3 - Avenue Circulaire B - 1180 BRUXELLES

AERONOMICA ACTA

A - Nº 135 - 1974

lonosphere-plasmasheet field-aligned currents and parallel electric fields

by

J. LEMAIRE and M. SCHERER

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE

3 · Ringlaan B · 1180 BRUSSEL

FOREWORD

"lonosphere-Plasmasheet field-aligned currents and parallel electric fields" will be published in Planetary and Space Science.

AVANT-PROPOS

"Ionosphere-Plasmasheet field-aligned currents and parallel electric fields" sera publié dans Planetary and Space Science.

VOORWOORD

"lonosphere-Plasmasheet field-aligned currents and parallel electric fields" zal verschijnen in de Planetary and Space Science.

VORWORT

"lonosphere-Plasmasheet field-aligned currents and parallel electric fields" wird in Planetary and Space Science herausgegeben werden.

IONOSPHERE-PLASMASHEET FIELD-ALIGNED CURRENTS AND PARALLEL ELECTRIC FIELDS

by

J. LEMAIRE and M. SCHERER

Abstract

Two kinetic models for the auroral topside ionosphere are compared. The collisionless plasma distributed along an auroral magnetic field line behaves like a non-ohmic conducting medium with highly non-linear characteristic curves relating the parallel current density to the potential difference between the cold ionosphere and the hot plasmasheet region. The (zero electric current) potential difference required to balance the current carried by the precipitating plasmasheet particles and the current transported by the outflowing ionospheric particles, depends on the ratio $n_{ps.e}/n_{th.e}$ and $T_{ps.e}/T_{th.e}$ of the plasmasheet and ionospheric electron densities and temperatures. When in the E-region the magnetic field lines are interconnected by a high conductivity plasma the resulting field-aligned currents driven by the magnetospheric potential distribution are limited by the integrated Pedersen conductivity layers. These currents are not related to the parallel electric field intensity as it would be in ohmic materials. The parallel electric field intensity is necessarily determined by the local quasi-neutrality of the plasma.

Rėsumė

Deux modèles cinétiques des régions supérieures de l'ionosphère aurorale sont comparés. Le plasma non-collisionel distribué le long d'une ligne de force magnétique aurorale se comporte comme un milieu conducteur non-ohmique ayant des caractéristiques non-linéaires. En effet le densité de courant électrique parallèle aux lignes de force magnétique n'est pas une fonction linéaire de la différence de potentiel appliquée entre l'ionosphère peuplée de particules chargées de 0.5 eV et la plasmasheet peuplée de particules de plusieurs keV. Il existe une différence de potentiel pour laquelle le courant électrique parallèle est nulle. Dans ce cas le courant transporté par les particules de la plasmasheet précipitées vers l'ionosphère est compensé par un courant égal mais opposé transporté par les particules ionosphériques qui s'échappent le long des lignes de forces magnétiques. La valeur de cette différence de potentiel dépend des rapports $n_{ps.e}/n_{th.e}$ et $T_{ps.e}/T_{th.e}$ entre les densités et températures des électrons de la plasmasheet et de l'ionosphère.

Lorsque la conductibilité électrique dans la région E de l'ionosphère est suffisamment importante pour qu'un courant horizontal puisse s'écouler aisément d'une ligne de force à l'autre un courant électrique parallèle peut apparaître sous l'effet d'une différence de potentiel électrique appliquée dans le plan équatorial de la magnétosphère.

L'intensité de ce courant parallèle est limité par la valeur de la conductibilité électrique des régions inférieures de l'ionosphère. mais n'est pas déterminé par le faible champ électrique parallèle aux lignes de forces magnétiques. Ce champ électrique parallèle est fixé par la condition de quasi-neutralité électrique du plasma, et ne dépend pratiquement pas de l'intensité du courant électrique parallèle.

