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FOREWORD 

The article "Diamagnetic Boundary layers : A kinetic theory" has been prepared when 
one of the authors (J.L.) was a NAS-NRC Research Associate at NASA- Goddard Space 
Flight Center, Greenbelt, Md. This article will be published in Astrophysics and Space 
Science. 

AVANT-PROPOS 

L'article intitulé "Diamagnetic Boundary layers : A kinetic theory" a été réalisé grâce à 
la National Academy of Sciences - National Research Council qui a subsidié un séjour de six 
mois pour l'un des auteurs (J.L.) au NASA-Goddard Space Flight Center, Greenbelt, Md.. 
USA. L'article sera publié dans Astrophysics and Space Science. 

VOORWOORD 

Het artikel "Diamagnetic Boundary Layers : A kinetic theory" is tot stand gekomen 
dank zij de National Academy of Sciences - National Research Council die aan een van de 
schrijvers (J.L.) een toelage voor een verblijf van zes maanden heeft verzekerd aan het 
NASA-Goddard Space Flight Center, Greenbelt, Md., USA. Het artikel zal verschijnen in 
Astrophysics and Space Science. 

VORWORT 

Das Artikel "Diamagnetic Boundary Layers : A kinetic theory" wurde mit der 
Bestüzung der National Academy of Sciences - National Research Council entworfen als 
einer der Verfasser (J.L.) während sechs Monate in NASA- Goddard Space Flight Center 
war, Greenbelt, Md., USA. Dieses Artikel wir in Astrophysics and Space Science veröffend-
licht. 



DIAMAGNETIC BOUNDARY LAYERS : A KINETIC THEORY 

by 
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* Institut d'Aéronomie Spatiale de Belgique, B-l 180 Bruxelles 
** Goddard Space Flight Center, Greenbelt, Md., U.S.A. 

Abstract 

We present a kinetic theory for boundary layers associated with MHD tangential 
'discontinuities' in a collisionless magnetized plasma such as those observed in the solar 
wind. The theory consists of finding self-consistent solutions of Vlasov's equation and 
Maxwell's equation for stationary, one-dimensional boundary layers separating two Max-
wellian plasma states. Layers in which the current is carried by electrons are found to have a 
thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying 
electrons is found to exceed the Alfvén speed, and accordingly such layers are not stable. 
Several types of layers, in which the current is carried by protons are discussed; in parti-
cular, we considered cases in which the magnetic field intensity and/or direction changed 
across the layer. In every case, the thickness was of the order of a few proton gyroradii and 
the field changed smoothly, although the characteristics depended somewhat on the 
boundary conditions. The drift speed was always less than the Alfvén speed, consistent with 
stability of such structures. Our results are consistent with the observations of boundary 
layers in the solar wind near 1 AU. 

Résumé 

Un modèle cinétique est proposé pour décrire les discontinuités tangentielles dans le 
vent solaire. Les solutions données satisfont aux équations de Vlasov et de Maxwell et 
décrivent des couches decourantsdiamagnétiques séparant deux plasma ayant des densités et 
températures différentes. L'épaisseur de ces couches limites est soit de l'ordre de quelques 
rayons de gyration des électrons, soit de l'ordre de quelques rayons de gyration des ions. 
L'un ou l'autre type de structure prévaut suivant que le courant diamagnétique est trans-
porté par les électrons ou seulement par les ions. Les modèles particuliers choisis pour 
illustrer la théorie correspondent à des structures semblables à celles qui sont observées dans 
le vent solaire à 1 U.A. 



Samenvatting 

Een kinetisch model, dat de tangentiele discontinuiteiten in de zonnewind beschrijft, 
wordt voorgesteld. De gegeven oplossingen voldoen aan de vergelijkingen van Vlasov en 
Maxwell en beschrijven lagen van diamagnetische stromen die twee plasma met verschillende 
dichtheid en temperatuur scheiden. De dikte van deze limietlagen is ofwel van de grootte-
orde van enkele gyratiestralen van de electronen ofwel van enkele gyratiestralen van de 
ionen. Het ene of het andere structuurtype wordt aangenomen naargelang de diamagnetische 
stroom overgebracht wordt door de electronen of enkel door de ionen. De afzonderlijke 
modellen die gekozen werden om de theorie de staven stemmen overeen met structuren 
gelijkaardig aan deze die in de zonnewind werden waargenomen op 1 U.A. 

Zusammenfassung 

Ein kinetisches Model für tangentiale Diskontinuitäte ist vorgeschagen worden. Die 
Auflösungen der Vlasov und Maxwell Gleichungen beschreiben diamagnetische Ströme die 
zwei Plasmas mit verschiedene Dichten und Temperaturen abteilen. Die Breiten dieser 
Schichten ist entweder einige Electron Larmor Radius or einige Ionen Larmor Radius, dem 
nach dass die electrisch-diamagnetische Ströme durch die Electronen order nur durch die 
Ionen übertragen sind. Die bestimmte Modelle die hier forgeschlagen sindum die Theorie zu 
illustrieren, sind den tangentialen Diskontinuitäten des Sonnen Windes ähnlich. 



1. INTRODUCTION 

Observations of MHD 'discontinuities' in the solar wind have been discussed in many 
papers and were reviewed by Burlaga (1971, 1972) and Siscoe (1974). However, only a few 
papers (Siscoe et al., 1968; Burlaga, 1969; Smith, 1973) have discussed the structure of the 
current sheets associated with such discontinuities, and these were limited by the time 
resolution of the observations and failure to include plasma observations. The current sheets 
are quite thin. For example, Siscoe et al., (1968) showed that they are generally convected 
past a 'fixed' S/C in less than 10 s and thus have dimensions < 10 proton Larmor radii, a L . 
They are 'kinetic-scale' phenomena, in the classification scheme of Burlaga (1969), and one 
expects that a kinetic theory is needed to describe them. 

The observations of current sheets, which are referred to above, do not have sufficient 
time resolution to allow one to study the structure of the thinnest sheets or obtain the most 
probable thickness. For example, the structures exhibited by Smith (1973), Siscoe et al. 
(1968) and Burlaga (1969) had a width of « 1 min. Consequently, the results are not 
representative of current sheets in general. 

