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KINETIC MODELS OF THE SOLAR WIND 

by 

J. LEMAIRE and M. SCHERER 

Abstract 

A new kinetic model of the quiet solar wind is presented and compared 
with earlier exospheric, semikinetic, and hydrodynamical models. To have equal 
mean free paths for the protons and electrons at the baropause. the ratio of the 
proton temperature to the electron temperature is supposed to be 
T (h )/T (h ) = 0.645. With the assumption that the trapped electrons are in p o e o 
thermal equilibrium with those emerging from the barosphere, the electric field 
distribution is calculated to cancel the electric current and space charge in 
the exospheric plasma. The bulk velocity, the density, the average electron and 
proton temperatures, and the energy flux, which are observed at 1 AU for quiet 
solar wind conditions, are well represented by such a kinetic model. The average 
electron temperature is nearly independent of the bulk velocity, whereas a 
positive correlation between the average proton temperature and the bulk velocity 
is found. Consequently it is suggested that in the interplanetary medium 
(r > 6R ) no external heating mechanism is needed to explain the observed quiet 
sol ar wind properties. Finally, the electric field calculations in this kinetic 
model are found to be in reasonable agreement with the empirical electric field 
values deduced from observed coronal-density distribution. 

Résumé 

Un nouveau type de modèle cinétique du vent solaire calme est décrit 
et comparé aux modèles exosphériques, semi-cinétiques et hydrodynamiques antérieurs. 
La vitesse moyenne d'expansion, la densité, la température des électrons et des 
protons, ainsi que les flux d'énergie calculés correspondent de façon satisfai-
sante aux valeurs moyennes observées à 1 UA en période de Vent Solaire calme. On 
trouve également que la température des électrons est.pratiquement indépendante 
de la vitesse du vent solaire à 1 UA tandis que la température des protons à 
1 UA est corrélée positivement avec cette vitesse. Par conséquent il apparaît 
qu'il n'est pas nécessaire de faire appel à un chauffage extérieur du milieu inter-
planétaire au-delà d'une distance radiale de 6 R s pour reproduire les conditions 
du Vent Solaire calme, excepté cependant pour 1'aAisotropie des températures qui 
peut être réduit par des instabilités de plasma (firehose). La distribution du 
champ électrique calculée pour maintenir dans ces modèles cinétiques la quasi-neu-
tralité et l'égalité des flux d'échappement des électrons et des ions est en 
accord satisfaisant avec celle déduite des densités électroniques observées dans 
la couronne solaire. 



Samenvatting 

Een kinetisch model is ontwikkeld voor de zonnewind tijdens een 
kalme periode van zonneactiviteit. De bekomen resultaten worden vergeleken 
met de reeds bestaande exosferische, semi-kinetische en hydrodynamische 
modellen. De snelheid, de deeltjes dichtheid, de gemiddelde elektron en 
proton temperatuur, en de energieflux, waargenomen op 1 A.E., worden goed 
benaderd in zulk kinetisch model. De gemiddelde elektron temperatuur is 
praktisch onafhankelijk van de zonnewind snelheid. Tussen de proton tem-
peratuur en deze snelheid bestaat echter een positieve correlatie. Dit 
wijst op een mogelijke verklaring van de zonnewind eigenschappen in de 
interplanetaire ruimte (r > 6Rg ), waarbij geen uitwendig verwarmingsmechanisme 
vereist is. Tenslotte levert dë berekening van het elektrische veld in dit 
kinetisch model, resultaten welke behoorlijk overeenstemmen met de proef-
ondervindelijke waarden, welke afgeleid worden van waargenomen elektron dicht-
heidsdistributies. 

Zusammenfassung 

Ein neues kinetisches Model des Sonnenwindes ist beschrieben und 
mit vorherigen exosphärischen, semi-kinetischen und hydrodynamischen Modelen 
verglichen. Die Geschwindigkeit, Dichte, Electron-und Proton - Temperaturen 
sowie die Energie Ausflüsse sind in Uberstimmung mit den Beobachtungen des 
stillen Sonnenwindes. Die Berechneten Electronen - Temperaturen sind ungefähr 
unabhängig von der Geschwindigkeit in der Nähe 1 AE. Die berechneten Protonen -
Temperaturen haben eine positive Wechselbeziehung mit der Sonnenwind Geschwindigke 
Die Beobachtungen haben die selben Eigenschaften gezeigt. Deshalb is e.s weiter 
nicht nötig ein Heizungmechanismus des Sonnenwindes zu suchen fllr r > 6R , um 
die meisten Eigenschaften des Sonnenwindes zu finden. Das electrische Feld in 
solch eines kinetisches Model ist in genügender Uberstimmung mit was von der 
beobachteten Electronen-Dichte erfolgt. 
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1. INTRODUCTION 

To obtain a kinetic description of the solar wind phenomena, 
several authors have applied exospheric theories to the collisionless region 
of the solar corona. Chamberlain [i960] assumed above a given altitude 
(called critical level, exobase, or baropause) the coronal particles move 
freely under the influence of an electric potential field 4L(r) and the solar £ 
gravitational field = —GM/r; r is the radial heliocentric distance; 
M = 1.989 1033 grams and G = 6.668 lO-8 dyne cm2 g~2. 