- 2 -

Samenvatting

Langs een magnetische veldlijn die het aardoppervlak snijdt in de aurorae zone. gedraagt het botsingvrije plasma zich als een niet-ohmse geleider met sterk uitgesproken niet lineaire karakteristieke curven voor het verband tussen de stroomdichtheid evenwijdig aan het magnetisch veld enerzijds en het potentiaalverschil tussen de ionosfeer en de plasmaschede anderzijds. De totale stroomdichtheid wordt bepaald door de geprecipiteerde deeltjes afkomstig uit de plasma-schede en de ontsnappende deeltjes van ionosferische oorsprong. Het potentiaalverschil dat vereist is om deze stroomdichtheid gelijk aan nul te maken. is afhankelijk van de verhouding $n_{ps.e}/n_{th.e}$ en $T_{ps.e}/T_{th.e}$ van de elektronen dichtheid en temperatuur in de plasmaschede en in de ionosfeer. Wanneer in het E gebied de magnetische veldlijnen verbonden zijn door een sterk geleidende plasma. dan zijn de aan de veldlijn evenwijdige stromen begrensd door de totale Pederson geleidbaarheid in de ionosferische lagen. Deze stromen zijn niet verbonden met de intensiteit van het parallele elektrische veld zoals het wel het geval is voor ohmse media. De intensiteit van het parallele elektrische veld wordt noodzakelijk bepaald door de quasi-neutraliteit van het plasma.

- 3 -

Zusammenfassung

Zwei Kinetische Modelle der auroralen obere Ionosphäre sind verglischen. Der Stossfreie Plasma der entlang die auroralen Feldinien verspreitet ist. verhält sich wie ein nicht-ohmischer Strömleiter mit unlineare Charakteristiken.

Die Stromintensität die entlangs der Feldlinien fliesst is nicht proportional mit der Potentialdifferenz zwischen die untere Ionosphäre and equatoriale Plasmasheet. Für eine bestimmte Potentialdifferenz is diese Strömintensität null. In diesem Fall ist des Ström der hinunterfliessende plasmasheet Teilchen in gleich gewicht mit dem Ström der druch die Ionosphärischen Teilchen entlangs der Feldliniene fliesst

Der Wert dieser Potentialdifferenz hängt von $n_{ps,e} n_{th,e}$ und von $T_{ps,e}/T_{th,e}$ ab wo $n_{ps,e} n_{th,e}$. $T_{ps,e}$, und. $T_{th,e}$ die Dichten und Femperaturen des Plasmasheet und iono-sphärischen Teilchen sind.

Wenn die Leitfähigkeit der ionosphärischen E-Fläsche hoch genug ist so dass eine starker Ström zwischen zwei Feldlinien fliessen kann. dann is as möglich dass ein elektrischer Ström entlangs die Feldlinien fliesst. Dieser Ström ist durch die magnetosphärische Potentialdifferenzen getrieben, und durch den Wert der Ionosphärischen Leit begränzt.

Diese Strömintensität ist nicht durch das Parallele elektrisches Feld bestimmt. Dieses Parallele elektrisches Feld ist durch die quasi-neutralität Gleichung bestimmt.

I. INTRODUCTION

The existence of parallel electric fields along the magnetic field lines connecting the auroral ionosphere and the plasmasheet is an important problem in magnetospheric physics. Hultqvist [1971, 1972] deduced from a collision-dominated model calculation that the electric potential of the plasmasheet should be about 600 Volts higher than the ionospheric potential to cancel the Ohmic electric current driven downwards by a thermoelectric field E_{μ} . This field results mainly from the electron temperature gradient. In a collisiondominated plasma this polarization electric field comes from the tendency for the electrons to diffuse out of the high temperature regions (plasmasheet) towards the colder regions (ionosphere). The validity of such a model rests upon the assumption that the collision rate of the ionospheric and plasmasheet electrons is sufficiently large so that their velocity distribution is sufficiently close to the Maxwell distribution and that the transport coefficients (e.g. the electrical conductivity, the thermal diffusion coefficient, ...) can still be calculated from the classical Chapman-Enskog first order approximation. In the topside auroral ionosphere, above circa 1000 km altitude, the electron density $(n_{th,e})$ is smaller than 2×10^3 cm⁻³, and the electron temperature $(T_{th,e})$ is larger than 2×10^3 °K. Therefore the Coulomb collisions become so infrequent that the Chapman-Enskog method for estimating the transport coefficients becomes as useless as the classical hydrodynamic approximations themself [Lemaire and Scherer, 1973b]. Unless it will be proven that enough electromagnetic (resonant) wave energy is stored in the magnetospheric flux tubes to scatter all the exospheric particles, and that a generalized Ohm law relates the electric current density to the parallel electric field, collision dominated models for the topside ionosphere remain very questionable.