Magnetic field observations from the GSFC magnetometer on IMP I have a sampling 
rate of « 14s" 1 , an order of magnitude improvement over the rates discussed above, and 
have clearly resolved the structure of even the thinnest current sheets. Simultaneous plasma 
measurements are also available, although their time resolution is rather poor. These 
observations are discussed in a companion paper (Burlaga et al., 1976). Here, our aim is to 
understand these structures. The emphasis is on the theory itself. 

The theory which we present is an extension of the work of Sestero (1964) on the 
structure of plasma sheaths. Sestero considers only the case in which the magnitude of B 
changes while the direction does not. This does not frequently occur in the solar wind. The 
most likely configuration is a change in the direction of B with no change in magnitude, but 
one also observes changes in both |B| and B in interplanetary sheaths. Thus, our work 
concerns the generalization of Sestero's theory to include both changes in |B| and B. It also 
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includes changes in composition, temperature anisotropy. etc. Alpers (1969. 1971) has 
discussed current sheets, but he assumed zero electric fields, whereas we let E 0. Stern 
< 1975) has discussed particle trapping at discontinuities. 

The significance of this work extends beyond a discussion of the sheaths themselves. It 
represents a new theoretical framework for discussing kinetic scale phenomena in the solar 
wind. The starting point is the Vlasov equation as opposed to the fluid equations which have 
been used to discuss processes on a larger scale. 

2. BASIC EQUA TIONS AND ASSUMPTIONS 

2.1. Field equations 

Since the solar wind speeds before and after tangential discontinuities are usually more 
or less the same, it can be considered with some confidence that tangential discontinuities 
are steady-state structures convected with the solar wind velocity - i.e.. (1) that the pro-
jection of W the plasma bulk velocity along N the normal to the current sheath is the same 
on both sides of the discontinuity (W,.N = W r.N), and (2) that their thickness doesn't 
change significantly in a time comparable to that during which they are observed at 1 All. 
Therefore, in the frame of reference moving with the solar wind the steady-state field 
equations are. in rationalized MKS units, 

curl B = n 0 Z Z, eFj (2.1) 
i 

B = curl A (2.2) 

div ( e o E) = ? Zj en ; 

E = - grad 0 

where A and <*> are the vector and scalar potentials of the magnetic field B and electric field 
E, respectively; n and e o are the permeability and permittivity of free space; Z ; e, Fj and n s 

(2.3) 

(2.4) 
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are respectively the electric charge, flux, and number density of the particle species i, where 

i stands for e (electron), p (proton), a (alpha particle). 

It will also be assumed that the curvature of the current sheath is small compared to its 

thickness. Some evidence which supports this was given by Burlaga and Ness (1969). As a 

consequence it can be considered (1) that the surface of discontinuity is a plane, and (2) 

that all quantities depend on x, the space coordinate along N. the unit vector normal to 

this plane (see Figure 1). It results from these assumptions thaf 

Ey = const, Ez = const, Bx = const. (2.5) 

Since we don' t examine rotational discontinuities but only the commonly observed tangen-

tial discontinuities, we can set Bx = 0. 

Furthermore, since it \yas assumed that there is no mpss flux normal to the surface of 

discontinuity (as would be the case of a shock front or rotational discontinuity) Wx = 0 

implies that 

E B - E B = 0 . (2.6) y z z y 

If we consider that the electric conductivity is very large along the magnetic field 

direction, there can be no significant electric field parallel to B - i.e., 

E yB y + E zB z = 0 . (2.7, 

From (2.6) and (2.7) we obtain, in the frame of reference moving with the solar wind, 

Ez = 0 and Ev = 0. In the paper of Sestero (1964) the magnetic field remains parallel to the 

z-axis - i.e., By = 0. To allow for a change in the direction of the magnetic field across the 

current sheath we shall consider the slightly more general situation where both Bz and By 

are functions of x and solutions of the equations 



dB y 

= U 2 Z.eF, . . (2.8) dx 0 i 1 

d B z 

s r = - " o f w , . ( 2 - 9 > 

dA z 

dA 
— - = B ; (2.11) dx z 

with the boundary conditions 

lim B y = B, sin 0, . (2.12) 
x - l 

lim B z = B, cos . (2.13) 
x - » l 

where B, is the intensity of the magnetic field on the left-hand side at x = x,, and 0, the 
angle óf B and thé z-axis (see Figure 1). 

It is convenient to determine the z-axis such that B y is negative or zero, and B z is 
positive at x = x,: i.e., - 90° < 0 , < 0. In such a coordinate system A z and A y are both 
increasing functions of x such that 

lim A y = - 0 0 and lim A ? = - °° . (2.14) 

The electric field equations (2.3) and (2.4) become 

dE 1 
= r - 2 Z . e n . , ( 2 . 1 5 ) dx e 0 ' 



(2.16) 

with the boundary conditions 

lim <t> = 0 (2.17) 

and 

lim Ex = 0 . (2.18) 

The condition (2.18) implies that, except inside the narrow current sheath, the drift velocity 

(E x B /B2) and the fluxes F; become Variishingly small when x - *>. 

If the electric current and charge density, or the fluxes, Fj, and concentrations, n ; , are 

known functions of x and/or A , A. , 0 , t h e set of differential equations (2.8K2.11) , y L 

(2.15)-(2.16) can in principle be integrated to determine the distribution of the field 

variables By) Bz, Ex, Ay Az,<t>. 

In the next section we show how it is possible to determine such functions 

= Q f 0 (0. Ay. A
z ) ,000 (2.19) 

Fy > . = Q P ^ W . A y . A , ) , (2 .20) 

Fz i = Q,0 0 1 (0, A y , A z ) (2.21) 

where Q®1 ism n are the moments of the velocity distributions fj(v, x) 

l s m n 
oo 

= ƒƒƒ v » ^ ' v j f i ( v , x ) d v . (2.22) 



2.2. The plasma equations 

The densities and fluxes in the right-hand side of equations (2.8), (2.9) and (2.15) are 

the zero and first order moments of the velocity distribution, Equations (2.19)-(2.21). 

These quantities must be solutions of the steady-state transport equations - i.e., the conti-

nuity equation 

d(n ;Wx ) dF 
—-1- = 0 ; or — - ~ 0 . (2.23) 
dx dx 

This equation is necessarily satisfied in our case since the flux, F x , and the bulk velocity, 

Wx, normal to the surface of discontinuity are assumed to be zero for each 3pecies. 