To ensure the electrical charge neutrality in the coronal exosphere, 
i.e., 

n (r) = n (r) (1) p e 

where n^ and ng are the proton and electron number density, respectively, 
Chamberlain assumed that $_(r) is given by the Pannekoek-Rosseland's formula Ci 
[Pannekoek, 1922; Rosseland, 1924] 

Vr) - V ro } 

m — m P e 
(r) - « (r )] (2) 

2 e 8 g o J 

corresponding to a collision-dominated plasma in hydrostatic equilibrium 
[Van de Hulst, 1953]. In (2), m and m^ denote the proton and electron mass, 
respectively, and e is the electronic charge. The same electric potential is 
also used by Jensen [1963], Brandt and Cassinelli [1966], Dessler [1969], 
Eviatar and Schulz [1970], and Brandt L1970]. For such an electrostatic potential 
distribution, however, the escape flux of the electrons Fg would be 43 times 
larger than the escape of the protons F 

• P 

Sen [1969] constructed a simplified model exosphere of the corona 
in which a finite electric sheath potential was assumed at the baropause 
(called the exospheric surface by Sen) to maintain the equality of the escaping 
fluxes of the protons F ahd of the electrons F 

P ,'••> e 



F (r ) = F (r ) 
p o e o 

(3) 

In this model the electric field is about twice as large as the 

Pannekoek-Rosseland's field. Although Sen [1969] does not explicitly give 

the electrostatic potential distribution, his results can be found by 

assuming that, for r > r Q 

$ (r) - ® (r ) = - 4* (2 - - f ) E E o o \ r / 

m $ (r ) / r 

where (p and S are constants determined by solving (3). With a constant 
o s 

value of p^ or however, the quasi-neutrality condition (IV cannot ..be 

satisfied in the exosphere. Recently, Lemaire and SchererC1969] presented 

exospheric models for the terrestrial polar ion exosphere in which the 

quasi-neutrality and zero-electric-current conditions (1).and (3.V tee; both 

satisfied simultaneously. The electric potential in their kinetic theory 

is given by 

§ £(r) - § E(r 0) 

a - (3(r) 
r -

m $ (r ) , . . P g o (r> r ) r " ; o 
(5) 

where a is a constant and (B (r) is a monotonic function of the radial distance. 

Formula (4) can be obtained from equation (5) by assuming that (B(r) = p^ = constant 

and a v: 2 p ; Pannekoek's [1922] potential distribution (2) is recovered 
s 

from (5) when a = P(r) = 1/2 (m — m )/m 
p e p . 

As shown by Lemaire and Scherer [1970], the escape flux of the 

electrons at the critical level is determined by the height of the total potential 

barrier. 



m [fi ( e g $ (r )] g o 
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the escaping electrons have to overcome. Therefore, the escape flux of the 
electrons (and protons) depends only on the value of a and not on p(r). 
The particle density distributions are. functions of both parameters p(r) 
and a. Hence the constant a can be determined so that the condition (3) 
is satisfied. The quasi-neutrality condition (1) then yields a transcend-
ental equation inp (r),which can be solved numerically at each level r and 
determines the shape of the electric potential distribution in the whole 
exosphere. 

The radial distribution of the electric potential given in volts, 
for a coronal temperature T(r ) = 10 °K at the critical level r = 6.05 o o 
R is plotted in Figure 1 (LSa). Chamberlain's [i960] (PR) and Sen's [1969J s 
(S) counterparts are also shown. A radial magnetic field configuration 
is assumed in all models discussed in this paper. 

Recently, Jockers [1970] and Hollweg [1970] proposed a 'semikinetic' 
theory for the exospheric region of the solar wind. They considered a collis-
ionless or kinetic description for the protons and an hydrodynamical treatment 
for the electron gas. Indeed, they determined § ( r), the electric potentials 
in the exosphere, by integrating and solving the equation 

d$_(r) 1 d(n kT ) E e e ,„. 
6 dr = ~ n dr ( 8 ) 

e 

which is a simplified form of the hydrodynamical equation of motion for the 
electrons« They also assumed the electron temperature T to be a known e 
function of r„ For instance, in Jocker's Model III the electron temperature 

6 -j / o is given by T (r) = 1.32 10 °K for r < 9 R , and by T a r forr> 9 R , e s e . s 
The proton baropause level is supposed to be at r = 2„5 R , and the velocity O S 
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RADIAL DISTANCE [ R q ] 
Fig. 1.- The electric potential in some exospheric models of the solar corona. 

The dashed line (PR) illustrates the Parmekcek-RosseLand's distribution ; 
the dotted curve (S) gives Sen's exospheric model for a baropause 
r Q = 6.05 Rq and a tempeFature T(r 0) = 106°K ; the solid line (LSa) 
corresponds with the kinetic models of Lemaire and Scherer for the 
same baropause conditions. 

ON 
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distribution at this boundary is Maxwellian and symmetric. 

In Hollveg'8 [1970] models the electron gas is supposed to be 
t e isothermal [T (r) =° c ] and the proton distribution at the baropause e 

(r = 10 — 20 R ) is Maxwelllan but asymmetric, i.e., the protons are o s 
assumed to move with an initial bulk velocity U. The value of U was 
chosen to be equal to the expansion velocity of Hartle and Sturrock's 
[1968] tvo-fluid model. 

In these semikinetic models, the electron baropause is located 
at infinity and the escaping electrons have to overcome a potential 
barrier : — e [*„(ao) — $>„(r )] = oo when T (r) is a constant. E E u e 

1. DETERMINATION OF BOUNDARY CONDITIONS. 

To calculate the electric potential energy for each kind of 
particles with mass m^ and charge Z^e, the explicit expressions for the 
escape fluxes and densities in the exosphere must be known. 

Approximating the actual velocity distribution at the baropause 
r by a symmetric Maxvellian one, Lemaire and Scherer [1971] have determined o 
the velocity distribution at any exospheric level r by means of Liouville's 
theorem. More general distribution functions at the baropause have also 
been considered by the authors, for instance, the asymmetric Maxwelllan 
velocity distribution function. 

F j ( v ' V V v v = Nj 
m. 