On the other hand kinetic models of the relatively cold ionospheric plasma ($T_{th.e} = 10^3 - 10^4 \, {}^{\circ}$ K) penetrated by hot plasmasheet particles ($T_{ps.e} = 10^6 - 10^7 \, {}^{\circ}$ K) have been presented by Lemaire and Scherer [1973a] and by Knight [1973]. In both models the plasmasheet electric potential (ϕ_s) is lower than the ionospheric potential(ϕ_E). The reduced electric potential difference $x = e(\phi_E - \phi_s)/kT_{th.e}$ is determined by Knight as a function of the electric current, carried by the precipitating suprathermal electrons, and by the thermal

electrons evaporated from the topside ionosphere. Curve K in Fig. 1 illustrates Knight's results in dimensionless variables : the electric potential is given in $kT_{th,e}/e$ units, and the electric current in $n_{th,e} e(kT_{th,e}/m_{H}+)^{1/2}$ units, with the convention that positive values correspond to electric currents flowing away from the earth (Note that the reverse convention is used in Knight's paper). The upper and right handside scales give respectively the potential $\psi_E - \psi_S$ and the field aligned current j_{ff} in Volts and in A/m² for $T_{th,e} = 6000 \, {}^{\circ}$ K and $n_{th,e} = 10^3 \, {\rm cm}^3$. The results illustrated in Fig. 1 were obtained for $n_{ps,e}/n_{th,e} = 10^{-3}$. $T_{ps,e}/T_{th,e} = 10^2$ and $B_E/B_S = 10^3$. It can be seen that the electric current given by curve K is zero for $x = X_o = 6.56$ or $\phi_E - \phi_S = 3.39$ Volts.

Curve L-S in Fig. 1 corresponds to a calculation made by the present authors by using Lemaire and Scherer's [1973a] model when the same boundary conditions are used as in the previous case. The field aligned current becomes now zero for $X_0 = 5.21$, i.e. for $\varphi_1 = \varphi_2 =$ 2.69 Volts. For values of the dimensionless potential smaller than X_o the current is negative (i.e. toward the earth) as a consequence of a large escape flux of the ionospheric electrons. For $x > X_{o}$ the net current is directed away from the earth since the larger potential barrier reduces the flux of the escaping thermal electrons below the value of the precipitated plasmasheet electron flux. Both curves in Fig. 1 resemble the characteristics of a thermoionic tube where the electric current is a highly non-linear function of the potential difference between the cold ionosphere and the hot plasmasheet region. The difference between Knight's and Lemaire and Scherer's results, illustrated in Fig. 1. is due to differences in the kinetic model descriptions. Indeed, besides the current carried by the electrons considered by Knight, Lemaire and Scherer took also into account the current transported by the ionospheric ions (H^+) and by the plasmasheet protons (p^+) . When the total net current is small the H⁺ escape flux makes a contribution to j_{ij} which cannot be neglected despite the lower mobility of the ions compared to the electron mobility. Indeed if the fluxes of plasmasheet and ionospheric electrons nearly balance each other. the hydrogen ion flux will significantly contribute to the net field-aligned current. Knight's assumption that "the electrons make the dominant contribution to the net electric current" is therefore only valid for $x > 10^4$ i.e. for very large current densities $j_{\mu} \approx 2 \times 10^{-5}$ Am⁻² In this large current regime the models K and L-S provide equivalent results.