The equations of motion are 

4 
Pxy,i = 0 > (2-24) 

PXZii = 0 , (2.25) 

dx ^ x y 

d 

dx 

d 
dx 

p . = Z e(n E + F .B - F .B ) , (2.26) Fxy,i i l x y,i z z,i y ' ' v ' 

where p ., p , and p v v { are components of the kinetic pressure tensor defined by Q * 1 0 , xy ,1 xz,i xx,i 
Q{ 0 1 and Q ? 0 0 respectively (Equation 2.22). 

Note that the usual total pressure balance equation can be obtained from (2.26) by 

summing for all species, and by using (2.8), (2.9) and (2.15) to replace SjZjeFy , 

S jZjeF^ and Z J Z J en ^ i.e., 

d / By2 + eo , \ 
7 " S Pxx i + + T Ex = < 2 - 2 7 ) dx v 1 x x - ' 2/i0 2 x / 
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Note the presence of the term E^. 

When collisions are sufficiently f requent to maintain an isotropic and Maxwellian 

velocity distribution with a temperature Tj, the transport equat ions can easily be closed by 

introducing some additional assumptions - e.g., isotropic pressure ( p x y s = P y z { = p x z i = 0. 

P • = Pv„ i = P , , ; = n ;kTi) with a constant o r p o l y t r o p i c temperature distribution. Other x x ,1 y y ,1 z z, i i 1 

classical hydrodynamic approximations as, for instance, the Navier-Stokes relations, are 

sometimes used when viscosity and conductivity become more important , and when the 

mean free path of the particles can no longer be considered as infinitely small. 

In the opposite limit, when the average mean free path of the particles becomes large 

compared to the characteristic dimension of the system, we cannot , as in the collision 

dominated regime, define relevant relationships between the higher and lower order 

moments of the velocity distributions. As a consequence there is no obvious method to 

close the system of transport equations, and we are led to step back to Liouville's or 

Vlasov's equation of the form 

3f. . Z (e 
x 9x nij 

a f j 3 f j af. 
(E + v B - v B ) — - - v B — - - v B 

x y z z y > a v x z d y x y 3 y 
X z z 

= 0 (2.28) 

It can be verified that any funct ion of the constants of mot ion of the particles is a 

solution of Vlasov's equation. In a steady-state electromagnetic field as defined in Section 

2.1 and illustrated in Figure 1, the constants of mot ion are the conjugate momenta of the 

space variables y and z - i.e., 

py = m ^ + Z seAy , ' (2.29) 

pz = mjVz + Z ;eA z ; (2.30) 

and the total energy 

W = j ms(v2 + v j + v \ ) + Z..e* . (2.31) 
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Fig. 1 



Among the infinite number of possibilities, we have chosen a function f j (p y , pz.. W) 

such that, in the limits x ± f( tends to the ^ctual Maxwellian velocity distributions on 

the left- and right-hand sides of the surface of discontinuity: i.e.. 

3 /2 2 m- mv 
) " fi.i(Y) , lim f. = N 

27rkT, 
exp 

2kT l f i 
(2.32) 

_oo l . i 

(2.33) 

where N, p Nf i , T( j. T r ; are the number densities and kinetic temperatures of the particles, 

i, on the left (1) and right (r) side of the discontinuity. 

The boundary conditions of f ;(p„, p„, W) limit somewhat the choice of this arbitrary i y z 

function of the constants of motion but not enough to determine it completely or uniquely. 

The reason for this indeterminacy is that in a collisionless regime it is always possible to add 

an arbitrary amount of 'trapped' particles which never pan reach x = ± This point has 

already been made by Stern (1975) using very general arguments. The velocity and pitch 

angle distributions of these 'trapped' particles are not determined by the boundary con-

ditions at x = ± at least in absence of collisions. We shall use for f=(p„. p„, W) the i y L 

function 

where rj(p) is the step function (r?(p) = 0 for p < 0 andr?(p) ?= 1 for p > 0). This means that 

f = ff . = Nr j(mi/27rkTr ; ) 3 / 2 exp ( - W / k T f e v e r y w h e r e except in the quadrant py < 0. 

pz < 0, where fj .= f, .. In terms of speeds, f = f r i everywhere except in the region Vy < 

3 /2 

3 /2 

(2.34) 
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- Z.eA /m., V, < - Z.eA /m,, where it equals f , , . Since A - 0 0 and A -» - « as x -» - 00 
I y 1 z 1 z 1 i|i y » 

(see 2.14), this means that f f u as x Thus, the choice of (2.34) gives the desired 

transition from one Maxwellian state at x = + 00 to another at x = - 0 0 . In the special case 

that Nj = Nf and T, = T f , f. is isotropic and Maxwellian at any distance x; this follows 

immediately from (2.34). 

The function (2.34) is symmetrical with respect to the quadrants py < 0, pz > 0 and 

Py > Pz < 0, but it is asymmetrical with respect to the quadrants py > 0, pz > 0, and 

py < 0, pz < 0. This asymmetry allows currents in any direction in the (Vy , V z) plane : 

these must be chosen to be consistent with the specified directions of B at x = ± 00 and our 

sign conventions. 

The expression (2.34) should not be considered as an exact representation of the actual 

velocity distribution, but as one possible solution of Vlasov's Equation (2.38) satisfying the 

boundary conditions (2.32) and (2.33). This solution is not unique. By this particular choice 

for fj we describe only one set of structures among a much broader family of similar current 

sheaths. Our aim is to find a solution which describes the basic features of the observations, 

viz., the observed thickness and the laminar nature of the transition. One cannot expect the 

function (2.34) to describe the detailed structure of every tangential discontinuity. 

Nevertheless, one can calculate, self-consistently, a possible set of structures and determine 

their characteristic thickness. 

