460,51	+ 5,88	0,6771	0,6767	+ 0,0041
9	428,73	420,65	+ 8,08	0,6538	0,6502	+ 0,0036
10	388,00	379,69	+ 8,31	0,6270	0,6215	+ 0,0055
11	345,67	338,17	+ 7,50	0,5980	0,5904	+ 0,0076
12	300,90	296,62	+ 4,28	0,5640	0,5570	+ 0,0070
13	254,96	255,56	- 0,60	0,5269	0,5213	+ 0,0056
14	210,07	215,53	- 5,46	0,4836	0,4832	+ 0,0040
15	168,96	177,04	- 8,08	0,4399	0,4428	- 0,0029
16	132,91	140,64	- 7,73	0,3953	0,4000	- 0,0047
17	102,13	106,84	- 4,71	0,3470	0,3549	- 0,0079
18	75,64	76,18	— 0,54	0,2960	0,3074	- 0,0104
19	52,65	49,18	+ 3,47	0,2580	0,2576	+ 0,0004
20	31,94	26,37	+ 5,57	0,2070	0,2053	+ 0,0017
21				0,1590	0,1507	+ 0,0083
1	1			[I	I

Les indices m et c indiquent qu'il s'agit de valeurs mesurées (m) ou calculées par moindres carrés (c).

TABLEAU IX

Différences secondes $\triangle^2 G'$ (cm⁻¹) obtenues à partir des données expérimentales des différents auteurs.

v'	K.B.	C.H. B.H.	0.C.	Ce travail
0	· ·			
1		22,95		22,38
2		23,65		23,72
3		23,81		23,88
4.		25,83		25,97
5	31,3	30,66		30,18
6	27,5	27,15	28,1	27,92
7	33,8		33,6	33,47
8	34,9		33,6	34,12
9	36,6		37,2	37,16
10	40,7		41,7	40,73
11	42,8		41,0	42,33
12	44,7		46,4	44,77
13	. 45,7	45,96	45,1	
14	46,6	44,89		
15		41,11		
16		36,05		
17		30,78		
18		26,49		
19		22,99		
20		20,71		
21			. ·	

K.B. : Knauss et Ballard (1935)

C.H. : Curry et Herzberg (1934)

B.H. : Brix et Herzberg (1954)

O.C. : Ogawa et Chang (1969)

Fig. 31.- Courbe de variation des quanta de vibration $\triangle G^{V(cm^{-1})}$ de l'état B ${}^{3}\Sigma_{u}^{-}$ de O₂ en fonction du nombre quantique de vibration (v' + 1/2). Les points expérimentaux représentent les données utilisées pour établir l'équation (4) de cette courbe.

93 4

Fig. 33.- Différences secondes - $\triangle^2 G'(cm^{-1})$ des quanta de vibration, obtenues à partir des données expérimentales des différents auteurs, en fonction du nombre quantique de vibration (v'). Comme à la figure 32, une discontinuité apparaît à v' = 5 et 6.

Fig. 34.- Courbe de variation des constantes de rotation B (cm^{-1}) de l'état B Σ_{u}^{3} de O_{2} en fonction du nombre quantique de vibration (v'). Les points expérimentaux représentent les données utilisées pour établir l'équation (5) de cette courbe.

96

Fig. 35. Différences entre les valeurs $(B_{v'm})$ mesurées et $(B_{v'c})$ calculées des constantes de rotation en fonction du nombre quantique de vibration (v') et écarts à l'équation (5) des données expérimentales des autres auteurs.

VIII.- CONCLUSION

Des nouvelles données expérimentales sur le spectre d'absorption, une série complète et précise de valeurs des constantes de vibration et de rotation obtenues au moyen du même instrument a pu être fournie pour toutes les bandes de Schumann-Runge de 0_2 . En outre, d'autres données essentielles concernant l'élargissement des raies de rotation par prédissociation ont été déduites des spectres d'absorption. Elles constituent ainsi un ensemble de données de base utilisables dans le calcul des sections efficaces d'absorption.

REMERCIEMENTS

Toute notre gratitude s'adresse au Professeur G. Herzberg pour l'intérêt particulier qu'il a manifesté à l'égard de notre travail et pour les précieux conseils qu'il nous a prodigués. Nos remerciements s'adressent également aux membres de la Division de Physique pure du Conseil National de Recherches du Canada (Ottawa), qui nous ont aidé à réaliser ces expériences.

Nous exprimons aussi toute notre reconnaissance au Professeur M. Nicolet et au Docteur M. Ackerman pour leur aide constante et leurs fructueuses suggestions.

REFERENCES

ACKERMAN, M. and BIAUME, F. Structure of the Schumann-Runge bands from the 0-0 to the 13-0 band, J. Mol. Spectry. 1970 (à paraître).

ACKERMAN, M., BIAUME, F. and NICOLET, M. Absorption in the spectral range of the Schumann-Runge bands, Can. J. Chem. <u>47</u>, 1834-1840, (1969).