2nk© 

3/2 
. exp 

m. (v - U.)' 
-J J_ 
2k©. J (9) 
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where N. 0, and U. are parameters determined by appropriate boundary 
J > J > J 

conditions [Lemaire and Scherer, 1971]= 

Calculating the moments of the distribution function, one 
obtains explicit expressions for the particle density n.(r), the flux 
F.(r), the pressure tensor components p .(r) and p (r), With J Uj Xj 
these quantities, we calculate the bulk velocity w (r) = F (r)/n (r), 

j j j 
the longitudinal and transverse temperatures T .(r) = p„ (r)/ kn (r) and 

'IJ "J j 
T^^(r) = Pj^(r)/kn^(r), and the average temperature <T.(r)> = (1/3)[T(.(r) 
+ 2T( .(r)] [Lemaire and Scherer, 1971]. 

To compute a solar wind model with these formulas, we must 
first choose the baropause altitude h The baropause is generally defined 
as the surface where the mean free path 1 becomes equal to the density 
scale-height H 

l(h ) = H(h ) (10) o o 

From photometric and polarimetric observations of the solar 
corona during an eclipse, it is possible to deduce the electron density 
distribut ion for h < 20 R An example of such a radial density profile S o 
is given by Pottasch [i960] for a period of minimum in the sunspot cycle. 
From this density distribution shown by curve 1 in Figpr.e 2, it is 
possible to calculate the scale height 

j , -1 d In n \ 
- - d h - V ( 1 1 ) 

The result is given by curve 2 in Figure 2. 

H(h) 



i L i- i I i i i 
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HEIGHT A B O V I S O L A R LIMB; 
20 

2. -Curve 1 shows the equatorial eleetreri 
density distributian (cm~3) in Che solar 
earona abserved during an Eel ipse near 
Che miniinum in the sunSpat eyele as reparted 
by Pattaseh [1§6(D.] j curve 2 gives Che 
&6r"resp6nding density sfeale height H in km j 
eii'rVeS -3 and 4 'respectively illustrate the 
pr&tan and eleetran temperatures at the bar = 
pause as a functian of the ba'ropause 
altitude h

&
 expressed in Solar radii. 
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On the other hand, following Spitzer [1956] and Nicolet et al. 
[1971], who generalized the mean free path (m.f.p.) theory for unequal 
electron and proton temperatures, it can be shown that (1) , the deflection D p 
m.f.p. of thermal protons, is given by 

1 2 (VP = L8 * 10 „ La- <=» (12> e PP 

where the Coulomb logarithm, In A > for (i — j) collisions is defined 
by Nicolet et al. [1971] as 

In A. . = In ij 
k 3

T i
3 

L rtn (1 + T\/T.) e6 . e i j 
(13) 

For the temperatures and densities considered in the various models, 
"In is practically constant and equal to 25. 

Hence, for a given value of the temperature T , the altitude 
h^ of the proton baropause can be determined by solving (10), where 
l(h ) is replaced by (1 ) defined in (12). o D p 

Inversely, the expressions (10) and (12) can be used to determine 
the required proton temperature at an altitude' h . and thus the thermal o 
protons are collisionless for h > h . This baropause temperature T (h ) . o p o ' 
is given by 

log T (h ) = I log n (h ) + I log H(h ) + 0.57 (14) p o L e o c o 

-3 where n^ and H are given respectively in cm and km. 

Curve 3 in Figure 2. shows -the result obtained when n (r) and e 
H(r) are taken from Pottasch's [i960] observed density distribution. From 
this curve, it can also be seen that, if T (h ) & 6 x 10 the collision-' p o ' 
dominated region for the protons extends to radial distances greater than 
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20 R for coronal conditions corresponding to a minimum of solar activity S 
[Pottasch, I960]. 

To determine the electron baropause we use the deflection m.f.p. of 
a thermal electron in an hydrogen plasma, which is defined by 

(1 ) = 0.416(T /T )2(1 ) (15) D e e p D p 

When the electron and proton temperatures are equal, the electron 
m.f.p. is smaller than the proton m.f.p. and the collision-dominated region 
for the electrons extends to a higher altitude (h ) than the region for the o,e 
protons (h ) extends. 

°>P 

It is convenient, and not unreasonable, to assume that the escaping 
electrons and protons come from the same coronal layer, and therefore their 
respective baropause altitudes are the same. This implies 

[r Ch )] = [l (h )] (16) D o e D o p 
or, considering (12) and 0-5) , 

T (h )/T (h ) = 0.645 (17) p o e o 

Since the mean collision frequency for angular deflections 
of protons (v/̂ ) is much larger than the mean collision frequency for energy 
equipartition between protons and electrons v̂ - [Spitzer, 1956], it is reason-
able to assume unequal temperatures for the electrons and protons at the 
baropause level [Hartle and Sturrock, 1968]. 

From relation 17 and curve 3 in Figure 2, it follows that the electron 
temperature ât the baropause is also related to the altitude of the baropause. 
This relation is illustrated by curve 4 in Figure 2, which can be used to 
determine thé baropause altitude h for a given value of T (h ). o e o 
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For T (h ) = 1.4 x 106°K, then h = 6.3 R : from curve e ,o o s' 
1, n (h ) = 2.3 x 10 cm" , and from curve. 3, T (h ) = 0.9 x 10 °K. e o p o 

Since the potential energy of the electrons is an increasing 
function of altitude, they can be classified in four conventional classes' 
according to the characteristics of their orbits: (a) The escaping electrons 
that have enough kinetic energy to overcome the potential barrier; (b) 
the ballistic electrons that emerge from the barosphere but cannot escape; 
(c) the trapped electrons that have two mirror or reflection points in the 
exosphere; and finally (d) the incoming electrons. In what follows, we 
neglect the incoming particles and assume that the trapped electrons are 
in thermal equilibrium with those emerging from the barosphere. This 
assum.'iion implies the existence of some slow scattering mechanisms (particli;-
particle interaction, recombination, . . . ) that feed and depopulate the 
trapped orbits continuously. 