In the Appendix we give the algebraic expressions for the moments of these 

moments Q*m n (Equation 2.22) satisfy the general transport equations and the boundary 

conditions at x = ± 00. The general formula for Q?m " given in the Appendix, can be used in 

the right-hand side of the field Equations (2.8)-(2.11), (2.15)-(2.16) to model the electric 

current and charge density distribution. The distribution of the electric and magnetic 

potentials and fields are finally determined by numerical integration of these differential 

equations. The method of integration and the description of the numerical solutions are 

given in the next section. 
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3. SUMMAR Y OF THE EQUA TIONS AND THE METHOD OF SOLUTION 

It is rather convenient to introduce non-dimensional variables and define the new units 

given in Table I. In this new unit system the equations are 

dBv 
— 1 = 2 ZjQP0 1 , (3.1) 
dx 

dB z 
dx 

i 

«= - 2 Zj Q? 1 0 , (3.2) 

dAz 

= * B„ dx y 

dA y 
= B, dx z 

kT l,e 
eo^o m e 

(3.3) 

(3.4) 

d2<p 
— = - 2 Z . Q ? 0 0 . (3.5) 
dxz i 1 1 

Note that the RHS of (3.5) is the relative excess of electrons, or the charge separation 

density (n - Z. n. )/n . In addition, one has the following relations which are obtained ^ v e ion ion" e 

from (2.22) with f = f(W(0 , Ay> Az), p(0, Ay , Az)) given by (2.34): i.e., QP0 1 = QPO1(0, 

Ay, Az), Q ° 1 0 = Q°1 O(0, A y , A2), and QP0 0 - Q° o o (0 , A y ) Az). Note the is the 

dimensionless density of the ith species, and Q ° 0 1 , Q ° 1 0 are the dimensionless currents 

carried by species i along £and y, respectively. Thus, for a proton-electron plasma we have 

11 equations for the 11 functions By(x), Bz(x), Ay(x), Az(x), 0(x), Q° 0 0 (x) , Q° 1 0 (x) . 

Qe0 1(x) , Q°0°n°(x), q V n 0 ^ ) ' a n d Qio°n W -

The solution of our system of equations is greatly simplified by noting that the right-

hand side of (3.5) is generally small in usual circumstances. Indeed, unless the second 

derivative of the non-dimensional electric potential (or the variation of the electric field) is 

unreasonably large ( |d 2 0/dx 2 |> 104), the charge separation density is of the order of 



TABLE I : The New Units 

The corresponding value in familiar units is given for Nj = 5 cm"3, Tj e = 1.5 x 105 K; k is the Boltzman Constant; 
fx is the permeability of free space; me is the electron mass; e is the electron charge. 

Variable Symbol New Unit Value 

Density n i ; N r , ï • • N.,e 5 cm"3 

Distance X ( m e / ^ l , e e 2 ) 1 / 2 2.37 km 

Temperature W - T.,e 1.5 x iO5 K 

Velocity W p V - - (2kT1 ;e/me)1/2 2132 km x s"1 

Pressure Pxy, i' Pxx, i 2 N . .e k T , ,e 2.07 x IO"10 dyne x cm" 

Particle Flux F y. i - F *. i N l . e C ^ . e K ) 1 ' 2 1.06 x 109 -2 -1 cm x s 

Current Density Jy, i ' J z , i e N . , e ( 2 k T l , e / m e> 1 / 2 1.70 x 10"6 amp x m"2 

Electric Potential <fi kT l e /e 12.9 Volt 

Electric Field Ex 5,43 mVm"1 

Magnetic Induction B y ; B z (2MkTl.eNl.e)1/2 5.1 gamma 

Vector Potential (2kT l em e /e) 1 / 2 . . . . — 

Heat Flux ^y, i ' N, e(2kT l e /m e ) 3 / 2 2.20 x 10'2 erg x cm"2 x s"1 

m+n+1 

Higher Order Moments Q m n i N l e (2kT l e /m e ) 2 — — . 



TABLE II : Boundary Conditions 

Figure No 2 2 3 3 4 4 5 5 
Model No. a b c d e f g h 

Number density N . .e 5 5 5 5 5 5 5 5 cm"3 

N.,P (*) 5 5 5 5 5 5 5 5 

N i.e (*) 2.5 4.5 5 5 5 5 5 5 
N. l.P n 2.5 7.5 1 1 3.69 1 2.862 12.73 

Temperatures T l.e o 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 10s K 
T M.P o 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

T r,e 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 
T 

i,P 0 0.5 0.2 0.5 0.1 1 1 1 0.25 

Magnetic field intensity B l (*) 2 2 2 2 2 2 2 2 Gamma 
and angle at - 0 0 

• l 0 - 4 5 -45 - 4 5 - 4 5 0 0 -45 - 4 5 degree 
Rotation parameter P 1.5 0.8 0.8 0.8 OO OO 0.5 0.5 
Electric potential <K°°) (4.1) 0 0.0584 - 0.402 -0.100 -0.181 - 0.643 - 0.223 0.133 Dimensionless (see 

difference Table I) 
Density at + 0 0 n

P(°°) (4.2) 2.5 4.84 3.34 4.52 4.43 2.62 4.0 5.71 .3 cm J 

Magnetic field intensity B r (calc.) 4.62 3.89 3.93 3.68 0.5 3.98 2.15 1.32 Gamma 
and angle at x = + 00 (calc.) -.18 -63.3 -64 .2 -63.1 0 0 -54 .8 -36.4 degree 

(*) are given as inpu t ; (4.1) means that 0(°°) is given by equation (4.1) ;(calc) means that this quantity is obtained from the numerical integration stopped at 
x = + oo : i.e., at a large distance from the current layer. 



e 0 M 0 k T e / m e : i.e., the square of the electron thermal speed divided by the square of the 
velocity 0 f light; for T e = 1.5 x 10 5 K the charge separation density (n e - Z j o n n i o n ) / n e is 
less than (2-3) x 10" 5. Under normal conditions it is expected that the right-hand side of 
Equation (3.5) is always very small and that the quasi-neutrality condition is satisfied. This 
implies that under normal circumstances the electric potential <t> can be calculated by solving 
the algebraic equation 

2 Zj Q I O O O ( 0 , Ay ,A Z ) = 0 , . (3.6) 

instead of integrating the non-linear differential Equation (3.5). In other words, the electric 
potential is adjusted to have an electron density distribution n c ( x ) exactly equal to the total 
ion charge density in the presence of the potential A(x). One thus obtains an equation for 
0 (A V , A A Given 0(A v (x ) , A, (x)), one can calculate E v = - d^/dx and one can verify a 

y ' y z x 

posteriori that d2<t>/dx2 and An/n are negligibly small. 

