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FOREWORD 

The note entitled "Generalized invariant for a charged particle interacting with a 
linearly polarized hydromagnetic plane wave" will be published in Bulletin de la Classe des 
Sciences de l'Académie Royale de Belgique. 

AVANT-PROPOS 

L'article intitulé "Generalized invariant for a charged particle interacting with a 
linearly polarized hydromagnetic plane wave" sera publié dans le Bulletin de la Classe des 
Sciences de l'Académie Royale de Belgique. 

VOORWOORD 

Dit werk, "Generalized invariant for a charged parficle interacting with a linearly 
polarized hydromagnetic plane wave" zal verschijnen in Bulletin de la Classe des Sciences de 
l'Académie Royale de Belgique. 

VORWORT 

Die Arbeit "Generalized invariant for a charged particle interacting with a linearly 
polarized hydromagnetic plane wave" wird in Bulletin de la Classe des Sciences de 
l'Académie Royale de Belgique herausgegeben werden. 



GENERALIZED INVARIANT FOR A CHARGED PARTICLE INTERACTING WITH A 

LINEARLY POLARIZED HYDROMAGNETIC PLANE WAVE 

by 

M. ROTH 

Abstract 

Gyroresonant interactions between charged particles and hydromagnetic waves are 

important processes in magnetospheric and solar wind physics. 

In this paper we formulate analytically a generalized invariant for a charged particle 

motion in the electromagnetic field of a linearly polarized hydromagnetic plane wave. The 

propagation is in the direction of a uniform magnetic field and it is assumed that the 

magnetic field of the wave is weak. Using a canonical transformation, the invariant J is 

developed to the first order in the modulation amplitude. It is shown that the curves 

J = constant represent satisfactorily the orbits in phase space. 

Résumé 

Les interactions gyrorésonnantes entre particules chargées et ondes hydromagnétiques 

jouent un rôle important dans de nombreux problèmes rencontrés dans l'étude de la 

magnétosphère et du vent solaire. 

Dans cet article, on formule analytiquement un invariant généralisé pour le mouvement 

d'une particule chargée dans le champ électromagnétique d'une onde hydromagnétique 

polarisée linéairement. Cette onde plane se propage dans la direction d'un champ 

magnétique uniforme et on suppose que l'amplitude de la composante magnétique de l'onde 

est faible. A l'aide d'une transformation canonique simplificatrice, l'invariant J est 

développé jusqu'au premier ordre en l'amplitude de la modulation. Dans l'espace des phases, 

on montre que les courbes J = constante reproduisent de manière satisfaisante les 

trajectoires de phase calculées numériquement à partir des équations de mouvement. 



Samenvatting 

De gyroresonante interactie tussen geladen deeltjes en hydromagnetische golven speelt 

een belangrijke rol in talrijke problemen in verband met de magnetosfeer en de zonnewind. 

In dit artikel- formuleren wij ^analytisch een veralgemeende invariant van de beweging 
van een geladen deeltje in het electromagnetisch veld van een lineair gepolariseerde hydro-
magnetische vlakke golf. De voortplanting gebeurt in de richting van een uniform 
magnetisch veld, en er wordt verondersteld dat het magnetisch veld van de golf zwak is. Met 
behulp van een vereenvoudigende canonische transformatie wordt de invariant J ontwikkeld 
tot de eerste orde in de amplitudemodulatie. Verder wordt aangetoond dat, in de fase-
ruimte, de krommen J = constante, goed de banen weergeven die berekend werden uit de 
bewegingsvergelijkingen. 

Zusammenfassung 

Die Resonanzinteraktionen zwischen geladete Teilchen und Hydromagnetische Wellen 
spielen eine wichtige Rolle in der Magnetosphere der Erde und im Sonnen Wind. 

