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FOREWORD 

This paper will be published in The Physics of Fluids. 

AVANT-PROPOS 

Ce travail sera publié dans The Physics of Fluids. 
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SIMPLE MODEL FOR AN ION-EXOSPHERE IN AN OPEN MAGNETIC FIELD 

by 

J. LEMAIRE and M. SCHERER 

Summary 

A simple model for an ion-exosphere with an open magnetic 
field is set up. The ions move under the influence of (1) the 
gravitational field, (2) the monotonic decreasing static magnetic 
field, and (3) the electrostatic potential due to a small charge 
separation. Neglecting collisions and particle drift across the 
magnetic field lines the particles can be classified into four 
classes : ballistic, escaping, trapped, and incoming particles. For 
each class the number density, the particle flux, the momentum 
fluxes, and the energy flux are calculated as a function of the 
electrostatic potential. Finally, it is shown how this potential 
can easily be computed by considering two basic physical conditions : 
(1) the quasineutrality, and (2) the zero current condition. 

Résumé 

On décrit un modèle cinétique d'exosphère ionique dans lequel 
les ions et les électrons peuvent s'échapper le long des lignes de force 
ouvertes d'un champ magnétique dont l'intensité tend asymptotiquement 
vers une constante à l'infini. En négligent les collisions ioniques 
et la faible dérive des particules dans la direction perpendiculaire au 
champ magnétique on peut distinguer quatre classes de particules : 
celles qui sont piégées, celles qui s'échappent, celles qui sont pré-
cipitées et finalement les particules dont la trajectoire est du type 
ballistique. On donne pour chacune de. ces classes la densité, le flux 
de particules, le flux d'impulsion et d'énergie en fonction du potentiel 
électrique. Finalement on montre comment ce potentiel électrique peut-
être déterminé en fonction de l'altitude, à partir des relations expri-
mant que le plasma est électriquement neutre et que le courant électri-
que y est nul. 
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Samenvatting 

Een eenvoudig model voor een ionaire exosfeer in een open 
magneetveld wordt beschouwd. De beweging der ionen is bepaald door 
het zwaarteveld, door het monotoon afnemend statisch magneetveld, en 
door het elektrische veld welke te wijten is aan een kleine scheiding 
der ladingen. Botsingen en de driftbeweging loodrecht op de veldlijnen 
van het magneetveld worden verwaarloosd. De deeltjes worden ingedeeld 
in vier klassen : ballistische, ontsnappende, gevangen en inkomende 
deeltjes. Voor elke klasse wordt de deeltjes dichtheid, de deeltjes 
flux, de momenten flux, en de energy flux berekend in functie van de 
electrostatische potentiaal. Tenslotte wordt getoond hoe deze poten-
tiaal gemakkelijk berekend kan worden door gebruik te maken van twee 
basis voorwaarden : (1) de quasineutraliteit van het plasma, en (2) de 
gelijkheid van de flux der negatieve geladen deeltjes aan de flux der 
positieve geladen deeltjes. 

Zusammenfassung 

Ein kinetisches Model einer Ionen-Exosphare worin die Ionen 
und Elektronen langst der offenen Linien des magnetischen Feldes 
entfliehen können ist beschrieben. Wenn man die Stösse zwischen 
den Ionen vernachlässigt können vier verschiedene Teilchenklassen 
unterscheidet werden : die jenigen die entfliehen, die jenigen die 
herabschleüdern, die jenigen die ins magnetische Feld eingefässelt 
sind, und die jenigen mit ballistischen Flugbahnen. FUr jede dieser 
Klassen wird die Teilchendichte, der Teilchenfluss der Impuls- und 
Energiefluss als Funktion des elektrischen Potentiales gegeben. Es 
wird beschrieben wie man dieses elektrische Potential berechnen kann 
als Funktion der Höhe. 



I. INTRODUCTION 

Eviatar, Lenchek, and S i n g e r ^ have defined a simple model 

for an ion-exosphere of a nonrotating planet. They considered the 

effects of the superimposed gravitational and static, centered-dipole 

magnetic field upon the ions and electrons. Moreover, they assumed that 

the barosphere or collision dominated region in which the charged 

particles are in hydrostatic equilibrium, is separated from the 

exosphere by an imaginary spherical surface. On this so-called 

exobase or baropause the density and temperature are constant. In 

the upper region or exosphere the collision frequency is so small 

that collisions can be ignored. Assuming that all charged particles 

which build up the ion-exosphere, have emerged from the barosphere, 

Eviatar et al. set up an expression for the variation of the density 

with altitude. 

Recently, this model ion-exosphere, has been generalized by 
(2) 

Hartle , who considered a more general baropause.consisting of a 

surface, symmetric about the magnetic equator, over which the density 

and the temperature can vary. In addition to the species densities, 

Hartle calculated the particle current densities, the pressures and the 

temperatures. 

Such simplified models are of great importance as they lead 

to a better understanding of the.planetary exosphere where the actual 

physical problem is of immense complexity. Application of the above 

described models to the Earth, however, is restrained to exospheric 

regions with geomagnetic latitude less than 65°, Indeed, since a 

static dipole magnetic field was used in these model ion-exospheres, 

the plasma is confined in the closed dipole field regions. Within the 

polar regions of the Earth, the magnetic field lines do not form closed 

loops but are open to the magnetospheric tail which is connected with 

the interplanetary magnetic field. Hence, in the terrestrial exosphere, 



the charged particles, constrained to move along the magnetic field 
lines, can escape at higher latitudes. Recent experimental and 
theoretical^ ^ ^ studies have shown that the peculiar nature of the 
polar topside ionosphere has to be sought in the open character of the 
magnetosphere at high latitudes. 