Our equations reduce to those of Sestero (1964) if we set T , ; = T f ; = constant, T, e = 
T r e = constant and A z = 0. In other words, Sestero considered the special case of an 
isothermal boundary layer with B f parallel (or antiparallel) to Bj. In this case one obtains an 
analytical expression for 0(Ay)by setting the RHS of (3.5) equal to zero (Sestero, 1964; 
Equation 19). Equations (3.3) and (3.1) do not enter since B = A = 0 by assumption. y 2 
Integrating the distribution function with <t> = $ ( A y ) gives analytical expressions for 
Q ° 1 0 ( A y ) and Q? 0 1 n ° (A y ) (Sestero, 1964; Equation 17) which may be substituted into the 
RHS of (3.2). Combining (3.2) and (3.4) then gives a single differential equation for A y (x) 
which can be solved numerically. This essentially completes the solution, for now one can 
obtain B, from (3.4), <j> from the formula for 0( A ) , E from 0(x), etc. z y 

The procedure that we used to solve the more general set of Equations (3.1)-(3.5) etc.. 
is similar to that for the case considered by Sestero, except that we needed to use numerical 
methods more extensively. The root <p(A„, A , ) of (3.6) was found by the method of y z 

successive approximations. With this, Q ? 0 0 , Q ° 0 1 were obtained by integrating the distri-
bution function. Finally (3.1 >(3.4) were integrated by the classical predictor-corrector 
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numerical method, which gave numerically stable results that satisfied the total pressure 
balance condition (2.27). The numerical integration is to be started at a distance x, suffi-
ciently far from the current sheet. At this distance the magnetic field components B y and 
B z are determined by the parameters B, and </>l defined by (2.12) and (2.13). Arbitrarily 
large negative values must also be given to A y (x , ) and A z (x,) , according to (2.14); A y (x , ) = 
- 250 B, and A z (x , ) = pA y (Xj) have proven to be sufficiently large values to require that the 
integration is started at a sufficiently large distance from the discontinuity surface. The 
parameter p (the ratio, A, /A„, of the two components of the vector potential at x = x.) 

y \ 

determines the rate of change of the magnetic field direction across the sheath. The value of 
p and of the other boundary conditions ( N , ; ; T, p B,; 0p N f ; ; T r ; ) are given in the Table II 
for each model discussed in this paper. 

4. SOLUTIONS 

One can distinguish basically two different types of boundary layers - electron boun-
dary layers whose thickness is on the order of a few electron gyroradii, and proton boun-
dary layers whose thickness is on the order of a few proton gyroradii. Here we refer to an 
average gyroradius defined by 

V 2km 
a = — * 

t i / 2 t I / 2 

+ 
B 1 B r 

(3.7) 

where the temperature refers to protons or electrons, as appropriate. Each type of boundary 
layer may appear in many different forms, depending on the boundary conditions and the 
nature of the distribution functions. The first two solutions that are discussed below 
illustrate electron boundary layers. The others illustrate different kinds of proton boundary 
layers. We stress that the results are illustrative, since measurements of boundary conditions 
and details of the distribution functions which are needed to completely specify real cases 
are not available. All of the results will be given in the dimensionless units listed in Table I. 
In particular, note that distance along the x-axis is scaled in 'electron skin depth' units (e.g.. 

< 
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Ax = 1 for 2.37 km and 100 km corresponds to Ax = 42). The electron and proton 

gyroradii are probably more relevant, and these are shown for reference in the top panel in 

each of the figures to be discussed. 

4.1. Electron boundary layers 

Figure 2 illustrates the solutions corresponding to the boundary conditions given in 

columns (a) and (b) of Table II. In these examples, the direction of B changes across the 

layer, from <*>, = - 45° to 0r = - 18° in model (a) and to <t> t = - 63.3° in model (b), and the 

magnetic field intensity increases from Bj = 2? to Br = 4.627 in model (a) and to Br = 

3.897 in model (b). The number density ne = np decreases from nciP(-°°) = N, e p = 5 cm'3 

to ne (+ = 2.5 cm"3 in model (a) and to ne>p(+ = 4.84 cm"3 in model (b). 

In the example on the left side of Figure 2, the electron temperature does not change 

(T e = T, e in model (a)), the current along y is driven primarily by a 'heat flux' due to a 

tail in the direction of the electron distribution function. The self-consistent electric field 

which drives the current, together with the corresponding potential and the charge 

separation, are shown in the top three panels of Figure 2. One can see from Figure 2 that 

the sheath does indeed have the dimensions of a few electron gyroradii. This is seen in the 

observables B and n and in the other quantities as well. 

The electron drift speed, shown in the middle panel of Figure 2 together with the 

Alfv6n speed, VA = B(m0  S n ^ ) - 1 ' 2 in (2kT, e /m £ )
1 / 2 units, is particularly interesting. 

The electron drift speed exceeds the AlfvSn speed in a narrow region on the order of four 

times the electron gyroradius, ae, where most of the electrtin current is confined and where 

the largest change of the magnetic field occurs. Electrostatic instabilities are triggered when 

We > VA (Papadopoulos, 1973). Therefore, it is expected that the narrow current sheaths 

represented in Figure 2 will broaden rapidly by wave-particle interactions. This broadening 

of the electron current sheath will stop when the electron drift is reduced below the 

threshold for zero growth rate of the unstable modes. In this final situation the perpen-

dicular electric field, E , will be significantly reduced and the total magnetic field variation 
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will be spread over a distance larger than 4 electron gyroradii. During this transition period 

of pitch angle diffusion more electrons are scattered into trapped orbits. As a consequence 

the trapped particle population is changed as well as the electric potential distribution 

required to maintain the quasi- neutrality. The electron pitch angle distribution fe(v) 

becomes eventually, more isotropic inside the sheath. Therefore, narrow current sheaths like 

that illustrated in Figure 2 are highly unstable and will evolve in a short time toward broader 

ones for which the electrons may still be the electric.current carriers but in which their drift 

velocity We doesn't exceed the Alfvén speed V A . When this stage is reached, the much 

slower Coulomb collisions will broaden it even more. Since the electron Coulomb collision 

time is only one day at 1 AU, it is expected that the electron velocity distribution reaches 

rapidly an equilibrium state where it is nearly isotropic and where the electrons no longer 

carry the electric current responsible for the most commonly observed large tangential 

discontinuities in the solar wind. Note that if electron sheaths with a thickness of only 4 

electron gyroradii were present in the solar wind, they should be seen in the high resolution 

magnetograms as large amplitude changes in B„ and B, over a period of 0.1 s, close to the y z 

time resolution of the IMP I magnetometer (0.08 s). Among the 400 directional disconti-

nuities that we examined (Burlaga et al., 1976) none had a thickness comparable to that 

expected for an electron sheath. This can be considered as,evidence for a mechanism such as 

that just discussed, which can destroy an electron sheath in a time less than the transit time 

of the solar wind between the Sun and 1 AU. 