In dieser Arbeit geben wir ein analytische Formel für einen adiabatischen Invarianten 
im Falle wenn ein Teilchen mit eine Hydromagnetische Welle interagiert. Mit Hilfe einer 
kanonischen Transformation ist dieses Invariant J zur ersten Ordnung in das 
Wellenamplitude entwickelt worden. In dem Phasenraum sind die Teilchenbahnen gut durch 
die Lienen J = Konstante angenähert. 



I. INTRODUCTION 

The motion of a charged particle in a magnetic field often can be described quite 
accurately by a superposition of a gyration and a drift motion (Northrop, 1963). If both the 
Larmor radius and drift velocity change slowly during a Larmor period, the behaviour of the 
particle can be characterized by quantities which are approximate constants of motion. 
These adiabatic invariants approach a constant value in the limit of infinitely weak varia-
tions of the magnetic and electric fields. In particular, the magnetic moment is an approx-
imate constant of motion. It is known as the first adiabatic invariant and was introduced by 
AlfVen (1950). 

The importance of a generalized invariant for a charged particle motion in an electro-
magnetic field arises whenever the conditions of adiabatic invariance are not satisfied. 

In the.magnetosphere as well as in the interplanetary space, the applicability of the. 
three classical adiabatic invariants is quite restrictive. Violation of the invariants can be 
caused by non-adiabatic time variations of the magnetic and electric fields, but also by 
interactions with electromagnetic or hydromagnetic waves (gyroresonant interactions) or by 
collisions in the ambient medium (atmosphere, ionosphere). 

It is generally accepted that the gyroresonant interactions occuring in the magneto-
sphere between charged particles and hydromagnetic waves (in particular : whistler and ion 
cyclotron waves) are responsible for a large number of magnetospheric processes : e.g. the 
limit on stably trapped particle flux in the radiation belts (Dragt, 1961 ; Kennel and 
Petschek, 1966), energetic particles precipitation, formation of aurorae, turbulent loss of 
ring current protons and SAR arc formation (Cornwall et al., 1970; 1971). 

In the interplanetary space, collisionless particles interact with hydromagnetic waves or 
with random magnetic fields. These irregularities can destroy the invariance of the magnetic 
moment and lead to a non-adiabatic change of the pitch angle, scattering the particles in the 
collisionless solar wind region. 
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In this paper we consider the effect of a linearly polarized hydromagnetic wave, on the 
motion of a charged particle. The wave propagation is in the direction of a uniform 
magnetic field B \ It is shown that, when the wave amplitude is weak, it is possible to find a 
more general invariant than the magnetic moment. In the second section, we describe our 
assumptions and notations and give the equations of motion by using a canonical 
transformation with zero order Larmor radius and phase as variables. In Sec. 3, we 
determine a generalized invariant of motion. A perturbation theory is used when h, the 
relative amplitude of the wave, is a small parameter. In a frame of reference moving with a 
speed equal to the phase velocity of the wave, the field is purely magnetostatic aind the 
kinetic energy of the particle is conserved. Therefore, any constant of motion J = 
J + hJ + h 2 J , + ..., is solution of the equation (J, H) = O where the left hand side is the o 1 2 
Poisson bracket of J with the Hamiltonian H. The method used is similar to that employed 
by Dunnett et al. (1968) and Dunnett and Jones (1972) for square wave and sine wave 
magnetic field modulations. Using the canonical transformation introduced in section 1, it is 
shown that all the differential equations determining Jj have the same form and can be 
integrated immediately. 

Numerical results are discussed in Sec. 4 to test the validity of the first order invariant : 
J + hJ , . O 1 

II. EQUATIONS OF MOTION AND CANONICAL TRANSFORMATION 

We consider a uniform magnetic field of intensity B o in a direction parallel to the Z-
axis and a monochromatic transversal hydromagnetic wave linearly polarized along the 
X-axis propagating with a phase velocity U parallel to B o . If S2 and k are, respectively, the 
angular frequency and the wave vector, the magnetic and electric fields of the wave are 
connected by Maxwell's equation : 

5B = (1) 
n 
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The electromagnetic field is completely described by the equations 

( 2 ) 

(3) 

where h is the relative amplitude of the magnetic modulation and t the time variable. 