The purpose of this paper is to give exnressions for the 
distributions of the number density, the particle flux, the pressure 
tensor components, and the energy flux in an ion-exosphere with open 
field lines. In order to simplify the problem we accept the existence 
of. a sharply defined baropause which separates the collision free 
exosphere from the barosphere, where collisions are so frequent that 
the velocity distribution function of the charged particles is 
Maxwellian. Moreover, we assume that along an open magnetic field 
line, the total field strength is a monotonic decreasing function 
of distance, which tends to a constant value at infinity. Neglecting 
the particle drift across magnetic field lines we describe the motion 
of a charged particle in the exosphere by the well-known nonrelativistic 
guiding center approximation. In Sec. Ill it is shoxvn that under these 
assumptions all particles of the open ion-exosphere can be classified 
into four classes : 
(1) The ballistic particles which emerge from the barosphere, are reflected 
in the exosphere and cannot escape ; (2) the escaping particles, which 
leave the barosphere, have sufficient kinetic energy and a proper pitch 
angle to be lost in the interplanetary medium ; (3) the trapped particles 
are those with two mirror points in the exosphere ; and finally (4) the 
incoming particles which come from the interplanetary space and which 
are reflected in the exosphere or even can enter into the barosphere. 
The particle velocity distribution function' in the exosphere is determined 
in Sec. IV and the most important moments of these distribution are 
calculated for each class of particles in Sec. V. Finally, we give 



a convenient method to numerically compute the electrostatic potential, 
and illustrate it with an application to an (0+ - H+ - e) exosphere. 

II. MOTION OF A CHARGED PARTICLE 

The electrostatic potential cp, due to a minute charge separation 
in the exosphere, satisfies Poisson's equation 

7 cp = - ATT Ek Qk nk (1) 

where the summation is to be taken over all kinds of particles 
with density n^ and charge Q^ = Z^e. 

Since the righthand side of (1) is very small, we write the 
electrostatic potential as 

cp (r) = q>Q(r) rQ/r 

where r is the radial distance of the baropause and cp ( r ) is the o o 
solution of 

-*2 r A-rrr \r qp - 2 .V <P = - — - Z 0 a. (2) o 2 o r k k k r o 
-V 

such that cp (r) 0 for r « 

As we assume a static magnetic field in the exosphere, the velocity 
V(T) of a particle with mass m and charge 0 along a given magnetic . 
field line is obtained from the law of conservation of energy 

2 v (r) + 2<t> (1 + 8)y = const, (3) 
with y = r /r , o 
and where we introduced the shorthand notations 
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6 - H (4a) 
for the reduced electric potential energy, and 

« = - MG/r (4b) o 
for the gravitational potential at the baropause. In (4b) M denotes 
the mass of the planet where the atmospheric mass is neglected, and 
G is the gravitational constant. Moreover, following Eviatar et a l ^ 
we assume that the nonmagnetic forces are weak compared with the 
magnetic force, so that Alfven's guiding center approximation will 
be valid. Using the first adiabatic invariant we get 

2 -*• 2 •*• v (r) sin 9(r) t .... — ^ — = const, (5) 
B(r) 

-V 
where 8(r) is the pitch angle of the particle, i.e., the angle between 
the magnetic field B(r) and the velocity vector of the particle. 
Equations (3) and (5) determine the trajectory of a charged particle 
in the exosphere. 

III. CLASSES OF PARTICLES 

In an open ion-exosphere the charged particles, moving 
along a magnetic field line, can be classified into four classes. 
First of all there are the particles emerging from the barosphere 
which do not have enough kinetic energy to escape or, which in compliance 
with the first adiabatic invariant, have a mirror point in the exosphere. 
They are the so called ballistic particles. The other group of particles 
coming from the barosphere are the escaping particles. They are lost 
in interplanetary space as we assume that the planetary magnetic field 
lines are interconnected with the interplanetary field. Another 
consequence of this assumption is that charged particles coming from 
the interplanetary medium can enter into the exosphere and under certain 
conditions even penetrate into the barosphere. These are the so called 



incoming particles. Finally, there exist trapped particles which have 
two mirror points in the ion-exosphere. They bounce contineously up 
and down along a magnetic field line. The different regions in phase 
space, corresponding to those four classes of particles can be determined 
by means of the basic equations (3) 'and (5). From (3) we deduce 

v2(?q) = v2(r) + R(r) = v2(») - 2$ (1+a) (6) 
with 

R(r) = - 2 * [ 1 + a - (1+B)y] ' (7) 

a = ? ( O (8) m 4> o o v ' 

Expressing the first adiabatic invariant (5) at r , r and infinity, 
we obtain, after eleminating the constant and taking into account the 
relation (6), 

sin20(r ) = sin2 0 (r ) sin2 0(r), o m o 

sin20(r ) = sin2 0' (r ) sin20(»), o m o 

(9) 
sin20(r) = sin2 0 (r) sin2e(r ) m o 

sin20(r) = sin2 0' (r) sin20(~) m 

s i n 2 0 = sin2 0 (») sin20(r ) m o 

s i n 2 0 = sin2 0' (») sin20(r) m 

where 0 (r ), 0' (r ) 0' (oo) are, respectively, defined by m o m o m •. • 

sin2 0m(? ) = rf1 fl - R(r)/v2(? )] , m o o 

sin2 e' (r ) = a"1 [l + 2<t (l+a)/v2(r )] , 
"ID O O 

sin2 Bm(v) = n [1 + R(r)/v2(r)j , (10) 
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sin2 6' (?) - y[l + 24> (l+B)y/v2(r) ] , . m 

sin2 8 (-) = a [l - 2* (l+a)/v2(~)] , m 

sin2 9' (») = y _ 1 [ 1 - 2 * (1+6)v/v2(»)] . m . 