For the protons, however, the potential energy is a decreasing 
function of altitude. As a consequence, there are no trapped or ballistic 
protons, and in the kinetic models considered in this paper, all the protons 
are escaping. 

For an asymmetric velocity distribution, the electron and 
proton temperatures and densities at the baropause are related to the para-
meters 3., N., and U. by 

J J J 
lim T, (r) = aS . lim T (r) = 6 •A- e c jip p 
r-»r + r-x + (18) 

lim n (r) = bN lim n (r) = cN e e p p 
+ + r—r r—r o o 



where a, b, and c are given in Appendix A as functions of 0 ̂ , N., 
and U „ These constants result from the truncation of the proton j 
and electron velocity distribution such that the incoming particles are 
excluded. 

The left-hand sides of these equations are the actual 
temperatures T . (r ), T. (r ) and densities n (r ) , n (r ) at the J- e o p o e o p o 
heliocentric distance r . Therefore, we obtain from (18) simple 
relations between the parameters 0., N ̂ , and the boundary conditions 
T.(r ), n.(r ). For practically all of our models, the numerical value J o J o 
of a is equal to 0.97, and thus (17) and (18) yield 

0 = T, (r ) 10.91 0 = T, (r ) 0.645 e J - e o p J-e o 
(19) 

N = n (r )/b , N = n (r )/c e e o p e o 

Moreover, since the solar-wind velocity is always much 
smaller than the electron thermal speed, the velocity distribution of 
the electrons is nearly isotropic, and can be taken equal to zero. 
For the protons, however, the mean flow velocity at the baropause is nearly 
sonic and the distribution function can be highly asymmetric. Therefore, 
the parameter U^ is not negligible. 

3. KINETIC MODEL OF SOLAR WIND. 

Our interpretation of the parameters N^, 0 ̂ , U., characterizing 
the velocity distribution 9, is quite different from the signification 
Jockers [1970] and Hollweg [1970] give to thesequantities. These authors 
identify N.. 0 , and U., respectively, with the densities n.(r ),the J J J j o 
temperatures T. ( r

Q) 5
 a nd the wind velocity w^ (r ) just below the baropause 

boundary. 
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In our kinetic approach, the velocity distribution given by 
(9), or even a more general function, is essentially a convenient boundary 
value for Liouville's equation. The parameters N., 0., and U. can be 

+ J J J determined to fit the densities n (r ), the temperatures T.(r ), and 
+ J ° J o ' the bulk velocity w. (r ') just above the baropause, to the'observed'values 

at r = r . Hence, in our models no zero-order discontinuity exists at o 
the baropause for the lower-order moments of the velocity distribution. 

In Figures 3 and 4 we give the bulk velocity and the 
electron density at 1 AU versus the electron temperature at the baropause 
T (r ) and the value of the parameter U , respectively. The calculated e o p 
flow speed at 1 AU increases rapidly with T e( r

Q) b u t does not change 
significantly with U . Therefore, a rather precise value of ^.(r) can 
be determined by fitting W , the bulk velocity at 1 AU, to the observed E 
solar-wind flow speed. 

The average proton and electron temperatures at 1 AU versus 
the electron temperature at the baropause Tg

 an<* t'rie v al u e are 
illustrated in Figures 5 and 6, respectively. The calculated electron 
temperature <T > does not change very muchw.ith T (r ) or wi.t.h U . The proton e e o p 
temperature, however, depends strongly on both of these parameters. Hence, 
taking into account the results of Figure 3 and 5, we conclude that there 
exists a positive correlation between the flow speed W_ and<T>„, where, • E p E 
on the contrary, the electron temperature <T> is nearly independent of e E 
W . These important properties of our kinetic models are well supported E 
by the conclusions obtained from solar-wind observations by Montgomery 
et al. [1968], Burlaga and Ogilvie C1970], and Hundhausen et al. [1970]. 

As will be discussed in a forthcoming paper, the relation 
of T „. and W departs slightly from the observed one for the small and p E E 
large solar-wind velocities we considered, i.e., when T (r ) is lower 

6 6 than 1.2 x 10 °K and higher than 2 x 10 °K. The reason for this is that 
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ELECTRON TEMPERATURE: Te( rQ)[lQ6°K] 

Fig. 5.- The average electron and proton temperatures 
at 1 AU and for Up = U e = 0, versus the 
electron temperature at the baropause. The 
observed (Obs) quiet solar wind values are 
also plotted. 
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Up [km sec"}] 
Fig. 6.- The average electron and proton temperatures 

- at 1 AU, versus Up. The dashed and the 
solid lines correspond respectively to an 
electron temperature at the baropause of 
1.4 x 106°K and 1.6 x 106°K. The dots 
illustrate the model LSb which corresponds . 
with the baropause conditions rQ = 6.6 R Q, 
T e(r 0) = 1.52 x 106oK, T p(r 0) = 0.984xl0&oK, 
Ug = 0, Up = 14 km sec-1, and n e(r D) = 
3.1 x 104 cm-3. 
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the actual density distribution in a cold or a hot streamer differs from 
the observed one illustrated by curve 1 in Figure 2. As a consequence, 
the baropause altitude corresponding to small or large values of 
T^CtO is probably different from the value deduced in the previous 
section by using Pottasch's observed average densities. This difference 
can also explain the discrepancy between the relation of n and W G E 
(Figure 3) and the actual observed relation [Hundhausen et al. , 1970], 

In Table 1 we summarize the observed solar-wind flow 
speed W the particle flux F the density n the average temperatures E E G 
<T > and <T > , the temperature anisotropies (T„/T.) , the total e E < p E " p 
kinetic energy flux E and the heat conduction flux C for quiet solar-E E 
wind conditions as they have been reported by Hundhausen [1968, 1969, 
1970]. We also give the corresponding values computed in our kinetic 
model LSb which at the baropause level r = 6.6 R has the density 

°4 -3 S 

and proton temperature of n (r ) = 3.1 x 10 cm and T (r ) = 
6 e o p o 

0.984 x 10 °K. respectively. The electron temperature T (r ) and the 
6 - 1 ° value of the parameter U are 1. 52 x 10 °K and 14 km sec respectively. 