The event shown on the right-hand side of Figure 2 (model (b)) is similar to that which 

we have been discussing except that the distribution function is now chosen such that both 

the electron and proton temperatures change across the layer (see Table II). This does not 

alter rhe essential features of the structure. Again the width is on the order of several a e , and 

the drift speed We exceeds the Alfvén speed. It too is probably unstable and it is not likely 

to be observed in the solar wind. 



4.2. Proton boundary layers 

For simplicity, we shall assume in the following discussion of proton boundary layers 
that the electron velocity distribution is an isotropic maxwellian function throughout the 
boundary layer - i.e., that the electron pressure anisotropy is everywhere zero as well as the 
electron fluxes (N, e = N r e ; T, e = T r e in Equation (2.34)). We shall further restrict the 
discussion to a two- component (proton and electron) plasma. In this case (3.6) can be 
solved explicitly for 0(+ «>) and <t>(-°°)- In particular, 

T r , e T r , p ' N -» ( + - ) = ^ — : In ( j ; (4.1) 
T . , e ^ r , e + T r , p ) 

and a similar expression exists for <t>(- where the subscript r is replaced by the subscript I. 
When N, = N, e , one finds that < f > ( - = 0. The value of <H+ ) is negative in the model (c J 
because N r p / N r e is smaller than unity in Equation (4.1) (see Table II). 

The electron and proton densities at x = + 0 0 are given explicitly by 

fT /(T + T )1 [T /(T + T )1 n (+«») = n (+°°) = N r-P r-P r ' e N r - e r-P r - e J ; (4.2) c P ' »P 

and a similar expression for n e ( - and n p ( - with the subscript r replaced by 1. Whep 
p ~ e' o n e ^ a t n e ( - °°) = n p ( - = N, p . The values of n e (+ (in c m ' 3 ), and 

the value of <M+ 0 0 ) (in volts) are given in Table II for each model. 

From the total pressure balance Equation (2.27) one has the following equation which 
must be satisfied throughout the boundary layer 

B 2 e o E 2 

s p x x i + ; — + = c o n s t ' ( 4 3 ) i x x - ' 2m0 2 

where p v v • = n ; k T v v Various combinations of changes in n,T, and B across the boundary 
X A 1 A a 
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layer are possible, and several will be considered below. We shall present plots of the protpn 
drift speed, W , and the total proton heat flux, q. The y-component of the drift speed W y { 

is related to the second and third order moments and to the electric field E x , by 

9 Q 2 1 0 Ze 
- — [nW E - B ( Q 2 0 0 - Q 0 2 0 ) - B Q ° 1 1 ] = 0 (4.4) 3x m y x z y 

where Q 2 0 0 and Q 0 2 0 are related to the partial pressure tensor by 

Q 2 0 0 = E i i = E i l t (4.5) 
m m 

Q020 = E z i + n W 2 = h L t ( 4 . 6 ) 

m y m 
p P 

Q 0 0 2 = + n W 2 = _1L f (4.7) 
m m 

(the subscript i for the particle species is omitted in (4.4)-(4.7)).The heat flux components 
q„ ; and q T are defined in terms of the third order moments by y ,i z ,i 

q y = m / 2 [ Q 2 1 0 + Q 0 3 0 + Q 0 1 3 ] + mnW 2 W y - W x P x y -

- W y P y y - W z P z y - T W y [ P y x + P y y + P Z Z l ; ( 4 8 ) 

and a similar expression for q z . 

Several self-consistent solutions of the boundary layer equations will now be discussed. 
First, we consider two cases in which both the magnetic field intensity and direction change, 
then we discuss two cases in which the magnitude but not the direction changes, and finally 
we present two cases in which the field direction but not the intensity changes across the 
boundary layer. 

Figure 3a shows a situation in which the proton temperatures T r and T, are equal, 
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and an increase in |B| is compensated by a decrease in density (model c in Table II). The 

field direction changes as well, and accordingly there are components of current along both 

y ?nd z. These are apparently due to a distortion in the proton distribution function which 

is equivalent to a heat flux. The resulting drift speed is less than the AlfvSn speed, so the 

structure is expected to be stable. The width of the magnetic field transition is a few proton 

Larmor radii, consistent with the fact that the current is carried by protons which are 

gyrating and drifting in the magnetic and electric fields. The magnetic field intensity changes 

smoothly across the layer, consistent with the simple, single peaked current distribution. 

The case (model (d)) in the right panel of Figure 3 is similar to the one just discussed, 

except that the proton temperature is assumed to decrease across the layer and thus a 

smaller drop in density is needed to compensate for the increase in |B|. The smaller change 

in density gives a smaller separation in charge density and a smaller change in electric field. 

Again, however, the current is mainly due to an equivalent heat flux in the proton velocity 

distribution, and the single hump in the current density gives a smooth transition in B. As in 

the previous case, the thickness of the boundary layer is a few proton gyroradii. 

A somewhat more complicated boundary layer is shown in the left side of Figure 4 

(model (e)). In this case, we assume that the magnetic field direction does not change, while 

the magnitude decreases across the boundary layer. The density is assumed to decrease only 

a little, and the decrease in n and |B| is balanced by an increase in T . In this case, the 

charge separations and changes in the electric field are small, and the boundary layer is 

broad, approximately 10ap . The current density and drift speed show a 3-humped structure 

which causes an irregular variation of |B| across the layer. The two large humps in J and Wp 

are probably due to the anisotropy in ion pressure, while the small hump seen in Wp is 

associated with a heat flux. 