In the expressions (10) we used the shorthand notations 

n = B(r)/B(ro) ^ 1 . 

y = B(r)/B(-) * 1 , O D 

a = n/y = B(-)/B(ro) < 1 • 

Assuming that along a magnetic field line, the potential energy — m R(r) 
is a monotonic function, we have to consider two cases corresponding 
to the algebraic sign of R(r). 

A. Positive Potential Energy 

In this case there exists a potential barrier for a charged 
particle emerging from the barosphere. The potential energy which 
is zero at the baropause, reaches a maximum, - m 4>(l+a) at infinity. 
It is easy to show that in this case 1 + a ^ O and 1 + B-0. Further-
more, we can define the minimal velocity that a charged particle, coming 
from the barosphere must have at the baropause, in order to reach the 
level r ^ r o 

v 2 (r ) = R(0 . a o 

As a consequence there exists an escaping velocity given by 

v 2(r ) = - 2<t>(l+a) , 
00 O at the baropause, and by 

v 2(?) = - 24>(1+B)y , 



at the radial distance r ^ r . o 
A convenient way to determine the different classes of particles which 
may occur with a positive potential energy, is to make a detailed study 

- V 

of the six quantities 6 (r ), 0' (r ),..., 0' definied in (10) as m o m o m 
a function of v(r ), v(r) or v(°°) . This yields o 

0 („) = e' (») for v2(~) = v,2(~) = - 2 *[(l+a)n - (1+B)yl/(1-n). m m L) 

0 (r) = 0' (r) for v2(r) = v 2(r) = - 20a (l+a)/(l-a) - 2<t (l+6)y m m c 

0 (r ) = 0' (?) for v 2 £ ) = v 2(? ) = - 2$ (1+a) - 24> (l+B)y/(u-l) * m o m o o d o 

Moreover, using the relation (6), we calculate 

v, 2 U ) = R(?)/(l-n) , v. 2(r) = n v. ) , D O D D O 

v 2(r ) = - 24> (1+a)/(1-a) , v 2(») = a v 2(? ) , C O c c o 

V 2(~) = - 2<t> (l+B)y/(u-l) , V,2(r) = u v,2(~) . 

Some straightforward algebraic calculations show that, a priori three 
possibilities can occur : 

(a) v < v , < v < v < v , , a b 00 c d 
which is equivalent with the condition 

(1+B)y - (1+oOn > 0 , (12) 

i.e. v, (°°) does not exist in this case, b 

(b) v < v < v, < v < v, » a ® b c d 
which is satisfied if 
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C1+6)y - (l+a)n < 0 , 

(13) 

(1+B)y - t—— (1+a) > 0 ; 
1 - a 

and (c) v < v < v , < v < v, , 
a 00 a c b 

which corresponds to the inequality 

(1+B)y - 7 (1+a). < 0 • (14) J. 3> 

The intervals in which 9 (r ) , 9' (r ),. . ., 9' (=°) are real functions 
2 ->• 2 2

m 0 m ° m 

of v (r ) , v (r) , or v*"(°°) can easilv be determined. For case 
o 

(a), i.e., under the assumption that condition (1'2) is satisfied, the 

results are shown in Figs, la, b , and c. From these figures and the 

relations (9) and (6) we deduce the different classes of particles. 

They all are summarized in Table I. 

In a similar way we can determine the classes of particles 

for cases (b) and (c). A detailed study of (b) shows that the classes 

of particles are the same as in (a). Case (c), however, has to be rejected 

since for the escaping particles the first adiabatic invariant would be 

violated in the region [v^, v^] . 

B. Negative Potential Energy 

The potential energy is now a decreasing function with the 

minimum - m$ (1+a) at infinity. Note that in this case 1 + a and 1 + 6 

are both negative. All particles with a negative potential energy are 

accelerated outwardly, i.e., the electric force is larger than the 

gravitational force. It is not surprising that in such a case no 

ballistic nor trapped particles can occur. A particle emerging from 

the baropause is blown out and therefore has a minimal velocity at 

the level r, given by 

v x
2 ( ? ) = - R(?) 



9(r0) = ? 

ba l l i s t i c escaping i n c o m i n g 

V(r0) 

F i g : 1a 

ig. la.- Velocity plane at the baropause for particles with a positive potential energy. 



ecn.-s 

0(r) = Arc sinfrj 

V(r) 

ball istic trapped 

escaping i ncom i ng 

Fig 1b 

Fig. lb.- Velocity plane at the exospheric level r, for particles with a positive potential 



escaping incoming 

@(oo) = Arc sin (pi) 1-/2 

@(oo) = Arc sin Va 

V(oo) 

Fig : 1c 
4 

Fig. lc.- Velocity plane at infinity for particles with a positive pontential energy. 

u> 
1 
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Table I. Classes of particles with a Positive Potential energy. 

v(r ) o 9(r ) 0 v(r) 9(r) v(to) Classes of Particles 

[0, v a] [o, «] — — Ballistic particles, not reaching 
level r 

[ V ^ r ° < 9 J . 1 

["-8m, «] ) 

r v - e J .. 