P 
They were chosen to obtain at 1 AU a flow speed and proton temperature 
that are the most probable values for quiet solar-wind.conditions, 
320 km sec"1 and 4.8 x 10^ °K [Hundhausen, 1968]. For this model, the 
bulk velocity just above the baropause is W(rQ

+) = 77.5 km sec \ 

It can be seen from Table 1 that the average electron 
4 temperature is equal to 11.7 x 10 °K, which is in good agreement with the 

observed values. The density n and the particle flux F are also in E E 
relatively good agreement with the solar-wind observations. The density excess 
of 307o is small as compared with the dispersion of the various experimental 
determinations [Hundhausen et al., 1970]. The total kinetic energy flux 
which is mainly transported by the protons is also in close agreement with 

- 2 - 1 -

the observed 0.24 erg cm sec [Hundhausen, 1970]. Finally, Table 1 
also shows that the computed thermal-conduction flux (mainly transported 
by the electrons) is of the same order of magnitude as the experimental 
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TABLE 1, Comparison of the Quiet Solar-Wind Conditions with the 
Results of the Kinetic Model LSb, which is a Best fit 
solution to these quiet Solar-Wind Conditions. 

Hundhausen Kinetic 

Conditions [1968,1969,1970] Model LSb Units 

W

E 
320 320 km sec 

n 
E 

5, 4 7,18 
-3 

cm 

F
E 

1.73 2. 30 
-2 -1 

cm sec 
EI 

< T > 
a T? 10 to 12 x 10

4 

11.7 x 10
4 

°K 
6 £j 

< T > 
P E 

4 
4., 8 10 4.8 x 10

4 

°K 

<V
T

J.>
e 

1.1 to 1,2 3.05 

3.4 164 

E

E 
2.4 x 10"

1 

2.0 x 1 0
_ 1 -2 

erg cm sec 
-1 

C

e E 
1 x 10"

2 

5. 1 x 10~
2 -2 

erg cm sec 
-1 

estimations given by Montgomery et al. C1968]. 

Since the experimental temperatures are often deduced from 

the dispersion of the energy spectra, it is convenient to define the 

half-width temperatures , T ^
 v
,arid *$y ̂ which cihaEacteriz'e the dispei'sicra of the 

velocity distribution in a direction perpendicular, parallel, and anti-

parallel to the magnetic field, respectively (see Appendix B). In the 

model LSb, the numerical values of these half-width temperatures for the 

protons are given by 

4 

= 1.4 x 10 °K 

f"^ = 5. 1 x: 10^) °K 

T = 1.8 x 10
4

 °K 
•irl 

which shows that the dispersion of the velocity distribution for the 
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protons is significantly larger in the outward direction than in the 
antiparallel direction (T = 2.8 T ). The value of the ratio of the 

T T * » 

parallel to the perpendicular half-width temperature (T /T = 3.6) is T i •lb 
relatively small and is comparable to the observed temperature anisotropy. 
This small value is due to the rather weak asymmetry in the proton velocity 
distribution at the baropause (U = 14 km). P 

The corresponding ratio of the 'integrated' temperatures 
[ (T.. /T ) = 164], which is equivalent with the ratio of the parallel to " J. p 
the perpendicular kinetic pressure, is^,however, much larger than the 
observed proton value ( ~3.4). For the electrons this ratio is much smaller 
[(T ,,/ Tj_ ) = 3].This small ratio is a consequence of the large number 
of trapped electrons as compared with the number of escaping electrons at 
1 AU. The value of the electron temperature anisotropy is also much 
larger than the observed ones (1.1 - 1.2). Since the computed pressure 
anisotropies are quite large and since the ratio p of 
the kinetic pressure to the magnetic pressure at 1 AU is approximately equal 
to 0.7 for 6 - 7 magnetic field intensity , plasma instabilities could become 
important [Kennel and Scarf, 1968; Eviatar and Schulz, 1970; Hollweg and 
Vttlk, 1970; Forslund, 1970; Bertotti et al., 1971; Pilipp and Vdlk, 1971]. 
It can be verified that the model LSb, i.e., 8., = 0. 7 _(T,. /T. ) = 164, ' ' r /{ p > »1 i. p 
(T, / T, ) = 3, T /T = 1.51, is stable in the small wave number limit. " A e e 11 p a 
W. Pillip. (personal communication, 1971), has calculated that under these 
conditions the maximum growth rate- occurs for right-hand polarized waves 
with a frequency of 0.14 sec ^ and a wavelength of 520 km. The characteristic 3 growth time for these unstable waves is equal to 2 x 10 sec. 

