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FOREWORD

The article "Diamagnetic Boundary layers : A kinetic theory” has been prepared when
one of the authors (J.L.) was a NAS-NRC Research Associate at NASA- Goddard Space
Flight Center, Greenbelt, Md. This article will be published in Astrophysics and Space
Science.

AVANT-PROPOS

L’article intitulé "Diamagnetic Boundary layers : A kinetic theory” a été réalisé grice a
la National Academy of Sciences - National Research Council qui a subsidié un séjour de six
mois pour l'un des auteurs (J.L.) au NASA-Goddard Space Flight Center, Greenbelt, Md..
USA. L’article sera publié dans Astrophysics and Space Science.

VOORWOORD

Het artikel ’Diamagnetic Boundary Layers : A kinetic theory” is tot stand gekomen
dank zij de National Academy of Sciences - National Research Council die aan een van de
schrijvers (J.L.) een toelage voor een verblijf van zes maanden heeft verzekerd aan het
NASA-Goddard Space Flight Center, Greenbelt, Md., USA. Het artikel zal verschijnen in
Astrophysics and Space Science.

VORWORT

Das Artikel “Diamagnetic Boundary Layers : A kinetic theory” wurde mit der
Bestiizung der National Academy of Sciences - National Research Council entworfen als
einer der Verfasser (J.L.) wihrend sechs Monate in NASA- Goddard Space Flight Center
war, Greenbelt, Md., USA. Dieses Artikel wir in Astrophysics and Space Science veroffend-

licht.



DIAMAGNETIC BOUNDARY LAYERS : A KINETIC THEORY
by
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** Goddard Space Flight Center, Greenbelt, Md., U.S.A.

Abstract

We present a Kinetic theory for boundary layers associated with MHD tangential
’discontinuities’ in a collisionless magnetized plasma such as those observed in the solar
wind. The theory consists of finding self-consistent solutions of Vlasov’s equation and
Maxwell’s equation for stationary, one-dimensional boundary layers separating two Max-
wellian plasma states. Layers in which the current is carried by electrons are found to have a
thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying
‘ electrons is found to exceed the Alfvén speed, and accordingly such layers are not stable.
Several types of layers, in which the current is carried by protons are discussed; in parti-
cular, we considered cases in which the magnetic field intensity and/or direction changed
across the layer. In every case, the thickness was of the order of a few proton gyroradii and
the field changed smoothly, although the characteristics depended somewhat on the
boundary conditions. The drift speed was always less than the Alfvén speed, consistent with
stability of such structures. Our results are consistent with the observations of boundary
layers in the solar wind near 1 AU.

Résumé

Un modéle cinétique est proposé pour décrire les discontinuités tangentielles dans le
vent solaire. Les solutions données satisfont aux équations de Vlasov et de Maxwell et
décrivent des couches decourantsdiamagnétiques séparant deux plasma ayant des densités et
températures différentes. L’épaisseur de ces couches limites est soit de I’ordre de quelques
rayons de gyration des électrons, soit de ’ordre de quelques rayons de gyration des ions.
L’un ou l'autre type de structure prévaut suivant que le courant diamagnétique est trans-
porté par les électrons ou seulement par les ions. Les modeles particuliers choisis pour
illustrer la théorie correspondent a des structures semblables a celles qui sont observées dans
le vent solaire a 1 U.A.



Samenvatting

Een kinetisch model, dat de tangentiele discontinuiteiten in de zonnewind beschrijft.
wordt voorgesteld. De gegeven oplossingen voldoen aan de vergelijkingen van Vlasov en
Maxwell en beschrijven lagen van diamagnetische stromen die twee plasma met verschillende
dichtheid en temperatuur scheiden. De dikte van deze limietlagen is ofwel van de grootte—
orde van enkele gyratiestralen van de electronen ofwel van enkele gyratiestralen van de
ionen. Het ene of het andere structuurtype wordt aangenomen naargelang de diamagnetische
stroom overgebracht wordt door de electronen of ‘enkel door de ionen. De afzonderlijke
modellen die gekozen werden om de theorie de staven stemmen overeen met structuren
gelijkaardig aan deze die in de zonnewind werden waargenomen op 1 U.A.