[O, v b ] 

' [o, n] Ballistic particles reaching 
level r 

Ballistic particles not reaching 
levelr 

. t v ' v j 
. [o, "] 

t v V J ' m 

f V " - 0 J 

Ballistic particles reaching 
level r 

Rapped particles 

t v - y 9 ' J 

[„-e^, n] 

. £ 0 ,
m. - « ' J 

v
c 3 

[n-91 , n] L m' J 

. [er , e ] V m' mJ / 

[n-9 , n-9' ] . m' o v 

is m 

0 » v c] [o. f_] 

[f , n] 

Escaping particles 

Incoming particles reaching the 
baropause 

Ballistic particles reaching 
level r 

Trapped particles 

t'e' "J [o, f ] 

[f, n] 

[*«' V 

[n-9 , n] m 

[ n - e V n J 9 J j 

[ V ^ 9 J 

[n-9 , nl L m' J 

[9 , n-9 1 L nr mJ 

Escaping particles 

Incoming particlea reaching-, the 
baropause > 
Incoming particles, not reaching 
the baropause 

Trapped particles 

[V,,, OO] [o, f ] [vd, « ] [o, e n] 

[n-em, n] 

[vd, » ] 

[ - 9 m , n] 

t 8
m' 0 1 J 

m m 

[n-9' , n-9 ] J [9' , n-9' ] L nr mJ 

Escaping particles 

Incoming particles reaching the 
baropause 

Incoming particles, not reaching 
the baropause 

Incoming particles, not reaching 
level r 



15.-

On the contrary, a particle coming from the interplanetary space into 

the exosphere is decelerated, and will reach the level r only if its 

velocity v(~) is not inferior to a minimal velocity defined by 

v
y

2

(») = 2$ (1+B)y. 

Proceeding in the same way as in the former case we can define all 

classes of particles with a negative potential energy. The results 

are summarized in Table II. 

IV. THE VELOCITY DISTRIBUTION 

In the barosphere just beneath the baropause, the collisions 

are still so frequent that the velocity distribution of the charged 

particles is Maxwellian. To obtain this distribution function in the 

exosphere we solve the collisionless Boltzmann equation subject to the 

boundary condition 

m ^ 3 / 2 f m 2 
v f ( r

o >
 v ) = n

o ^ 2 ^ k f " A
 e x p 

N
 2kT 

o , o 

where n
Q
 and T

q
 are constants chosen in an appropriate way to obtain 

a given number density and temperature at the baropause, and k is 

the Boltzmann constant. Taking into account (6) we obtain 

,3/2 
f(r, v ) = n ^ - — J exp 

m

 (v
2

 +
 R) 2kT 

o 
(r - r ) (15) 

o 

In order to simplify the calculations we assume that the trapped and 

incoming particles still have the velocity distribution (15) but 

multiplied by an appropriate weight factor. Putting this coefficient 

equal to zero, means that the particles of the class considered do 

not occur in the model exosphere. If, however, we choose this factor 

to be 1, the particles are supposed to be in thermal equilibrium with 

those emerging trom the barosphere. 



TABLE II.- Classes of particles with 

v(rQ) 6(ro) v(r) e(r) 

[0, -] r0, -L] . [v , oo] [0,9 ] 2 x J m 

ir] • [ TT-e , ^ m 

[e it-6 •m 

[0,v ] 
X [0, w] 

gative potential energy 

v(°°) 9(°°) Classes of particles 

m 

[vv,°°] Escaping particles 

[ff-B »•"] Incoming particles reach-
ing the baropause 

[e ,e •] m m 

,tt-9̂ ] I reaching the baropause 

m m 
Incoming particles, not 

[ 9 ' , TT-0 '] Incoming particles, not 
reaching level r 

Incoming particles, not 
[ n - e ' , n] J reaching the baropause 

[9m 1 Incoming particles, not m m , . ; , reaching level r 

[0>vy] [o, tt] Incoming particles, not 
reaching level r 



V. MOMENTS OF THE DISTRIBUTION FUNCTION 

Let us first recall the definitions of some macroscopic 
quantities, which characterize a gas of particles with mass m and 
velocity distribution f(r, v) : 
(a) the 

(b) the 

(c) the 

(d) the 

All the 
space. 
four classes of particles defined previously. We will use the 
spherical polar coordinates (v, 6 , 9 ) with the polar axis tangent 
to the magnetic field. In this case 0 coincides with the earlier 
defined pitch angle, and q> varies from 0 to 2tt for each class of 
particles . 