In the frame of reference moving with a speed equal to the phase velocity of the wave, 
the electromagnetic field has an additional component resulting from the Lorentz 
transformation. As the r a t i o i s much smaller than unity, it follows that : 

(4) 

(5) 

(6 ) 

(7) 

In these equations the prime indicates that the variable is relative to the frame of 

reference of the wave. Since henceforth we only consider this frame we will omit the 

primes. 

In the cartesian coordinates system (X, Y, Z), the Hamiltonian of a charged particle of 

mass m and charge q in a magnetostatic field is : 

• m (X2 + Y2 + Z2 ) (8) 

The Lagrangiana^is given by : 

" m (X2 + Y2 + Z2) + qA.V (9) 

B = Bo + 6 B = Bo e2 + h Bo cos (kZ - fit) ey 

— — D, — 
E = "8E = h — Bo cos (kZ - ftt) ex 

t' = t 

Z '= Z - U t 

E'= E+ U a B = O 
- - - n z ' -
B'= B = B0 + hB0 c o s ( — ) e y 



A is the potential vector from which the magnetic field B is derived. Its components are 

1 U S2 „ A = - - B Y + h . - . sin - Z 2 ° 0 SI U 
1 \ - ; b . X 

A, = O 

(10) 

(11) 

(12) 

The generalized momentum (P x , P , P z , ) are defined by : 

(p 1 f — 1 X ax 
p 9 

y • < 3Y 
a 
az 

«. > k / 

Y, Z, X, Y, Z, t) 

(13) 

(14) 

(15) 

In order to simplify the notations it is convenient to introduce the dimensionless 
quantities x, y, z, p x , p y , Pz,t,v, H and L defined by : 

X 
x 

Y 
y 

z 
z (16) 

P P P x y z 

P x ~ p y Pz 
= - m u X (17) 

2 
CO (18) 

V 1 
— = — to X v 2 (19) 



% H £ 
L 

l 
4 m w (20) 

w is the angular frequency of gyration in the field B o 

w = - — (21) m 

and X is the wavelength of the modulation 

2tt 2ttU 
x " T " — < 2 2 ) 

Then, the Hamiltonian H becomes : 

H = H o + h Hj + h 2 Hj , (23) 

with 

H c = j [ (p k + y) 2 + (p y - x) 2 + p z 2 ] (24). 

Hj = - - (y+ p x )sin2rrz (25) 

H = — 7 sin 2 2m (26) 
In 

From equations (13), (14) and (15), one deduces the generalized momentum 

dx h 
p = — - y + - sin2îrz (27) dT 77 

dy P y = — + x (28) dr 
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dz 
p = — (29) 
Fz dr 

The equations of motion deduced from Hamilton's equations are given by 

1 d2x dy dz 
- — + h — COS2TTZ = 0 (30) 

2 dr2 dr dr 

1 d2 y dx 
+ — = 0 (31) 

2 dr2 dr 

1 d2z dx 
— —— - h. — . cos 2JTZ = 0 (32) 
2 dr2 dr 

By integration of equations (30) and (31), it follows . 

1 dx h 1 
- - — + y- — sin 2JTZ = - ( y - p x ) = Q, = C4 (33) 2 dr 2tt z 

1 dy 1 
; - • x - ; ( x . p . J - P . - e (34, 

where Qj and Pt are two constants of motion. 

In a zero order approximation, P, and Qj determine the cartesian coordinates of the 

guiding center C of the particle. Indeed from fig. 1, it can be seen that : 

OC = OP+"7<°> (35) 

where the dimensionless Larmor radius r*o) is defined by 
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The superscripts correspond to zero order values evaluated in the limit h -*-o. The 

components of the Larmor radius, deduced from equations (27) and (28), are respectively : 

1 1 
i*x0) = j ( P y " X ) a n d = ' 2 (Px + Y) (37) 

Since the components of OP are x and y, it follows from (35), that the components of OC 

are 

(OC)x = - (x+ py) P, (38) 

(OC)y = - ( y - p x ) = Q, (39) . 