If the average temperatures can be predicted correctly by a 
collisionless model, the electro-magnetic waves generated in such a model 
would change the pitch-angle distribution of the particles but not their 
mean kinetic energy. 
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Moreover, it has been suggested by W. I. Axford (personal 
communication, 1971) that Coulomb collisions could contribute significantly 
to reduce the anisitropy of the velocity distribution in the vicinity 
of the earth. Indeed, the mean Coulomb deflection times of the solar-

4 wind protons (T = 4.8x10 °K) and the thermal electrons 
4 P 5 

T = 11.7x10 °K) are respectively, (t„) = 6.6 x 10 sec and (t_) = e D p D e 
4 x 10 sec [Spitzer, 1956], These values are larger than but still 
comparable to the time required by a proton and a thermal electron, 
respectively, to travel a distance equal to the density scale height 

5 4 (H ~ 0.5 AU) : (t ) = 2.5 x 10 sec and ( t ) = 3.4 x 10 sec. Therefore, — H p H e 
the Coulomb collisions may contribute significantly to the pitch-angle 
scattering of the particles, especially for the lower-energy electrons. 
This contribution can substantially reduce the temperature anisotropics 
obtained in collisionless models. The collision time (t ) for energy eq 
equipartition between electrons and protons is about 43 times larger 
than (t ) and 100 times larger than (t ) : t ~ 3 x 107 sec D p H p eq — 
[Spitzer,1956]0 As a consequence, at 1 AU no significant energy can be 
transfered from the electrons to the protons by Coulomb collisions. 
Therefore, Coulomb collisions could provide the wanted mechanism to 
reduce the temperature anisotropy without changing the average temperature 
or mean kinetic energy of the protons and electrons at 1 AU„ 

4. COMPARISON WITH EARLIER MODELS 

Table 2 gives the flow velocity, density flux, average temperature, 
and pressure or temperature anisotropy for different exospheric and > 
hydrodynamical models. It can be seen that the exospheric models are not 
as bad as it was thought during the last decade. Indeed, a self-consistent 
calculation of the electric field and an appropriate determination of 
the boundary conditions gives a satisfactory description of the quiet solar 
wind at 1 AU. Although we neglected wave-particle interactions and 
Coulomb collisions, our kinetic solar wind model predicts (a) the correct 



average electron and proton temperatures; (b) a larger half-width 

temperature in the outward direction than in the antiparallel one; (c) an 

electron temperature nearly independent of the flow speed; (d) a positive 

correlation between the average proton temperature and the flow velocity 

at 1 AU; (e) a rather representative value for the total kinetic-energy 

flux and heat conduction at 1 AU. 

• 5. ELECTRIC FIELD IN THE SOLAR CORONA 

We showed that the electric potential
 c a n

 be determined 

by using the zero-electric-current and quasi-neutrality conditions 3 and 1. 

The electric field follows from E = V $_(r). 
E 

This field is directed outward and has an intensity larger than 

the usually used Pannekoek's value. 

where g denotes the gravitational acceleration I.Lemaire and Scherer, 1969]. 

The extremely small charge separation necessary to support this electric 

field can be obtained from Poisson's equation 

Since the protons are more heavily attracted by the sun's gravitational 

field than the electrons are (m » m ), the gravitational force establishes 
p e 

a minute positive space charge, which in the collision-dominated region 

of the corona is given by 

1

 / E = - m g/e 
P 

E 
— 4ne(n — n ) 

P e 
(20) 

n 
£ 

n 
e 

n 
e 

(21) 



In the exospheric region, however, the space charge becomes 
-21 

negative and much more pronounced (of the order of 10 ). The reason 
is that the more speedy electrons tend to escape at the baropause and 
try to fill the outer space more rapidly than the heavy ions, 

<c > =(8kT /ran ) 1 / 2 <<(8kT /nm ) 1 / 2 = <c > p P P e e e 

In Figure 7 we plotted the ratio of the electric to the 
gravitational force acting on a proton. The values of eE/m g can also 

P 
be determined for r < 20R from Pottasch 's [i960] observed electron-s -
density distribution (see Figure 2). In a pure H isothermal corona 
the electric field is also given by 

eE = - kT y In n with (T /T ) = 1 (22) e e H i e 

which is equivalent with (8) used by Jockers [1970], and Hollweg [1970]. 
. From the scale height definition (11), it follows that 

eE/m g = (kT /m g)[l/H(r)] (23) 
P e P 

where H(r) is given in Figure 2 for a minimum in the sunspot cycle. 
The empirical results for T^ = 1.52 x 10 °K are also shown in Figure 7. 
The agreement between the theoretical and experimental points is 
quite satisfactory if we consider that we have neglected temperature 
gradients and the presence of heavier ions. 



TABLE 2. Data of Various Kinetic, Semikinetic , and Hydrodynamical Solar Wind Models 

Models V 

km sec 
-1 

n 

cm 

E' 
-3 

cm 

E' 

-2 - 1 
sec 

<T > 
e E 

°K 

<TT > 
P E 

°K 

T.. /T , II e r1- e 
/T 

Ch 
2 

S 

LSa" 

LSb* 
j 5 

H 6 

NS 

9 
WLC 

.10 HS 

CHa 

CHb 

CHc 

11 

12 

13 

CHd 

HB15 

14 

20 

258 

209 

320 

288 

323 

500 

352 

165 

250 

258 

280 

256 

270 

320 

370 

3 . 34 

8.25 

7. 18 

12 

4 

6.75 

8. 5 

15 

6.31 

5.8 

6.33 

6.00 

13 

7.4xl08 

8 

0.86x10 

1.73xl08 

2.30x10 

3.5x10 

2x10 

2.37x10 

1. 4x10 

8 
3.75x10 

1. 62*10 

1. 62x10 

1. 62x10' 

1. 62x10"" 

8 
4.16x10 

8 
i 

8 
) 

.8 

8 
i 

8 i 
8 

8 
3 

8 

11x10 

7.06x10 

11.7x10* 

46x10* 

28x10 

k 
9x10 

34x10* 

18.1x10* 

26.3x10* 

16x10* 

15.9x10* 
<5 

34x10 

11x10 

8.63x10 

4.79x10* 

6.7x10* 

1.0x10* 

28x10 

4 

9x10 

0:44x10* 

18.1x10* 

4x10 

4.. 3x10 

4.3x10 

3.7x10-

2. 66 

3.05 

.75 

37 7 

164 

900 

50 

.75 

M 
U> 

I 
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Footnote. Referring to Table 2. 