A. Ballistic Particles 

From Table I we deduce that the ballistic particles have 
velocities v and pitch angles 0 limited by the following inequaliti 

particle density 

n(r) = ƒ f ( r , v) d 3v, 

particle flux parallel to the field lines 

F(r) = J v u f(r, v) d v, 

parallel and perpendicular momentum flux 

-*• r 2 » - 3 

Pf|(r) - m J v ; f(r,v) d Jv, 

P ±(r) = | m / v^ f(r, v) d \ , 

energy flux parallel to the magnetic field 
e(r) = y m / v v f(r,v) d v. 

integrations are to be taken over the appropriate velocity 
In what follows we will calculate these quantities for the 



1 8 . -

0 ^ v < v, ( r ) b 
-*• -V 

v, ( r ) ^ v ^ v ( r ) b 00 

v ( r ) ^ v £ v ( r ) c 

, 0 ^ e « TT ; 

, 0 ^ 6 0 m ( r ) , and IT - 8 m ( r ) £ 6 < it ; 
m 

, e ' m ( r ) - 0 ^ 0 m ( r ) , and * - 6 * tt - e ' _ ( r ) m m m 

T a k i n g i n t o account the e x p l i c i t form of the v e l o c i t y d i s t r i b u t i o n ( 1 5 ) , 

a f t e r i n t e g r a t i o n over the above d e f i n e d r e g i o n s we o b t a i n 

n ( B ) ( r ) = 2no e " q J k ^ V J - A K ^ X p " 1 7 2 ) + B 

F ( B ) ( r ) = 0 

W 2 ( V ~ ° 1 / 2 > " W 2 ( X ° 1 / 2 ) 

(16) 

,(B) ( r ) = f pQ e " Q J K 4 ( V J - p A K ^ X p " ^ ) + a B -1/2, W 4 ( V t o o - 1 / 2 ) - W 4 ( X a " 1 / 2 ] 

p i B ) ( r ) = A p o e - q | K 4 ( V J - A ( l 4 n ) ^ ( X p " 1 ' 2 ) - B ( l + £ 
V V » ° ' " J 

- W 4 ( X o " 1 / 2 ) 3 - 1 - 1 / ? ^ - 1 9 
" 2 I P q A K 2 ( X p i / z ) + | po V „ B 

- 1 / 2 , - 1 / 2 , 
V V - ° >~ W 2 ( X g > 

e ( B ) ( r ) = 0 . 

The f u n c t i o n s K ( z ) and W ( z ) are d e f i n e d i n the Appendix . Moreover, m m r r
 ' 

f o r convenience we i n t r o d u c e d the shorthand n o t a t i o n s 

P„ = 

q = 

n kT 
o o p = l - n ,o = u - 1 » 

A [ l + o - ( l + 8 ) y ] , A = - m$/kT 

V = 

A = 

A ( l + B ) y , X Z = A [ ( l + 8 ) y - (1+ct)] 
1 

p l / 2 e - n q / p _ 1 / 2 -vVZ/o B = 0 e 00 
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B. Escaping Particles 

Here, we have to make a difference between particles with 

a positive and a negative potential energy. In the former case, i.e., 

1 + a -(1+B)y ^ 0, the velocity space corresponding to this class 

is defined by 

v j r ) v ^ v (r) , 0 ^ 6 < 9' (r) , 0 £ «P < 2ir 
m 

v
£
(r) ^ v <_ , 0 4 6 ̂  e^Cr) , 0 cp < 2ir 

Calculating the macroscopic quantities (a)-(d) we obtain 

n<
E)

(r>) 

F
( E )

( r ) 

n

o
 e

"
q

 \ l " W "
 A 

- B 

-1 -A(l+a) f 

\ - K
2
( X P "

1 / 2

) 

W,(V-..o-
1/2

) - W,(Xo"
1 / 2

) 

7 P c ri a e 
4 o o 

l 
1 + (a-1) exp - aA (l+a)/(l-a) 

(17) 

(18) 

- a B 

| - K ^ p "
1

'
2

) 

P <
E )

0 ? > - j p
o
 . - q / 3 _

 V V J
 .

 A ( 1 +
 n

} f - ^ ( X p -
1

/
2

) 

+ B(1 + 
,-1/2 

W ' ) - W,(xa 
"1/2, 

3 - 1 2 
- { wo V^ B 2 00 

4 

-1/2, 

3 -1 - -r n p q A 
L
i - K

2
(Xp-

1 / 2

> 

V
v

- ° - w
2
( x o "

1 / 2

) 



2 0 . -

(E) 1 -1 -A(l+a) 
e ( r ) =

 4
 P

o
C

o
 n 3 e

 ^
 a V

c
 +

 <
v

c-
+ 1 ) ( 2 + <

l5 
exp 

+ 2 + V -

with 

V
4

 + (V
2

-+l)(2-V
2

) 
c c

 00 exp - aA(l+a)/(l-a) 

- aA(l+a)/(1-

,(19) 

c = (8kT /inn) 
o o 

1/2 

V
2

 = A 
c 

(l+g)y + a(l+a)/(l^a) 

To calculate these quantities for escaping particles with a negative 

potential energy, the integrations are to be taken over the region 

v
x
(r) < v < , 0 ^ 0 < 6 (r) , 0 ^ q> < 2tt 

m 

which leads to the Formulas 

„ < « ( ? > -
 %
 -

 W
 - A i - K

2
( V

x
 p - 1 « , 

<?> - 1 « " I ! - w - » 4 1 - » " 1 / 2 > 4 x
y 

(20) 

(21) 

P « > < 7 > - } ,
0
 e - r | -

W
- A

(
u f , ! - >"