If 0 ( o ) is the zero order Larmor phase angle, the projection of the particle in the Oxy plane is 

also given by 

x = P, + r*o) sintf>(o) (40) 

y = Q, + cos<f>(o) (41) 

Substituing (40) and (41) in (38) and (39) we obtain 

px = -Q, +'r ( 0 ) cos 0 ( o ) (42) 

Py = P, -r<°> sin«(0> ( 4 3 ) 
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It is convenient to introduce a transformation (x, y, z; Px, Py, Pz)—*(Q, • Q2 • Q3 P , . 

P2. P3,) defined by 

^ x = P, + P2
 1 / 2 sinQ, 2 (44) 

y = Q, + P2
 112 cos Q. 2 (45) 

(46) 

Px = + p2 1 / 2 c o s Q; 2 
(47) 

py = Pt -P2
 { l i sin Q2 (48) 

(49) 

If Q2 is identified as the zero order Larmor phase angle (0<o) in Fig. 1) and P2as the square 

of the zero order Larmor radius (36), it can be seen that (44), (45) correspond to (40), (41) 

and (47), (48) correspond to (42), (43). 

In fact the relations (44) to (49) define a canonical transformation since, in the 

formalism (QP P,), the equations of Hamilton can be reduced to the former equations of 

motion (30), (31) and (32). Indeed, from the expression of the new Hamiltonian 

H = H + h H, + h2 H. o 1 2 (23) 

with 

H„ = 2 P 2 + " P 3
2 (50) 
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Fig. 1.- Zero order representation of the particle gyromotion. 



2 
H, = - - P, 1 / 2 cos Q , . sin 2JTQ (51) 1 it 2 2 3 

1 
H, = — sin2 2TTQ (52) 2 2tt 3 

the equations of Hamilton become 

dr 

,2 

r ^ 
dr 

dQj 

dr 

dQ3 

V dr 

(53) 

dP2 2h 
= - ( — P, 112 sin Q, sin 2nQ t ) (54) 

dr it 

dP3 h2 

= . ( - 4h P, " 2 cos Q , cos 2rrQ, + — sin 4TTQ, ( 5 5 ) 
dr > 2 2 3 rr 

= o ( 5 6 ) 

= 2 - - P 2 ' 1 / 2 cosQ2 sin 2JTQ3 ( 5 7 ) 

= P , ( 5 8 ) 

The equations (53), (55), (56) correspond to the equations of motion (31), (32). (30). 

Equation (58) is identical with the equation (29) defining pz. The equations (54) and (57) 

describe the evolution of the zero order approximations of the Larmor square radius and 

phase angle. The conservation of the kinetic energy 
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d [ / dx \2 

dr - V dr 

dy V dz \2 
+ I 1 + V 

\ dr / v dT / 
= 0 (59 ) 

results from these same equations. 

It can therefore be concluded that the transformation (x, y. z; P„, P y , Pz )—(Q, • Q2 

Q 3 . P j . P 2 , P 3 ) is canonical. 

III. DETERMINATION OF A GENERALIZED INVARIANT OF MOTION 

Since the Hamiltonian H does not depend explicitly on time, any function J , for which 

(J , H) = O, is a constant. So if J is developped following the powers of h 

J = 2 hn J , (60) 

the expansion of the Poisson bracket leads to a set of recurrence equations 

< H 0 . J 0 > = O 

( H 0 , J . ) + (H, , J D ) = O 

( H O , J 2 ) + (H, , J , ) + ( H 2 , J 0 ) = O 

(Ho , J , ) + (Hj , J 2 ) + ( H a , J , ) = O 

I (»k ' J n - k ) = O . H , = O f o r k > 2 

(61) 

(62) 

(63 ) 

(64) 

(65 ) 
k = o 
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Any absolute invariant of motion is necessarily a combination J (Q, , P , , H) of the 
constants Q j , Pj and H. Two obvious solutions of this type are J = H or J o = H o , J , = H , , oo 
j = H , J ^ = O and J = 2 h' J. where all the J. are some arbitrary functions J ^ Q , , P, )of Q, 2 2 ' k ̂  2 j = o 1 

and P j . Of course, all the invariants oî this type are consequences of the conservation of the 
kinetic energy. 