Chamberlain 's [i960] solar breeze model, with the baropause conditions 
r = 2.5 R_, T (r ) = T (r ) = 2 x 106 tiK. n (r ) = 106 cm"3, o S e o p o e o 

2 
Sen's [19693 exospheric model with an electric sheath potential at the 

6 A - 3 baropause r =6.05 R„ and T (r ) = T (r ) = 10 °K, n (r ) = 3 x 10 cm . o S e o p o e o 

3 
Kinetic model of Lemaire and Scherer with the same baropause conditions as 

in Sen's [1969] model. 

4 Kinetic tnodel of Lemaire and Scherer fitting the most probable quiet 
solar wind flow speed and average proton temperature at 1 AU. The baropause 

fi 6 conditions are r = 6.6 R_ T (r ) = 1.52 x 10 °K, T (r ) = 0.984 x 10 °K, o S ' e o , ' p o 
U = 0,U = 14 km sec , n (r ) = 3.1 x 10 cm . e p e o 

Jockers ' [1970] semikinetic model n°III, with baropause conditions 
r = 2..5 R , T (r d 9 R J = 1.32 x 106 °K, T (r > 9 R ) o S e S ' e S 
oc r~ T (r ) = 1.32 x 10 °K, n (r ) = 9 x 10 cm" , U = U =0. p o e o e p 

Semikinetic model calculated by Hollweg [1970] with baropause conditions 
r = 15 R , T (r) = 106 °K, T (r ) = 105 °K, U„ = 0, U = 175 km sec"1. 0 S e ' p o ' E ' p 

^ Parker's [1958, 1963] isothermal one-fluid model, with a reference level 
r. a 1 R and T (r) = T (r) = 106 °K, n (r ) = 2 x 108 cm"3. 1 S e p ' e o 

8 Noble and Scar f's [1963] conductive one-fluid model, with isotropic gas 
6 8 3 pressure and r, ̂  1 R , T (r,) = T (r,) = 2 X 10 °K, n (r,) = 2 x 10 cm 1 S e l p l e l 

Whang et al. 's [1966] conductive and viscous one—fluid model, with r_ 
1 R , T (r ) = T (r.) = 1.5 x 106 °K, n (r,) = 2.8 x 10® cm"3. S e 1 p 1 ' e l 
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Hartle and Sturrock •s C1968] conductive two-fluid model with isotropic 
g 

gas pressure and r. ~ 1 R T (r,) = T (r ) = 2 x 10 °K, n ( r ) = 
7 1 S ' e l . p l ' e l 

3 x 10 cm 

Cuperman and Harten's [ 1970a] one-fluid model with reduced thermal 
8 -3 conductivity beyond 15 R , r ~ 1 R n (r ) = 2.65-oc 10 cm , T (r ) =? ' S i u 6 1 6 1 

T (r) = 1.33 x 10 °K. p 1 

12 Cuperman and Harten's [1970b] two-fluid model with enhanced noncollision^l 
coupling between the protons and the electrons, r ~ 1 R ,T (r ) = 

.6 _ , x _ . . "3 1 S 6 1 
T (r.) = 1.66 x 10 °K, n (r.) = 2.4 x 10' cm p 1 ' e l P 

13 Cuperman and Harten's C1971] two-fluid model with enhanced noncollisional 
coupling and reduced electron thermal conductivity, r ~ 1 R , T C O = 

(• 7 1 6 
1.67 x 10 °K n (r.) = 2.3 x 10 cm . ' e 1 

Cupperman and Harten 's [1971] two-fluid model with enhanced proton thermal 
conductivity and reduced electron thermal conductivity, r. ~ 1 R , T (f-,) = 

fi 7 1 6 
T (r,) = 1.66 x 10 °K n (r ) = 2.4 x 10 cm p 1 ' e l 

15 Hartle and Barnes' [1971] conductive two-fluid model with isotropic gas 
pressure and an appropriated heating mechanism for the solar wind protons, 
r = 2 R T (r ) = 1.5 x 106 °K, T (r.) = 1.2 x 106 n (r.) = 1 g' e 3 1 P 1 ' e l 
1.5 x 10 cm" . 



2 6 . -

CONCLUSIONS 

If Pannekoek-Rosseland1s polarization field is substituted by 
the correct electric field in the exospheric problem, quite reliable kinetic 
models can be obtained for the solar wind. The flow velocity, the density, 
the particle and energy fluxes, and the electron and proton temperatures of 
our kinetic models are in quite good agreement with the observed values for 
quiet solar wind conditions as given by Hundhausen [1968, 1969, 1970], The 
deduced correlation of the proton and electron temperatures with the solar 
wind flow speed are supported by the observations reported by Burlaga and 
Ogilvie [1970] and Hundhausen et al. [1970]. Although the ratio of the 
parallel half-width temperature to the perpendicular half-width temperature 
is nearly equal to the observed temperature anisotropy, the corresponding 
ratio for the 'integrated' temperatures is however, much too large. As a 
consequence, plasma instabilities would probably destroy such large ani-
sotropics in the velocity distribution. At 1 AU, Coulomb collisions can 
also contribute to reduce the large temperature anisotropics of a pure 
collisionless model. In the outermost part of the coronal exosphere 

(r > 50 - 100 R ), the ions and electrons probably will be scattered by s 
wave-particle or particle-particle interactions and will no longer move 
freely in the gravitational and electrostatic fields, as it is assumed in 
our kinetic models. A similar conclusion has already been obtained by 
Eviatar and Schultz [1970] and by Griffel and Davies [1969]. 