The event shown on the right of Figure 4 (model CO) is similar to that just discussed in 

that the direction of B is constant throughout the layer while its magnitude increases. In this 

case, however, the change in density is assumed to be large. This large change is obtained by 

assuming that both T p and |Bj increase, so that both effects must be compensated for by a 





decrease in n p in order to maintain pressure equilibrium. Because of the large density 
change, there is a larger charge separation and a larger change in E x than in the previous 
case. The boundary layer is thinner, being only a few a p in extent. The current density and 
W p appear to have a relatively simple form, resulting in a smooth magnetic field transition, 
but the simplicity might be illusory, since.there are significant changes in both the heat flux 
and anisotropics in the ion pressure. 

Finally, let us consider two cases in which the magnetic field intensity is nearly 
constant but the direction changes by -9.8° and 8.6°, respectively, across the boundary 
layer. The first case, shown in the left of Figure 5 (model (g)) is based on the assumption 
that there is a decrease in density which is balanced by an increase in T , with only a small 
change in |B|. The charge separation and electric field change are extremely small (< 10"2 

raVm"1; An/n < 4 x 10" 9) the thickness of the layer is only » 2 a p . The current shows a 
single maximum, which is apparently due to an equivalent heat flux, and the variation in the 
field direction across the layer is accordingly uniform. 

Model (h), on the right of Figure 5, is very similar to the preceding one; here the 
density increases while the temperature decreases, whereas in the preceding case the density 
decreases while the temperature increases. Again there are small changes in E x and in the 
charge separation, the thickness is « 2a p , the current density varies in a simple way and is 
related to the heat flux, and the field direction rotates by - 8.6° uniformly across the layer. 

All of the proton boundary layers discussed above have some features in common 
despite the variety of boundary conditions that were assumed. In every case, the thickness 
was greater than one Larmor radius, as one expects because the currents are due to gyrating 
protons. The thickness is always on the order of a few a p , consistent with the observations 
of Burlaga et al. (1976). The drift speed of the gyrating protons that carry the current is 
always less than the AIMn speed, consistent with the apparent stability of the boundary 

* layers that are observed. 

The currents , in the case that the field changes only in direction are an order of 
magnitude smaller than those associated with changes in field intensity, but in both cases 
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the current densities are much smaller for tlie proton boundary layers than for the electron 
boundary layers discussed earlier. In fact, the ratio of peak electron to peak proton current 
density is approximately the ratio of the corresponding thermal speeds, viz. , ((T e /T p ) / -
(m I n O ) 1 ' 2 « 70. However, the smaller proton currents are spread over a layer which is 

e p 

thicker than the electron boundary layer; it is thicker by a factor equal to the ratio of the 
gyroradii of the protons and of the electrons, viz. ((T /T )/(m /m ) ) 1 / 2 8 8 25, so the total oo P P 
current, I = J dx, is of the same order of magnitude in both cases. It can be shown that . oo 
each type of charged particles contributes to the total value of I y (and I z ) by an amount 
proportional to IZJ/Jj averaged over the current layer. (|Zj| is the charge number, and is 
the ratio of partial kinetic pressure njkTj, and the magnetic pressure B 2 /2/u Q ) . Since AB y = 
j i Q I z and ABZ = - / i 0 I y the total jump in the magnetic field components across a tangential 
discontinuity is expected to be approximately proportional to <£j |Z . |0 .> , where the + X , +X brackets mean the average value over the whole layer (i.e.,<A> = lim f Adx/ f dx). 

x _»oo J -X J -X 

5. SUMMARY AND DISCUSSION 

We have presented a theory for thin boundary layers associated with MHD 'discon-
tinuities' in a collisionless plasma, such as those observed in the solar wind. Since the 
observed boundary layers have a thickness on the order of a few Larmor radii, a kinetic 
theory which includes the effects of particle orbits is appropriate. We take the Vlasov 
equation as our starting point - i.e., we assume that the plasma is indeed collisionless over 
the small scales in the boundary layer, and we assume that the particles interact only with 
the magnetic and electric fields. We obtain self-consistent solutions of the Vlasov equation 
and Maxwell's equations for stationary, one-dimensional configurations corresponding to 
several sets of boundary conditions. Our method, which is an extension of that used by 
Sestero (1964) to allow for changes in magnetic field direction and temperature, is basically 
the following. We choose a form of the distribution function which satisfies Vlasov's 
equation and reduces to a Maxwellian distribution at ± and we integrate this to obtain 
ion and electron densities and currents which are functions of the electrostatic potential 



<t>(x) and the vector potential A. A and <t> are related by an equation which is solved 

numerically by neglecting the charge separation to first approximation. The currents and 

densities are then introduced into Maxwell's equations for B which are integrated numeri-

cally to obtain a solution for A(x), from which all other relevant quantities can be 

computed. " 

Two kinds of boundary layers are possible. In one the current is carried by electrons, 

and in the other the current is carried by protons. 

Two examples of electron boundary layers were discussed. In both cases, the thickness 

was on the order of a few electron Larmor radii, and the field changed smoothly across the 

layer. The drift speed was found to exceed the Alfv6n speed in the boundary layer, and such 

a situation is unstable. Thus, such stationary boundary layers are not expected to be 

observed. In fact, no boundary layers with dimensions as thin as several electron gyroradii 

have been detected in the solar wind. 

Several kinds of proton boundary layers were examined. We considered situations with 

both a change in magnetic field intensity and direction, with directional changes only, and 

with intensity changes only. In every case, the thickness was on the order of a few proton 

gyroradii and the magnetic field changed relatively smoothly through the layer. The thick-

ness and variation did, however, depend somewhat on the boundary conditions. The drift 

speed was always less than the Alfven speed, consistent with the fact that such structures are 

actually observed in the solar wind. 

An infinite number of configurations is possible, corresponding to the number of 

boundary conditions that are allowed. It is not possible, perhaps not even important, to 'fit ' 

in detail each and every boundary layer that is observed. Nevertheless, the solutions that we 

have presented illustrate the basic physics involved in these layers and our general con-

clusions are consistent with the general characteristics of the boundary layers most 

commonly observed in the solar wind near 1 AU. 