Fig. 1. Parallel electric current density as a function of the electric potential difference between the ionosphere (E) and the plasmasheet (S). The density and temperature of the thermal electrons at the ion-exobase are respectively : $n_{th.e} = 10^3 \text{ cm}^{-3}$, and $T_{th.e} = 6000 \text{ }^{\circ}\text{K}$. The density and temperature of the plasmasheet electrons at the equatorial end of the magnetic line of force are respectively given by $n_{ps.e} = 10^{-3} n_{th.e}$, and $T_{ps.e} = 10^2 T_{th.e}$. It was also assumed that the equatorial cross section, A_s , of the auroral flux tubes is 1000 times larger than A_E , its cross-section in the ionosphere : $A_S/A_E = B_E/B_S = 10^3$ The field-aligned current is zero for a potential difference of 3.39 Volts in Knight's [1973] model (K), and for $\phi_E \cdot \phi_S = 2.69$ Volt in Lemaire and Scherer's [1973] model)L-S).Note the non-linearity of the Electrical Characteristics of the collisionless plasma distributed along an auroral field line.

2 ZERO-CURRENT CONDITIONS

The characteristics shown in Fig. 1, as well as the value of X_o for which $j_{ll} = 0$, depend on the relative densities and temperatures of the plasmasheet and ionospheric particles. Figure 2 illustrates the dependence of X_o on the ratio $n_{ps,e}/n_{th,e}$ for a constant value of $T_{ps,e}/T_{th,e} = 10^2$. The upper and right-hand side scales give the corresponding values of $n_{ps,e}$ and $(\phi_E - \phi_3)$ when $n_{th,e} = 10^3$ cm⁻³ and $T_{th,e} = 6000^{\circ}$ K. It can be seen that in the model L-S. X_o reaches a maximum value $X_o^{max} = 5.64$: (or $(\phi_E - \phi_S)^{max} = 2.92$ Volts) which corresponds to a zero plasmasheet density. At this limit the escape fluxes of the thermal electrons and ionospheric hydrogen ions balance each other as in the polar wind model of Lemaire and Scherer [1969, 1970]. In Knight's approximation where the H⁺ ion flux was neglected $X_o^{max} = \infty$. On the other hand when the plasmasheet density and precipitation flux become large, the potential difference $\phi_E - \phi_S$, decreases slowly and becomes equal to zero for $n_{ps,e}/n_{th,e} = 0.1$ At this limit the precipitation flux of the plasmasheet electrons is approximately equal to the maximum escape flux of the thermal electrons.

$$F_{ps.e} \approx F_{th.e}^{max} = -n_{th.e} \sqrt{\frac{2k T_{th.e}}{\pi m_e}}$$

This maximum value corresponds to the critical electron flux for which Block [1972] has shown that a double potential layer can occur between the ionosphere and the plasmasheet region. For $T_{th,e} = 6000 \,{}^{\circ}$ K and $n_{th,e} = 10^3 \,{\rm cm}^{-3}$ we have $F_{th,e}^{m\,a\,x} = 2.4 \,{\rm x}\,10^{10} \,{\rm cm}^{-2} \,{\rm sec}^{-1}$ which corresponds to partial current densities of $j_{p\,s,e}^{\mu} = -j_{th,e}^{\mu} = 4 \,{\rm x}\,10^{-5} \,{\rm A/m^2}$ This is larger than the usually observed values. For plasmasheet densities larger than $n_{p\,s,e}^{m\,a\,x} = 0.1$ $n_{th,e}$ (i.e., $n_{p\,s,e} > 10^2 \,{\rm cm}^{-3}$). X_o becomes negative and a minimum in the electric potential will appear somewhere along the field line to reduce the precipitation flux of the energetic electrons and confine them near the equatorial plane between two potential barriers located in both hemispheres. Kindel and Kennel [1971] argued that ion cyclotron waves already become unstable for precipitation fluxes larger than $10^9 \cdot 10^{10} \,{\rm cm}^{-2} \,{\rm sec}^{-1}$. In this case strong wave particle interactions will change the physical properties of the plasma, and the assumptions on which the kinetic models are based, will no more be applicable for the resonant particles. The parallel electric current can then be significantly reduced as a