Since the average electron and proton temperatures are correctly 
predicted in our model, we suggest that these interactions do not affect the 
bulk velocity or the mean kinetic energy of the electrons and protons but 
probably only change the pitch-angle distribution. Therefore, no external 
heating mechanism seems to be needed inside the exospheric region 
(r > 6-7 R ) to explain the quiet solar wind features. A heating mechanism s 
is however, required up to 6 or 7 solar radii to keep the electron and 
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6 6 
proton temperatures 1.5 x 10 °K and 0.98 x 10 °K, respectively, at 

6 or 7 R [ Hartle and Barnes, 1970] . 
s 

APPENDIX A : Boundary Conditions 

In our kinetic model the electrons and protons are supposed 

to move freely in the external gravitational magnetic and electrostatic 

field. The electrons are distributed according to what Lemaire and 

Scherer [1970] have called a 'trapped model'. That distribution means 

that the electrons, which have two mirror points above the baropause 

r Q
+ , are supposed to be in thermal equilibrium with the ballistic and 

escaping electrons. Since for r > r Q
+ the total potential energy for 

the protons is a monotonic decreasing function of the radial distance, no 

trapped or ballistic protons exist in our models. 

If the velocity distribution at the baropause is given by (9) 

and if the incoming particles are excluded, it can be verified that 

N and N are not the actual electron and proton densities at r 
e p o 

This difference is due to the truncation of the velocity distribution 

function. For U = 0 one obtains 
e 

lim n (r) = bN = ^ Erfc( - X )N (Al) 
p p 2 p 
+ 

r — r 
0 

lim T . (r) = 8 (A2) 
1 p p 
+ 

r -* r 
o 

lim n (r) = cN 
e e 
+ 

r -* r 
Q 

Y -v 2 

1 - \ ErfC (Y) " T^TT* ' J N (A3) 
2 (n) / e 
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R A D I A L D I S T A N C E [R©] 

Fig. 7.- Ratio of the electric force to the gravitational force acting 

— upon a proton, for different exospheric models of the solar 

corona. The dashed line (PR) corresponds to Pannekoek-Rosseland's 

potential ; the dotted line (S) represents the exospheric model 

calculated by Sen [1969] for r
Q
 = 6.05R© and T

e
( r

0
) = T

p
( r

0
) = 10 °K; 

the solid lines illustrate the results of Lemaire and Scherer : 

LSa corresponds to the same baropause conditions as in Sen's model, 

where LSb corresponds to r
Q
 = 6,6 RQ, T

e
( r

0
) = 1.52 x 1 0

6 o

K , 

T
p
( r

0
) = 0.984 x 10

6

°K, U = 14 km sec"
1

, and U
e
 = 0. The 

empirical values deduced from Pottasch'sfI960] coronal density 

distribution are represented by open dots. 



lim T, r) = a 9 A- e e 
+ r — r o 1 Y 1 - - Erfc (Y) -

(7t) 

-Y2 3 2 1/2 6 (f+ Y> 
1 Y" -y2 - - Erfc(YJ - tt—e 
2 (n) 1^ (A4) 

where we used the shorthand notations 

X 2 = m U 2/2k0 
P P P 

Y - (GM m /k6 r ) (1 + ct ) e e o e 

(A5) 

(A6) 

and where the complementary error function is defined by 

Erfc (y) = — J J Y 
(N) 

oo ?. -x e dx (A7) 

G is the gravitational constant, and M is the mass of the sun. 
The constant a is related to the difference of electric potential e 
between infinity and r , o 

A = e 
e [ . y ° ° } - W ] 

GMm (A8) 

The numerical value of a is obtained by solving (3), which for e 
a proton-electron gas reduces to 

I " 4 p 

8k0 N 1/2 . 
[ e~ + ( n ) L U XErfc(-X)] nm 

/ 8k0 ^1/2 
N ( £-4 e \ nm 

GMm 
1 + ' Q 6 (1 + a ) kö r e J e o 

. exp 
GMm 
k0 r e o 

"(1 + 

(A9) 



APPENDIX B : Half-Width Temperatures 

The velocity distribution of the protons in the exosphere is 
proportional to 

exp [ - q - V^ 2 - V7/ 2 - X 2 + 2X [q + V2 + (1 +l/r)) V 2] 1 / 2 

(Bl) 

where 
2 2 m v, m v 

V 2 = P 4- V 2 - (B2) 4. 2 k 8 II 2kd 
p p. 

[m_§ (r) + et„(r)]r 

P 
< - " " m <»3) 

B(r) 
^ = B ( 7 T ( b 4 ) 

o 

B(r) is the magnetic field intensity at the radial distance r, and X is 
defined by (A5). 

The most probable values of ijv̂ J,. Yj_ > anc* V are given by 

I v J m 2 = 7 ( B 5 ) 

V 1 M = 0 (Bfe) 

2 2 1 " ^ 
( V = x - q + ~ — ( B 7 ) 

The half-width reduced velocities are obtained from 

( W 2 = L T 1 2 + ^ r - 2 X : ( 4 " - 1 1 1 2 ( 1 - W * ( B 8 ) 
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2 In 2 + 1 r' - q + X2 + 2X( In 2) 1/2 (B9) 

and the half-width temperatures are given by 

(BIO) 

(Bll) 

(B12) 

where V ' and V '1 are the largest and smallest positive solutions II D U D 
of (B9), respectively. 

These half-width temperatures are very sensitive to the value of 
the asymmetry parameter U^. For instance, if U = 0 , T^ (r) = T^(r) = 
T,, (r) = T (r ). If however, the velocity distribution of the protons 
* * P ° 2 ~ 
is highly asymmetric [ u ~ (8k0 /ram̂ ) ] at the baropause, the half-
width temperature anisotropy T̂ . t/'T becomes as large as the pressure 
anisotropy i„e T / T 

IIP Ap 
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