The theory that we presented should be applicable to conditions that exist in the solar 

wind away from 1 AU. Thus, we expect that the thickness will always be found to be a few 

to several proton gyroradii. The gyroradius varies as \ /T/B. Little is known yet about T(r), 

but the magnetic field intensity is observed to change as predicted by Parker's model, being 

close to r"2 near the Sun and r"1 far beyond 1 AU. The temperature probably falls off less 

rapidly than the adiabatic rate, T ~ r 4 / 3 . Thus, one expects the gyroradius and therefore the 

thickness of the boundary layers to increase with distance from the Sun. Particle and field 

measurements are needed to test this prediction. The preliminary Pioneer 10 results seem to 

be consistent with our theory in that an increase in thickness with distance has been 

reported (Tsurutani and Smith, 1975). However, the thickness in gyroradii has not yet been 

determined in that experiment. Similar studies are under way in the Helios and Mariner 10 

data. If it is found that our theory is consistent with the observations we can assume that 

thickness is a few proton gyroradii as predicted, and then use the observed magnetic 

boundary layers as thermometers to determine the proton temperature. An extension of the 

theory predicted in this paper is needed to realize this application. 

ACKNOWLEDGEMENTS 

We thank D. Fairfield and L. Fisk for stimulating discussions. Programming support 

was provided by W. Mish and T. Carleton. One of us (J.L.) was supported by a National 

Academy of Sciences-National Research Council Resident Research Associateship.He thanks 

N. Ness and K. Ogilvie for their hospitality and support at the Laboratory for Extra-

terrestrial Physics. 



Appendix : Moments of the Velocity Distribution Function 

Let us define the function of f(p„, p_, W) by • y ' 

3 / 2 

(Al) 

where i?(p) is the step function equal to zero for p < 0, and equal to unity everywhere else. 

The function (Al) is a solution of the time independent Liouville or Vlasov's Equation 

(^.28). since it depends only on the constants of motion (2.29). (2.30) and (2.31). 

When A„ and A,, the components of the vector potential, are both equal to - 00, f(p„. y y 
p z . W) becomes an isotropic maxwellian velocity distribution with the characteristic tempe-

rature T,, and density N, exp[- Ze^>(- «O/kTj], where 0(-°°) is the electric potential at x = 

- on the left-hand side of the tangential discontinuity ($(- = 0 according to Equation 

When A„ and/or A, are equal to + f(p„, p_, W) becomes again isotropic and y z y z 
maxwellian with a characteristic temperature, T f , and density Nf exp[- Ze<£( + °°)/kTr], 

where <£( + 00) is the electric potential at x = + 00 on the right-hand side of the discontinuity 

surface. 

The integral of (Al) over the velocity space is a finite positive number, Q 0 0 0 . and in 

general, any higher moment, Q s m n (Equation 2.22) of (Al) has a finite value as required for 

any velocity distribution function. 

2.17). 

(m +n + s ) / 2 

sm n (A2) 
m e 



j smn = I s i g n ( z n, t , e x p ^ x 

I \Z\ya \ ( Izl-ya \ / z<t> \ 

x K [ ^ - h n r t r
( m + n + s ) / 2 e x p ( - — ) x 

X [ 4 n 4 , - ^ m (̂ p) £ n ( A 3 > 

W h e r e Zj|e| i s t h e e l e c t r i c c h a r g e a n d rrij = m e h 1 t h e m a s s o f t h e i - p a r t i c l e s c o n s i d e r e d ; a , 

a z a n d <t> a r e t h e d i m e n s i o n l e s s v e c t o r a n d s c a l a r p o t e n t i a l s d e p e n d i n g o n x ; n ^ = N j .JNi ; 

n r j = N f j / N ^ g ; t, j = T , j / T , e ; a n d t r i = T f j / T 1 ) e . T h e f u n c t i o n s f n a n d < 4 n a r e d e f i n e d b y 

2 r ^ 
J C n ( x ) = ( - l ) n - J - J y " e-y d y 

y n x 

£ 0 ( x ) = E r f c ( x ) 

1 2 
J C , ( X ) = e " x ( A 4 ) 

1 2 1 
£ , ( x ) = ~7=- x e " x + 7 E r f c ( x ) 

( 1 + x 2 ) 2 

j C , ( x ) = - 7 = — e " x etc. . . 

w h e r e E r f c ( x ) is t h e c o m p l e m e n t a r y e r r o r f u n c t i o n , 

2 =o 

J l n = [ 1 + ( - D n ] - J - f y " e-y d y 
V* O 

o l i t 0 = 2 

( A 5 ) 

J l y = 0 

- 3 2 -



J l 2 = 1 

3 = 0 etc. 

The dimensionless densities, fluxes, momentum flux tensors, energy fluxes are given by 

n j = q 0 0 0 ; (A6) 

F x = 0 ; F y = q ° 1 0 ; F z = q 0 0 1 ; (A7) 

Pxx = q200/72; Pxy = Pxz = 0 ; <A8> 

P y x = 0 ; P y y = q 0 2 0 / 7 2 . P y z = q o n / 7 2 . ( A 9 ) 

P Z x = ° ; P z y = q 0 1 l / 7 2 ; P „ = q 0 0 2 / 7 2 ; • (A10) 

e = 0 ; ey = ( q 2 1 0 + q 0 3 0 + q 0 , 2 ) / 7 2 ; 

x y 

e ^ = ( q 201 + q021 + q 0 0 3 ) / 7 2 e t c ( A 1 1 ) 

The dimensional quantities are obtained from Table I. This set of moments satisfy necessari-

ly the general transport equations (i.e., the Maxwell moments equations) deduced from 

Vlasov's equation (2 .28) . 

It is obvious that ( A l ) is not a unique nor the most general solution of Vlasov's 

equation, but it is a function that satisfies the boundary conditions that we have imposed at 

x = ± 

Different temperature anisotropies ( T ^ / T ^ ^ 1) or/and non-zero bulk speeds (V,, 

V f * 0) on both sides of the discontinuity surface can be included in kinetic descriptions by 

appropriate choices of f(p , p z , W). Although these generalizations increase the complexity 
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of the mathematical expressions for Q-1111 they can in principle be obtained and studied by 

the same kinetic method. Roth (1975, personal communication) has derived such a generali-

zation to determine a minimum thickness of the plasmapause boundary when V] and V r are 

not equal to zero. 
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