Fig. 2.- Electric potential difference between the ionosphere (E) and the plasmasheet (S) required to balance the upward and downward currents carried by the hot plasmasheet and cold ionospheric particles (i.e. $\Sigma_{j} = 0$). As for Fig. 1 it is assumed that $n_{th.e} = 10^{3} \text{ cm}^{-3}$, $T_{th.e} = 6000^{0} \text{ K}$, $T_{ps.e}/T_{th.e} = 10^{2}$, $A_{S}/A_{E} = B_{E}/B_{S} = 10^{3}$. The density of the precipitating plasmasheet electrons is varied from $n_{ps.e} = 10^{-1} \text{ cm}^{-3}$ to 10^{2} cm^{-3} . In Knight's (1973) model (K) where the current transported by the H⁺ ions is neglected, the potential difference for a zero electric current increases indefinitely when $n_{ps.e}$ tends to zero, while in Lemaire and Scherer's [1973] model (L-S) it has a maximum value $|\Phi_{E} - \Phi_{S}|^{max} = 2.92 \text{ Volt}$. For $n_{ps.e} > 10^{2} \text{ cm}^{-3}$, the potential difference for a zero electric current is larger than the threshold for formation of double layers [Block, 1971] or for driving the ion-cyclotron waves unstable [Kindel and Kennel, 1971].

9

consequence of the triggered plasma turbulence.

3. MODELS WITH FIELD-ALIGNED CURRENTS

In the preceeding section it was assumed that no net electric current can flow along field lines. This implies that the field lines are electrically insulated. The thermoelectric potential difference $\phi_{\rm E}$, $\phi_{\rm S}$, arising between the equatorial and ionospheric "ends" is then comparable to the potential difference between the cold anode (ionosphere) and the heated cathode (plasmasheet) in an unpolarized thermionic tube. In the magnetosphere-ionosphere system the Pederson conductivity becomes large in the lower ionospheric E-region, and adjacent field lines are not insulated but electrically interconnected. If at the equatorial ends of the field lines an electric potential difference is applied a current will flow up and down along the good conductivity "wire" constituted by the magnetic field lines. The current density driven by the convection magnetospheric potential distribution will be determined or limited by the integrated Pederson conductivity of the ionosphere which constitues the load or resistance of this large scale electric circuit system. In this image which was discussed by Boström [1972], the convection electric potential distribution predicted by Axford and Hines [1961] and determined experimentally by McIlwain [1972] can be considered as a generator or a battery whose electromotive force is changing with time and related to the solar wind velocity and magnetic field orientation. Nevertheless it is clear that the small potential difference $(\phi_E \cdot \phi_S)$ does not drive the currents up and down along the field lines. The value of $(\phi_E \cdot \phi_S)$ will continously adjust to the current j_{μ} , and not the reverse as is sometimes believed. Indeed, only a small adjustement of the potential barrier $e(\phi_{\rm E}, \phi_{\rm S})$ can provide any value for the thermal electron escape flux which ranges between $F_{H}^{+} = n_{H}^{+} + \left(\frac{2k T_{H}^{+}}{\pi m_{H}^{+}}\right)^{1/2} \approx 5 \times 10^{8} \text{ cm}^{-2} \text{ sec}^{-1}$ and $F_{\text{th},e}^{\text{max}} \approx 2.4 \times 10^{10} \text{ cm}^{-2} \text{ sec}^{-1}$. The lower limit which corresponds to a maximum of the potential, i.e. 2.9 V, yields a parallel electric current density of 5 x 10⁻⁶ A m⁻² for a plasmasheet particle precipitation flux of - 3 x 10⁹ cm⁻² sec⁻¹ as observed by Vondrak et al. [1971]. The upper limit corresponds to a nearly zero potential difference between the upper ionosphere and the plasmasheet, and yields a downward electric current density of - 3.3 x 10⁻⁵ A m⁻². The usually observed Birkeland currents measured by Zmuda et al, [1970], Armstrong and Zmuda [1970], and reviewed by Cloutier [1971], are of the same order magnitude.