Besides these absolute invariants we will determine generalized adiabatic invariants 
which are only slightly varying quantities along the orbit of the particle. For instance, in the 
case of a nearly uniform magnetic field, the magnetic moment, y mV^/B, is a well-known 
adiabatic invariant. It can be considered as a zero order invariant and identified with J 0 . 
When the characteristic length of the field inhomogeneity is comparable to the distance the 
particle travels in a Larmor period (i.e. near resonance), this zero order invariant is poorly 
conserved and higher order terms h J , , h 2 J 2 , . . . should be considered in the series expansion 
(60) defining J. 

The problem is then to determine a quantity J (or J Q , J , , J 2 , .'..) which generalizes the 
magnetic moment near or at the resonance condition. This condition is given by 

dZ wX dz 1 
V = = or v = — = " ( 6 6 ) " dt 2n " dr n 

In the following paragraphs solutions for J 0 and J , will be determined and the general 
form of the equation governing J k will be given. 

a) Zero order adiabatic invariant : J0 

J is a solution of the equation o 

/ 9H 3J 9H 9 J 0 . 3 f J h . . • - — . — = O (61) 
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which explicitly becomes 

dJ dJ 
2 —— + P, — = O (67) 

3Q, * 3 3Q 3 

The general solution of this equation is any arbitrary function of Qj , P , , P2 , P3 and 

P3 Q2 - 2Q3. Since in the zero order approximation, the parallel and perpendicular energies 

are conserved, ?2 (i.e. r*°)2 and P3 (i.e. v2) are constant. In the same approximation P3Q2 -

2Q. (i.e. v 0 ( o ) - 2z) vanishes. Therefore we can consider J o only as a function of P3 

b) First order adiabatic invariant: JQ + hJ} 

The first order term J, is a solution of the equation (62). When J o depends only on P3 . 

this equation becomes 

9J. dJ, 3J0 
2 + ? 3 9Q t

 = - 4 V / 2 c o s Q 2
 c o s 2 * Q 3 • ^ ( 6 8 ) 

With the transformation (Q2 , Q3 , P3)— (s, q, p) 

2(s + q) 
Q2 = — — , Q3 = q > P3 = P ( 6 9 ) 

equation (68) becomes 

3J, s + a d J o 
p — - = - 4 P, 1 / 2 cos 2 ( — ) . cos 2tt q . — (70) F 3q 2 p 3P 

Since J is a known function of p (or P,), an analytical expression of J can be 
O

 3 

obtained by an integration over q. When P3 (or p) # ± 1/ir, the solution of (70) is 

8J 1 
j = p 112 — _ ( 2 f f P 3 sin 2ctQ3 cos Q2 - 2 cos 2irQ3 sin Q2 ) (71) 1 2 dP3 (1 • it P 3 ) 
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For P3 = ± 1/ir, J j is a discontinuous function. Near these resonances J, diverges 

unless|p£- goes to zero at least as (1 - jt2 P 3
2 ) when P3— ± 1/n. This requirement limits the 

choice of the function J o (P3). A suitable choice for J o is 

b 2 n / fl2 \ / b n 1 
j = ( , . - f - ) + ( , . _ _ ) arcsin f - - ) - - b(f!2 - b 2 ) 1 ' 2 

o V • „2 P2 J \ 2 J \ (3 J 2 

(}2 \ / b \ 1 
I - - ) arcsin { - f ) + £ \ ^ <72) 

where 

b = n P3 '(73) 

p = n v (74) 

b being the initial value of b. When h = O, b = b and J is identical to the dimensionless 
o o o 

magnetic moment 

b2 P 2 

1 " " 

It follows from (72) that 

dJ 1 - * 2 P 2 
O 3 

3P3 v ? ' / 2 
(76) 

vanishes as 1 - n2 P 3
2 at the resonance points Pa = ± \/n. 