1/2

> 
3

 "I A 
ÖT n p q A 1 ~ 

e ( E ) ( ? ) =

 W o
 n ( 2

"
q ) (22) 

where we used the notation 

V

x » 
1/2 

C. Trapped Particles 

The velocity space for this class of particles is given in 

Table I. From thé definitions of the macroscopic quantities (a) - (d) 

we now obtain 
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n(T)(?) = 2C n e~q 
o 

-1/2» -1/2, A K2(Xp V ) + B W2(Xa '•"•) (23) 

F(T)(7) = 0 , 

p A K4(Xp"1/2) + oB W4(Xa 1 / 2) 

A(l+ -J) K 4(Xp = 1 / 2) - B(1 + WA(Xa"1/2) 

+ | n p"1 q A K2(Xa"1/2) + | pa V 2 B W2(Xa"1/2) 

e(T)(r) = 0 . 

where £ is a weightfactor introduced in the distribution function, as 
mentionned in Sec. IV. 

D. Incoming Particles 

Proceeding in a way similar to that for the escaping particles, 
the density, the particle, momentum, and energy fluxes for particles 
with a positive potential energy are found to be given by the formulas 

n ( I )(r) = Sno e " q ( ± - K 2(VJ + A 

+ W2(Xo"1/2) 

F ( I )(?) = - C F(E)(?) 

\ ' K2(XP"1/2) -B 

(24) 

,(I) 
II p;.-(r) = | Cpo e " ^ | - K ^ V J + PA a- I - V x p - " 2 , -.a B W4(V.o~1/2) 

+ W,(Xo~1/2) 4 
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P ^ C r ) - | C p o e ^ { | - K 4 ( V J + A(l+22.) | - V * r l / 2 > 

+ B(l+ W 4 ( V " 1 / 2 ) + W 4(Xo" 1 / 2) 

4. 3 A 

+ 2 nP q A 

+ W 2(Xn" 1 / 2) 

| " V X p " 1 ' 2 ) 
3 "l-t.2 _ - -r pa V B 2 ® 

w2 ( v«°" l / 2) 

(E) (E) 
where F and e are given by (18) and (19), respectively. 

On the other hand for the incoming particles with a negative potential 

energy, these quantities can be calculated through the expressions 

1 - v v 1 / 2 > 
n ( I ) (7) = cn e~q \ \ * K (V ) + A o 2 2 x 

- - , / E > ( r ) 

P ( I \ r ) - | t : P o e"< { | • K 4(V x) • P A [ | - } , 

P ( I )(r) = | , p o e ^ | 3
+ K 4 ( V x ) + A < l + $ > 

(25) 

3 -1 
2 + np q A 

I - v v 1 / 2 > 

1 - v v 1 / 2 > 

c ( I )(r) - - { , « > ( S 

(E) (F^ where F and e are now defined in (21) and (22) 

VI. rXOSPfiERIC MODEL 

Let us now consider an exosphere in which there are different 

kinds of charged particles with density n.(r ) and temperature T.(r 1 
j o j o 

at the. baropause. If the particles of species j h a w a positive potential 
enetgy, tljeir total density dietelhutioa ie given by 
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where the four partial densities on the right hand side are, respectively, 
given by the expressions (1.6), (17), (23), and (24). If on the contrary 
we are dealing with particles which have a negative potential energy, we 
obtain 

n.(r) = n<E)(7) • n f 1 ^ ) , 
J ] J 

where the escaping and incoming particle densities, now are given by 
(20) and (25). The other three macroscopic quantities, defined in 
Sec. V, can be obtained in a similar way. In all those expressions, 
aj and B (r) still remain unknown parameters, which in principle can 
be calculated by solving the differential equation (2). This, however,is 
an enormously complex problem, since the right hand side of (2) is a very 
complicated function of <PQ(r). In a recent paper Lemaire and Scherer^^ 
pointed out that in practice this difficult task can be avoided, except 
in a small transition region close to the baropause, by using two 
fundamental physical conditions : (1) the quasineutrality condition 

n (r) = E Z n (r) , (26) e . 1 1 ions 
and (2) the zero current condition 

F (r) = Z Z F.(r) . (27) e . l i ions 

Indeed, from the definitions (4a) and (8) if follows that for each 
kind of ion the values a., and 8.(r) are related to the values a 

1 1 e 
and 8 (r) of the electrons through the relations 

ai = " ae Zi me / mi ' 

ei(r) = - Be(r) Z± me/mi . 

Moreover, from the results of Sec. V it foil ows that the particle escape 
fluxes are only a function of the a-values and not of the 8's. Hence, 
we can determine a b y using condition (27). After substitution of these 
values in the explicit expressions of the particle densities, the quasi-
neutrality condition (26) yields a transcendental equation in 8 (r) which 
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can be solved numerically for each altitude. 