Zusammenfassung

Ein kinetisches Model fiir tangentialle Diskontinuitdte ist vorgeschagen worden. Die
Aufldsungen der Vlasov und Maxwell Gleichungen beschreibendiamagnetische Strome die
zwei Plasmas mit verschiedene Dichten und Temperaturen abteilen. Die Breiten dieser
Schichten ist entweder einige Electron Larmor Radius or einige Ionen Larmor Radius, dem
nach dass die electrisch-diamagnetische Strome durch die Electronen order nur durch die
lonen iibertragen sind. Die bestimmte Modelle die hier forgeschlagensindum die Theorie zu
illustrieren, sind den tangentiallen Diskontinuititen des Sonnen Windes dhnlich.



1. INTRODUCTION

Observations of MHD ’discontinuities’ in the solar wind have been discussed in many -
papers and were reviewed by Burlaga (1971, 1972) and Siscoe (1974). However, only a few
papers (Siscoe et al., 1968; Burlaga, 1969; Smith, 1973) have discussed the structure of the
current sheets associated with such discontinuities, and these were limited by the time
resolution of the observations and failure to include plasma observations. The current sheets
are quite thin. For example, Siscoe et al, (1968) showed that they are generally convected
past a ’fixed’ S/C in less than 10 s and thus have dimensions < 10 proton Larmor radii, a .
They are ’kinetic-scale’ phenomena, in the classificationscheme of Burlaga (1969), and one

expects that a kinetic theory is needed to describe them.

The observations of current sheets, which are referred to above, do not have sufficient
time resolution to allow one to study the structure of the thinnest sheets or obtain the most
probable thickness. For example, the structures exhibited by Smith (1973), Siscoe et a_l.
(1968) and Burlaga (1969) had a width of =~ 1 min. Consequently, the results are not

representative of current sheets in general.

Magnetic field observations from the GSFC magnetometer on IMP I have a sampling
rate of ~ 1451, an order of magnitude improvement over the rates discussed above, and
have clearly resolved the structure of even the thinnest current sheets. Simultaneous plasma
measurements are also available, although their time resolution is rather poor. These
observations are discussed in a companion paper Burlaga ef al.,, 1976). Here, our aim is to

understand these structures. The emphasis is on the theory itself.

The theory which we present is an extension of the work of Sestero (1964) on the
structure of plasma sheaths. Sestero considers only the case in which the magnitude of B
changes while the direction does not. This does not frequently occur in the solar wind. The
most likely configuration is a change in the direction of B with no change in magnitude, but
one also observes changes in both {B| and B in interplanetary sheaths. Thus, our work

concerns the generalization of Sestero’s theory to include both changes in |B} and B. It also



includes changes in composition, temperature anisotropy. etc. Alpers (1969. 1971) has
discussed current sheets. but he assumed zero electric fields, whereas we let E # 0. Stern

(1975) has discussed particle trapping at discontinuities.

The significance of this work extends beyond a discussion of the sheaths themselves. It
represents a new theoretical framework for discussing kinetic scale phenomena in the solar
wind. The starting point is the Vlasov equation as opposed to the fluid equations which have

been used to discuss processes on a larger scale.

2. BASIC EQUATIONS AND ASSUMPTIONS

2.1. Field equations

Since the solar wind speeds before and after tangential discontinuities are usually more
or less the same, it can be considered with some confidence that tangential discontinuities
are steady-state structures convected with the solar wind velocity - i.e.. (1) that the pro-
jection of W the plasma bulk velocity along N the normal to the current sheath is the same
on both sides of the discontinuity (WI.N = Wr.N), and (2) that their thickness doesn’t
change significantly in a time comparable to that during which they are observed at 1 AU.
Therefore. in the frame of reference moving with the solar wind the steady-state field

equations are, in rationalized MKS units,

curl B=pu, Z ZeF, ' (2.1
i

B = curl A (2.2)

div (e E) = T Z;en, | (2.3)

E = -grad ¢ (2.4)

where A and ¢ are the vector and scalar potentials of the magnetic field B and electric field

E. respectively; p and € are the permeability and permittivity of free space: Z.e, F. and n;



are respectively the electric charge, flux, and number density of the particle species i, where

i stands for e (electron), p (proton), a (alpha particle).