In J , , one needs only a zero order relation (in.h) between P2 and \ which is (see 

eq. 37) 
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1 

p = - I V 2 ( 7 7 ) 
2 4 

as in the case of a uniform magnetic field. According to eq. (71) 

J , = c o s 2rrQ3 s i n Q 2 - TT P 3 s i n 2ttQ 3 c o s Q 2 (78) 

Therefore, for this particular choice of J q ( P 3 ), the first order approximation of the 
adiabatic invariant J = J + hJ, remains finite even at the resonances. o 1 

c) Higher order approximations of the adiabatic invariant: J = 2 hkJ.,n>l 
k=o 

By means of the transformation (69), the differential equation (65) governing J n has 
the form 

p . i P i . w . c o s 2 ( ^ , . s i n 2 „ q . ( ) Q j _ 

9 J 
+ \ P 2 W2 Sin 2 ( ^ - ) . sin2*q . - f 1 - 4 P 2 »/a c o s 2 { L L 1 ) . 

2 

9J„ , 1 3 J „ 2 n-1 1 n-2 . cos 27rq. + - sin 4rrq . (79) 3p 3p 
, The successive J n (s, q, p, P 2 ) can, in principle, be determined by a simple integration 

over q. The problem is similar to that analysed by Dunnett and Jones (1972) for a 
sinusoidally modulated magnetic field with axial symmetry. In the next section, we limit the 
development to the first order approximation J o + hJ,. 
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IV. NUMERICAL RESULTS 

In order to check if the choice (72) of J0 (P3) leads to an appropriate invariant of 

motion, we compare in this section, the value of £ along the orbit of the particle with the 

value of £ determined from the algebraic equation J = C where the constant C is determined 

by the initial condition C = J[(Q3 )0, (Q2 )Q, !„]. 

First, consider a particle injected at the origin (z = o) with a velocity V = U)X./2JT (i.e. 

v = 1/rr) parallel to the magnetic field direction Oz. The amplitude of the magnetic field 

modulation is h = 0.025. The orbit of this particle, obtained by integrating Eqs. (32) to 

(34), is illustrated in Figs. 2 and 3. Since the initial velocity along Oz satisfies the resonance 

condition (66), the particle acquires an appreciable perpendicular velocity v^(Fig. 3) and its 

Larmor radius (Fig. 2) increases during the first 7 Larmor periods. After about the 13th 

Larmor period the initial conditions are more or less recovered and a new increase of the 

transversal kinetic energy is again observed during the 7 following periods. Obviously in this 

case the magnetic moment is not conserved. 

The trajectories of the particle for different initial conditions can also be represented in 
a two dimensional phase space by evaluating the quantity £ at the point Pn corresponding to 
successive periods of the magnetic field modulation, i.e. for Z = nX (or Q3 = z = n \ n = 0, 
1, 2, ... . For these points the magnetic field B has always the same value, and | is therefore 
proportional to the magnetic moment. The particle motion can then be described in a plane 
by the two parameters Q2 (phase angle) and % (magnetic moment). 

Figure 4 shows for h = 0.025 and v = 1 /TT, the values of j- and Q2 at the successive 

points Pn . The points (Q2, £)n in the phase.plane (Q2, £) are located on different curves, 

each of them corresponding to a definite set of initial conditions [(Q2 )o , l 0 ] . These curves 

demonstrate the existence of a functional relationship between \ and Q2 and indicate that 

an invariant exists even when the usual magnetic moment is not conserved as it is the case 

for the low values of % where the closed curves show the resonance phenomenon. For large 

values of i.e. for large pitch angles, the curves approximate to curves of constant In this 

case, the magnetic moment is an adiabatic invariant. This could be expected since for large 



-0 .1 
-0.1 0 

X 

0.1 

Fig. 2.- Particle orbit in a plane perpendicular to the magnetic field. The particle 

initially at the origin is injected along the magnetic field z-axis with a velocity 

v = 1/tt. 
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z 

Fig. 3.- Variation of the perpendicular velocity v^. The particle is initially injected along the z-axis with a velocity 

v = 1/TT. 