As an example we have considered the case of an (0+ - H + - e) 
exosphere, since recent measurements indicate that oxygen and hydrogen 
ions are the predominant constituents in the terrestrial polar 
i o n o s p h e r e ^ ' . Lemaire and Scherer^10^ have shown that the baropause 
level can be taken at about 2000 km above the polar cap for ion and 
electron temperatures of 3000°K. Hence, in the case of the Earth, 
the value a corresponding with the ratio of the magnetic field strength 
at infinity to the magnetic field strength at the baropause is very 
small ( ̂  10 ), so that we consider the case of a vanishing magnetic 
field at infinity. This simplifies the numerical calculations very much. 
Since the dipole configuration is a fairly good approximation for the 
terrestrial magnetic field up to a radial distance of about four Earth 

(13) 
radii , the parameter n which is defined in (11), can be calculated 
by means of the formula 

n(r-,X) = y3(4 - 3 COS2A)1/2 (4 - 3 cos2A )" 1 / 2 

o 
where A^ and A are, respectively, the geomagnetic latitude at the baropause 
and at the radial distance r. Along a magnetic field line we have the 
relation 

2 2 y - cos A = Cos A . o 
At the baropause level we assume the following concentrations 

3 - 3 2 - 3 "> "K n (r ) = 10 cm , n_+(r ) = 9 x 10 cm , and n„+(r ) = 10 cm e o U o H o 

Moreover, we neglect the class of incoming particles (c = 0) and 
suppose that the trapped particles are in thermal equilibrium with 
those emerging from the barosphere (C = 1). 
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We plotted the macroscopic quantities, which are defined 

in Sec. V , only along one line of force intersecting the baropause 

at the geomagnetic latitude A
q
 = 80°, because the results do not 

differ significantly with choice of the field line (75° $ \
q
 4 90°). 

Figure 2 illustrates the reduced potential energy 

q = 2 T T "
 = A

 t
1 +

 ° -
 ( 1 + B )

y
] 

o 

versus altitude. The electrons and oxygen ions have a monotonic 

increasing potential energy which tends to a positive constant value 

at infinity, given by - (1 + c^) 4> m
g
 = 1.94eV and - (1 + a

Q
+ ) 4>m

0
+= 5.94eV, 

respectively. Therefore, the electrons and 0
+

 particles emerging 

from the barosphere are decelerated. The protons on the contrary have 

a negative monotonic decreasing potential energy tending to 

- (1 +
 =

 ~ 1*45 eV, and consequently, they are blown out. 

The small polarisation electric field which accelerates the ions 

outwardly and retains the thermal electrons is shown in Fig. 3, with 

the electric potential cp^Cr). 

Once that the a and 6 values have been computed we can 

calculate the number density, the particle flux, the momentum fluxes, 

and the energy flux by means of the formulas determined in Sec. V . 

Figure A gives the ion number densities which show a difference in 

the scale height of the 0
+

 and H
+

 ions. As a consequence the oxygen 

ion, which is predominant at the baropause level becomes a minor 

constituent above 5500 km. Since all the H
+

 ions are blown out, their 

total number density is given by the escaping proton density. As far 

as the oxygen ions are concerned the situation is quite different. Up 

to an altitude of about 17 500 km the ballistic 0
+

 ions form the major 

class ; at higher altitudes, however, the trapped particles become 

more important. The number density of the escaping oxygen ions is 
-7 -3 

not plotted, since it varies from only 1.5 x 10 cm at 2500 km to 

6.2 x 10"
9

 cm"
3

 at 20 000 km. 
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Fig. 2.- Reduced potential energies versus altitude along a magnetic field line 

—! crossing the baropause (h Q = 2000 km) at 80° latitude. The baropause 

temperature is 3000°K for each species and the concentrations are 

n e ( r Q ) = 10 3 c m ~ 3 , n 0 + ( r o ) = 9 x 10 2 c m - 3 , and n H+(r Q) = 10 2 c m " 3 . The 

dashed lines correspond with the horizontal asymptotes. 
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ALT ITUDE (10 KM) 
Fig. 3.- Electric potential and field versus altitude along a magnetic field 

line crossing the baropause (h Q = 2000 km) at 80° latitude. The baro-

pause 'temperature is 3000°K for each species and the concentrations 

are n e ( r Q ) = 10 3 c m " 3 , n 0 + ( r o ) = 9 x 10 2 c m - 3 , and n R
+ ( r o ) = 10 2 cm 



1 U 5 10 15 20 
ALT I TUDE (10 3KM) 

Fig. 4.- Density distributions versus altitude along a magnetic field 
— 1 line crossing the baropause (hQ =? 2000 km) at 80° latitude : 

(1) H + density, (|) total 0 + density, .(3) ballistic Q + density, 
and (4). trapped 0 density. The baropause temperature is 300^°K 
for each species and the concentrations.are n (r ) = 10^ cm 
n 4-(r0) 9 x 10z cm"J, and n +(r ) = 10 cm 
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We can also determine for each species, the bulk velocity 

w(£) = F(?)/n(£) 

which is illustrated in Fig. 5. The H + flow rapidly becomes supersonic. 

Such behavior is in agreement with the results obtained by Banks and 

Holzer and is known as the polar wind. At large distances the proton 

and electron bulk velocities tend to a common constant value ( ^ 18.6 km 

s e c - 1 ) . It is worthwhile to note, however, that the oxygen ion flow 

velocity is much smaller and of the order of only 6 cm sec 1 at 20 000 km. 

The transverse and longitudinal pressures, defined by 

P A(r) - P (r) , 

p(l(r) = m y (v|( - w)
2 f (r, v)d 3v 

= P(| (r) - m w(r) F(r) , 

allow to calculate : (1) the parallel and perpendicular temperatures 

T|((?) = p„(r)/k n(?) , 

T^(r) = p x(?)/k n(r) ; 

(2) the average temperature 

<T(?)> = y [ T|( (?) + 2 Tj_(?)] ; 

and (3) the temperature anisotropy T,((r) /7±(r) . 