It will also be assumed that the curvature of the current sheath is small compared to its
thickness. Some evidence which supports this was given by Burlaga and Ness (1969). As a
consequence it can be considered (1) that the surface of discontinuity is a plane. and (2)

| thaf all quantities depend on x, the space coordinaté along ﬁ the unit vector normal to

this plane (see Figure 1). It results from these assumptions that
Ey = const, E, = const, B, = const. C (2.5)

Since we don’t examine rotational discontinuities but-only the commonly 6bserved tangen-

tial discontinuities. we canset B, = 0.

Furthermore. since it was assumed that there is no mass flux normal to the surface of
discontinuity (as would be the case of a shock front or rotational discontinuity) W, = 0

implies that
Ey B, - Esz = 0. ' (2.6)

If we consider that the electric conductivity is very large along the magnetic field

direction, there can be no significant electric field parallel to B - i.e.,
EyBy+Esz = 0. ' 2.7

From (2.6) and (2.7) we obtain, in the frame of feference moving with the solar wind,
E, = 0and E, = 0. In the paper of Sestero (1964) the magnetic field remains paralle] to the

z-axis - i.e., B, = 0. To allow for a change in the direction of the magnetic field across the

y
current sheath we shall consider the slightly more general situation where both B, and B,

are functions of x and solutions of the equations



dB,

dT’ = u, Zl‘. Zier,i . (2.8)
dB,
ol -po.iXZier.i, (2.9)
dA, : '
K = -B, . A : (2.10)
dA '
=B, : 211
"with the boundary conditions

- lim By = B;sing, . (2.12)
x—! . .
limB, = B cos¢,. (2.13)
x—i .

where BI is the intensity of the magnetic field on the left-hand side at x = X and 3 the
angle of B and the z-axis (see Figure 1).

It is convenient to determine the z-axis such that By is negative or zero, and BZ is
positive at x = x: i.e., - 90° <<i>l < 0. In such a coordinate system A, and Ay are both

increasing functions of x such that

lim Ay = - o and lim A, = - . ‘ (2.14)

X—-® : X— -0

The electric field equations (2.3) and (2.4) become

1 . .
—_— = Zz.en., ) (2.15)
€ 1



with the boundary conditions

lim ¢ = 0
X—-00

“and '

lim Ex = 0.

X—»-00

(2.16)

2.17)

(2.18)

The condition (2.18) implies that, except inside the narrow current sheath, the drift velocity

(E x B/B?) and the fluxes F, become vanishingly small when x — - .

If the electric current and charge density, or the fluxes, Fi,’ and concentrations, n,, are

known: functions of x and/or A, A, ¢,the set of differential equations. (2.8)<(2.11),

(2.15)<(2.16) can in principle be integrated to determine the distribution of the field

variables By, B,.E, Ay A, 9.

—

In the next sgctioh we show how it is possible to determine such functions
n, = Q%%,A,,A),

F, = Q%G,A,,A),

where Q3™ " are the moments of the velocity distributions f,(v, x)

Qgmnr = ﬂf vy v v fi(v,x) dv.

F,; = Q% 4,A,,A),

(2.19)

(2.20)

(2.21)

(2.22)



2.2. The plasma equations

The densities and fluxes in the right-hand side of equations (2.8), (2.9) and (2.15) are
the zero and first order moments of the velocity distribution, Equations (2.19)-(2.21).
These quantities must be solutions of the steady-state transport equations - i.e., the conti-

nuity equation

d(niwx,i) . de,i
—LxE g o - 0. | (2.23)

d dx

X

This equation is necessarily satisfied in our case since the flux, Fx, and the bulk velocity,

Wx, normal to the surface of discontinuity are assumed to be zero for cach specics.

The equations of motion are

d

ax Pxvi = 0 ‘ (2.24)

d : .

ax Pxzi = 0, (2.25)

d

a pX'y,i = Zie(niEx + I:y,iBz B Fz,iBy) ’ (2.26)
where p,, |, b, ; and p, ; are components of the kinetic pressure tensor defined by Q] 10,

Q10! and Q2?00 respectively (Equation 2.22).