I .Oi— — " i — I r 

4.- Integrated orbits in the phase plane ( Q 2 , £), h = 0.025, v = \/n. 
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2 * V z V_ is small and the zero order adiabatic criterium is « X . 
L to 

The orbits represented in Fig. 5 are obtained for the same value of h and for a two time 
larger value of the velocity v = 2/ir. It can be seen that for small values of i.e. for small 
pitch angles, the invariant curves are approximately horizontal straight lines. In this case, the 
magnetic moment and J Q can be considered as good adiabatic invariants. However, for larger 
values of | or of the pitch angles, the closed curves demonstrate the existence of a reson-
ance. This resonance occurs for £ ~ 0.75 (i.e., v z ~ l/7r) and Q 2 = - W2. 

All the results illustrated in Figs. 4 and 5 have been obtained by numerical integration 
of the equations of motion (Eqs. 53 to 58) by a Runge-Kutta method. 

A similar representation of the orbit in the ( Q 2 , £) plane can be obtained from the 
expression of the invariant J = J o + hJ t where J o and J j are given respectively by Eqs (72) 
and (78). In this representation J must be expressed in terms of the variables ( Q 2 , £). P 3 is 
the only dynamical variable included in J o and J j and this is exactly v( 1 - 1 ) 1 / 2 . 

Curves J Q .+ hJ , = C are shown in Figs. 6 and 7 for v = 1 lv and v = 2/v respectively, 
with the same parameters (h = 0.025, Q 3 = n) as used in Figs. 4 and 5. From the 
comparaison of Figs. 4 and 6, or Figs. 5 and 7, it can be seen that the invariant curves 
calculated by a perturbation theory show satisfactory agreement with the exact results 
obtained from the integration of the equations of motion. 

This shows that the expression of J o + h J j defines a satisfactory first order invariant 
which can then be used for predicting the variation of the pitch angle along the trajectory of 
the particle, without integrating differential equations. 

CONCLUSIONS 

When a charged particle interacts with an electromagnetic wave its magnetic moment is • 
not an adiabatic invariant, especially when its velocity satisfies the resonance condition. 
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• • • • • 

.. •• • f • • 9 « « « • • | f 
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O 
• • « • • ' 

• • • 
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0.4 

0.2 
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Fig. 5.- Integrated orbits in the phase plane ( Q 2 , £), h = 0 .025 , v = 2 / i t . 
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Q 2 

Fig. 6.- Invariant curves JQ + hJ ( = C, h = 0.025, v = 1 fa. 
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Fig. 7.- Invariant curves J Q + h J , = C, h = 0 . 0 2 5 , v = 2hr. 
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For a linearly polarized hydromagnetic plane wave propagating in the direction of a 
uniform magnetic field, we have obtained an analytical expression for a first oraer invariant 
which reduces to the magnetic moment when the modulat ion ampli tude tends to zero. The 
comparaison of the invariant curves obtained by a per turbat ion method (Figs. 6 and 7> with 
the exact results calculated f rom the equations of mot ion (Figs. 4 and 5) proves the validity 
of the theory even when the resonance condit ion is satisfied 

The invariant is obtained as a series of powers of the modulat ion ampli tude The 
coefficients can be deduced from a set of recurrence equations. For small values of the 
modulation ampli tude this series can be limited to the first order term. 

For larger modulat ion amplitudes higher order terms are needed. Using a suitable 
canonical t ransformation it is indicated how these higher order terms can be deduced. 

This theory can be useful for the study of the magnetic interaction of a charged 
particle with Alfven waves. It can be used to describe the variation of the pitch angle along 
the particle trajectory without solving the equations of motion. 
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