Figure 6 gives the mean temperature and anisotropy for each 

constituant as a function of the altitude. Owing to the small escape 

flux of the oxygen ions, the 0 + temperature does not change significantly 

and remains isotropic. The electron temperature decreases slowly and 
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A L T I T U D E (10 K M ) 
Fig. 5.- Bulk velocities versus altitude along a magnetic field line crossing the 

— baropause (h Q = 2000 km) at 80° latitude. The baropause temperature is 

3000°K for each species and the concentrations are n e ( r n ) = 10 3 

n H + ( r o ) = cm ~ J, and n j-(r ) = 9 x 10^ cm" 3 

' 0 " 
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ALT I TUDE (10 KM) 
Fig. 6.- Average temperatures and temperature anisotropics versus altitude 

along a magnetic field line crossing the baropause (hQ = 2000 km) 
at 809 latitude. The baropause temperature T(r0) = 3000°K for each 
species, and the concentrations are n.Cr») = 10^ cm~3 nA

+(r„) = 
9 x 10' cm--3, and n +(rn) = 10Z cm"J. H u 



becomes slightly anisotropic (T„/T = 1.4 at 20 000 km). For the 

proton temperature, however, there occurs a relatively large discontinuity 

in the parallel temperature and a fortiori in the average temperature. 

This is due to the assumption that there exists a sharply defined 

baropause which separates the collision dominated barosphere from the 

collision free exosphere. In a more realistic model, however, one 

should consider a transition region with nonvanishing thickness. 

Finally, in Fig. 7 we plotted the conduction flux which is 

defined by 

C(r) = \ m ƒ (v - w)
2

 (v
((
 - w) f (?, v) d

3

v 

= c(r) + w(r) [ nw(?) F(?) - j P„(?) - P
a
(r)] . 

Note that for the electrons the conduction flux is at 

least two orders of magnitude larger than for the hydrogen ions and 

that the 0
+

. conduction flux is negligible compared with the proton 

conduction flux.
1

. 
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Fig. 7.- Conduction fluxes versus altitude along a magnetic field line crossing 
the baropause (hD = 2000 km) at 80° latitude. The baropause temperature 
is 3000°K for each species and the concentrations are nQ(r_) = 10^ cm~3 
n0 + ( ro ) 

K for each species and the concentrations are np(rQ) = 10^ 
r 9 x 10^ cm"^, and nH+(rQ) = 102 cm"^. 
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APPENDIX 

The functions K (z) and W (z) are respectively defined by 
m m 

o r z - 2 

K (z) = — / dt e t m , 
® ] f . if o 

w ( Z ) = r z
d t e t

2
 t » . 

Vir J o 

The function K (z) may be expressed in terms of the well-known error 
m 

function and in terms of exponential functions. Indeed, partial 

integration yields the recurrence formula 

K (z) = — (m-1) K (z) - t T 1 / 2 z m _ 1 exp(-z 2) 
m I m-z 

where straightforward calculations lead to the results 

KQ(Z) = erf(z) , 

^ ( z ) = if~ 1 / 2i[l - exp(-z 2)] . 

In a similar way it is possible to show that 

W (z) = TT 1 / 2
 z

m _ 1 exp(z 2) - \ (m-1) W (z) 
m / m-z 

W (z) = ~ exp(z 2) D(z) 
° Yir 

r-l/2 

where D(z) is Dawson's integral 

W x(z) = tt
 1 / 2 [exp(z 2) - l] 

(14) 



34 . -

REFERENCES 

(1) A. EVIATAR, A.M. LENCHEK, and S.F. SINGER, Phys. Fluids 
1775 (1964). 

(2) R.E. HARTLE, Phys. Fluids 12, 455 (1969). 
(3) J.L. DONLEY, Space Research (North-Holland, Amsterdam, 1968), 

Vol. VIII, p. 381. 
(4) J.H. HOFFMAN, Trans. Am. Geophys. Union 49, 253 (1968). 
(5) J.O. THOMAS and M.K. ANDREWS, J. Geophys. Res. 73, 74Q7 (1968). 
(6) P.L. TIMLECK and G.L. NELMß, Proc. IEEE 57, 1164 (1969). 
(7) S.J. BAUER, in Electron Density Profiles In Ionosphere and 

Exosphere, edited by J. Frihagen (North-Holland, Amsterdam, 
1966), p. 270. 

(8) A.J. DESSLER and F.C. MICHEL, J. Geophys. Res. 71, 1421 (1966). 
(9) P.M. BANKS and T.E. HOLZER, J. Geophys. Res. 73, 6846 (1968). 
(10) J. LEMAIRE and M. SCHERER, Planet. Space Scl. 103 (1970). 
(11) J. LEMAIRE and M. SCHERER, Compt. Rend. Acad. Sei. Paris B 269, 

666 (1969). 
(12) J.H. HOFFMAN, Intern. J. Mass Spectry. Ion Phys. 4, 315 (1970). 
(13) J.G. ROEDERER, Rev. Gepphys. 7, 77 (1969). 
(14) M. ABRAMOWITZ and I.A. STEGUN, Editors, Handbook of Mathematical 

Functions, National Bureau of Standards, Applied Mathematics 
Series No. 55 (U.S. Government Printing Office, 1964),. 
Chap. 7, p. 295. 