6. THE PARALLEL ELECTRIC FIELD

In Knight's paper the ion density distributions and the local quasi-neutrality condition of the exospheric plasma are not discussed. Nevertheless, an arbitrary electric potential distribution, $\phi(r)$, or an arbitrary parallel electric field [$E_{\eta} = \sqrt[n]{\phi} (r)$], will generally lead to an electron density n_e , and a scale height H_e , which differ from the total ion density Σ_{ion} n_i, and the ion scale height H_i. As a consequence an unrealistic electric space charge density would exist in the whole exosphere. Indeed, the actual parallel electric field in a plasma determines the electron and ion density gradients or scale heights along the magnetic field lines. At each altitude there is a unique value of E_{ij} such that $\nabla_{ii} n_e = \nabla_{ij} \Sigma_{ion} n_i$, and $n_e = \Sigma_{ion} n_i$. There are many electric field distributions E_{il} which will give the same value of $\phi_E \cdot \phi_S = - \int_{r_o}^{r_E} E_{il} ds$. But there is only one distribution which will provide the local quasi-neutrality of the plasma between the exobase (r_E) and the equational plane (r_S) and which satisfies Poisson's equation. Lemaire and Scherer [1973a] have calculated this parallel electric field distribution along an auroral field line for realistic electron and ion (H⁺, O⁺) densities and temperatures in the ionosphere and in the plasmasheet. They found that E_{μ} decreases with altitude and remains always smaller than 10⁻³ mV/m. The value of the potential difference between the exobase and the plasmasheet corresponding to a zero field aligned current is $\phi_E \cdot \phi_S = 2.8$ V. By neglecting the ionic current as in Knight's model it follows that $\phi_E \cdot \phi_S = 3.25$ V for the same boundary conditions. In Lemaire and Scherer's calculations the plasmasheet particle densities are $n_{ps,e} = n_p + = 0.1 \text{ cm}^{-3}$ and the precipitation fluxes are respectively $F_{ps.e} = -4.9 \times 10^7 \text{ cm}^{-2} \text{ sec}^{-1}$, $F_p + = -2.5 \times 10^6 \text{ cm}^{-2}$ sec¹ at the reference level of 1000 km. These values which correspond to the lowest precipitation fluxes observed at the low latitude boundary of the auroral zone by Frank and Ackerson [1971] and by Heikkila [1972, 1973], are too small to explain visible auroral displays [Chamberlain, 1961]. When the plasmasheet electron density or temperature are increased by an amount $\Delta n_{ps,e}$ or $\Delta T_{ps,e}$ respectively, the precipitation flux will increase by an amount $F_{ps.e}$. To maintain the potential barrier $e(\phi_{E} \cdot \phi_{S})$ the thermal electrons have to overcome, a Birkeland current must be able to flow out of the ionosphere. The density of this field-aligned current is then related to the excess $\Delta F_{ps,e}$ of the plasmasheet electron flux by $j_{ij} = -e\Delta F_{ps.e}$. For a precipitation flux of -3.1×10^9 cm⁻² sec⁻¹, j_{ij} must be equal to 4.9×10^{-6} A/m² in order to obtain the same potential difference as in the previously

discussed model where $\Delta n_{ps.e}$, $\Delta F_{ps.e}$, and j_{ll} are zero. Quite the same parallel electric field distribution and ionospheric ion density distributions are then obtained.