- BABCOCK, H.D. and HERZBERG, L. Fine structure of the red system of atmospheric oxygen bands, Ap. J., <u>108</u>, 167-190 (1948).
- BIAUME, F. Etude des spectres du silicium et du germanium produits par un tube à décharge sans électrode entre 1650 et 2900 Å, Aeronomica Acta C-N° 17, (1968).
- BRIX, P. and HERZBERG, G. Fine structure of the Schumann-Runge bands near the convergence limit and the dissociation energy of the oxygen molecule, Can. J. Phys., <u>32</u>, 110-135 (1954).
- CARROLL, P.K. Predissociation in the Schumann-Runge bands of oxygen, Ap. J., <u>129</u>, 794-800 (1959).
- CURRY, J. and HERZBERG, G. Über die ultravioletten Absorptionsbanden des Sauerstoffs (Schumann-Runge Banden), Ann. Physik, <u>19</u>, 800-808 (1934).
- EDLEN, B. The dispersion of standard air, J. Opt. Soc. Amer., <u>43</u>, 339-344 (1953).
- FEAST, M.W. On the Schumann-Runge O₂ bands emitted at atmospheric pressure, Proc. Phys. Soc. London, A, <u>62</u>, 114-121 (1949).
- FEAST, M.W.The Schumann-Runge O₂ emission bands in the region 3100 Å - 2500 Å, Proc. Phys. Soc. London, A, <u>63</u>, 549-556 (1950).
- FLORY, P.J. Predissociation of the oxygen molecule, J. Chem. Phys., 4, 23-27 (1936).
- HARRISON, G.R. M.I.T. Wavelength tables. John Wiley and Sons, Inc., New York (1939).

- HUDSON, R.D. and CARTER, V.L. Absorption of oxygen at elevated temperatures (300 to 600°K) in the Schumann-Runge system, J. Opt. Soc. Am., <u>58</u>, 1621-1629 (1968).
- HUDSON, R.D. and CARTER, V.L. Predissociation in N₂ and O₂, Can. J. Chem., 47, 1840-1844 (1969).
- HUDSON, R.D. CARTER, V.L. and BREIG, E.L. Predissociation in the Schumann-Runge band system of O₂ : laboratory measurements and atmospheric effects, J. Geophys. Res., 74, 4079-4086 (1969).
- KAUFMAN, V., RADZIEMSKI, L.J. Jr. and ANDREW, K.L. Vacuum ultraviolet spectrum of neutral silicon, J. Opt. Soc. Am., <u>56</u>, 911-915 (1966).
- KNAUSS, H.P. and BALLARD, S.S. Rotational structure of the Schumann-Runge bands of oxygen in the vacuum region, Phys. Rev., <u>48</u>, 796-799 (1935).

LOCHTE-HOLTGREVEN, W. und DIEKE, G.H. Über die ultravioletten Banden des neutralen Sauerstoffmoleküls, Ann. Physik, <u>3</u>, 937-977 (1929).

- MURREL, J.N. and TAYLOR, J.M. Predissociation in diatomic spectra with special reference to the Schumann-Runge bands of 0₂, Mol. Phys., 16, 609-621 (1969).
- OGAWA, M. Absorption spectrum of electrically excited oxygen molecules in the ultraviolet region, Sci. Light, Japan, 15, 97 - 114 (1966).
- OGAWA, M. and CHANG, H. Absorption spectrum of electrically

excited oxygen molecules, Sci. Light, Japan, <u>17</u>, 45-56 (1968). RADZIEMSKI, L.J. Jr. and ANDREW, K.L. Arc spectrum of silicon

J. Opt. Soc. Amer., 55, 474-491 (1965).

RADZIEMSKI, L.J. Jr., ANDREW, K.L., KAUFMAN, V. and LITZEN, U. Vacuum ultraviolet wavelength standards and improved energy levels in the first spectrum of silicon, J. Opt. Soc. Am., <u>57</u>, 336-340 (1967).

- RIESS, I. and BEN-ARYEH, Y. Application of the quantum Franck-Condon principle to predissociation in oxygen, J. Quant. Spectrosc. Radiat. Transfer, <u>9</u>, 1464-1468 (1969).
- RUNGE, C. Über ein neues Bandenspectrum des Sauerstoffs, Physica, <u>1</u>, 254-261 (1921).
- SMITH, H.A. and KISTIAKOWSKY, G.B. The photochemical hydrogen-oxygen reaction, J. Am. Chem. Soc., 57, 835-840 (1935).
- TOMKINS, F.S. and FRED, M. A photoelectric setting device for a spectrum plate comparator, J. Opt. Soc. Am. <u>41</u>, 641-643, (1951).
- VOLMAN, D.H. Photochemical oxygen-hydrogen reaction at 1849 Å,

J. Chem. Phys., 25, 288-292 (1956).

WILKINSON, P.G. and ANDREW, K.L. Proposed standard wavelengths in the vacuum ultraviolet. Spectra of Ge, Ne, C, Hg, and N, J. Opt. Soc. Am., 53, 710-717, (1963).

WILKINSON, P.G. and MULLIKEN, R.S. Dissocation process in oxygen above 1750 Å, Ap. J., 125, 594-600 (1957).