Whether or not such a current can flow along the field line will depend on the conductivity in the lower ionosphere and on the electrostatic potential distribution in the equatorial plane. When the resistance of the ionosphere is to large (small) the current density will be smaller (larger) than $-e\Delta F_{ps,e}$ and the potential difference $\phi_E \phi_s$ will decrease (increase) in order to enhance (diminish) the thermal electron escape flux.

- 12 -

REFERENCES

- ARMSTRONG, J.C., and A.J. ZMUDA, Field-aligned current at 1100 km in the auroral region measured by satellite, J. Geophys. Res., 75, 7122-7127, 1970.
- AXFORD, W.I., and C.O. HINES, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, *Can. J. Phys.*, 39, 1433-1464, 1961.
- BLOCK, L.P., Potential double layers in the ionosphere, Cosmic Electrodynamics, 3, 349-376, 1972.
- BOSTROM, R., Magnetosphere-lonosphere coupling in Critical problems of magnetospheric physics, 139-156, eidted by E.R. Dyer, IUCSTP c/o National Acad. of Sciences, Washington D.C., USA, 1972.
- CHAMBERLAIN, J.W., Physics of the Aurora and Airglow, Academic Press, New York, 1961.
- CLOUTIER, P.A., Ionospheric effects of Birkeland currents, Rev. Geophys. Space Phys., 9, 987-996, 1971.
- FRANK, L.A., and K.L. ACKERSON, Observations of Charged Particle Precipitation into the Auroral zone, J. Geophys. Res., 76, 3612-3643, 1971.
- HEIKKILA, W.J., The morphology of auroral particle precipitation, Space Research XII, Part 2, 1343-1355, 1972.
- HEIKKILA, W.J., Aurora, EOS, Trans. Am. Geophys. Union, 54, 764-768, 1973.
- HULQVIST, B., On the production of a magnetic field-aligned electric field by interaction between the hot magnetospheric plasma and the cold ionosphere, *Planet. Space Sci.*, 19, 749-759, 1971.
- HULTQVIST, B., On the interaction between the magnetosphere and the ionosphere, in "Solar-Terrestrial Physics" 1970 : Part IV, 176-198, edited by E.R. Dyer, Reidel Pub. Co., Dordrecht, Holland, 1972.
- KINDEL, J.M., and C.F. KENNEL, Topside current instabilities, J. Geophys. Res., 76, 3055-3078, 1971.
- KNIGHT, S., Parallel Electric Fields, Planet. Space Sci., 21, 741-750, 1973.
- LEMAIRE, J., and M. SCHERER, Le champ électrique de polarisation dans l'exosphère ionique polaire, C.R. Acad. Sc. Paris, 269, 666-669, 1969.

- LEMAIRE, J., and M. SCHERER, Model of the polar Ion-exosphere, *Planet. Space Sci.*, 18, 103-120, 1970.
- LEMAIRE, J., and M. SCHERER, Plasmasheet particle precipitation: a kinetic model, *Planet. Space Sci.*, 21, 281-289. 1973a.
- LEMAIRE, J., and M. SCHERER, Kinetic models of the Solar and Polar winds, *Rev. Geophys. and Space physics*, 11, 427-468, 1973b.
- McILWAIN, C.E., Plasma convection in the vicinity of the geosynchronous orbit, in "Earth's magnetospheric processes", pp. 268-279, edited by B.M. McCormac, Reidel Publishing Company, Dordrecht-Holland, 1972.
- VONDRACK, R.R., H.R. ANDERSON, and R.J. SPIGER, Rocket-based measurements of particle fluxes and currents in an auroral arc, J. Geophys. Res., 76, 7701-7713, 1971.
- ZMUDA, A.J., ARMSTRONG, J.C., and F.T. HEURING, Characteristics of transverse magnetic disturbances observed at 1100 km in the auroral oval, J. Geophys. Res., 75. 4757-4762, 1970.