Note that the usual total pressure balance equation can be obtained from (2.26) by
summing for all species, and by using (2.8), (21'9) and (2.15) to replace EiZier’i,
Z.Z.eF,; and EiZi en;: ie.,

d B}+B.
—(;p + — + E§)=o.. gy - (2.27)



Note the presence of the term E)Z(

When collisions are sufficiently frequent fo maintain an isotropic and Maxwellian
velocity distribution with a temperature T,, the transport equations can easily be closed by
= 0.

Pyx.i=Pyyi=Pui= n.kT,) with a constant or polytropic temperature distribution. Other

introducing some additional assumptions - e.g., isotropic pressure (pxy P = Pyz i = Py
classical hydrodynamic approximations as, for instance, the Navier-Stokes relations, are
sometimes used when viscosity and conductivity become more important, and when the

mean free path of the particles can no longer be considered as infinitely small.

In the opposite limit, when the average mean free path of the particles becomes large
compared to the characteristic dimension of the system. we cannot, as in the collision
dominated regime, define relevant relationships between the higher and lower order
moments of the velocity distributions. As a consequence there is no obvious method to
close the system of transport equations, and we are led to step back to Liouville’s or

Vlasov’s equation of the form

of, . Ze of, of, of,
v, '5-x— + ;— (E, + vsz 'Vsz) ;,— -v, B, ; -vay E)—v: =0 (2.28)
1 X A

It can be verified that any function of the constants of motion of the particles is a
solution of Vlasov’s equation. In a steady-state electromagnetic field as defined in Section
2.1 and illustrated in Figure 1, the constants of motion are the conjugate momenta of the

space variables y and z - i.e.,

p, = myv +ZieAy, (2.29)

y

p, =myv, + ZeA, (2.30)

and the total energy

1
W=7z mi(v)z( + v§ + vf) + Zie¢ . (2.31)






Among the infinite number of possibilities, we have chosen a function fi(py, P, W)
such that. in the limits x = ¢ = f. tends to the actual MaxWellian velocity distributions on

the left- and right-hand sides of the surface of discontinuity: i.e.,

3/2 2
lim f.=N< o oex (- ) = f . (2.32
x.l..oc ' ! 2nkT, ; P 2KT, ; 1t » :
3/2
( m, ! mv? )
xl_l.Too f. =N 27kT, ) exp ( KT = f“i(v), (2.33)
. T.i 5
where Nl‘i, Nr i Tl,i‘ Tr‘i are the number densities and kinetic temperatures'of the particles.

1, on the left (1) and right (r) side of the discontinuity.

The boundary conditions of fi(py, p,, W) limit somewhat the choice of this arbitrary
function of the constants of motion but not enough to determine it completely or uniquely.
The reason for this indeterminacy is that in a collisionless regime it is always possible to add
an arbitrary amount of ’trapped’ particles which never can reach x = % e This point has
already been made by Stern (1975) using very general arguments. The velocity and pitch
angle distributions of these 'trapped’ particles are not determined by the boundary con-

ditions at x = t e at least in absence of collisions. We shall use for fi(py, p,, W) the

function
3/2
mi ! W
=N ( ) ( ) - - +
' Li 21rl<'l“|‘i exp le,i n(- p, ) n( Py)
3/2
() ol A
e ‘ ) ( ) I-n(-p,n(-p,)l, 2.34
r,i 21rkT“. exp kTri [1-n( pz)"?( py)] ( )

where n(p) is the step function (n(p) = 0 for p < 0 andn(p) = 1 for p > 0). This means that
f=1, = Nr"i(mi/21rkTr ‘.)3/2 exp (- W/KT, ;) everywhere except in the quadrant p, < 0.

p, <0, where f;, .= f, .. In terms of speeds, f= f , everywhere except in the region Vy <

-11-



- ZieAy /m, V, <- Z.eA,/m;, where it equals fLi . Since Ay - -2and A, —» -oasx - -
(see 2.14), this means that f — fLi as X = -oo. Thus, the choice of (2.34) gives the desired
transition from one Maxwellian state at x = + o to another at x = - . In the special case
that N = N and T, = T,, f, is isotropic and Maxwellian at any distance x; this follows

immediately from (2.34).

The function (2.34) is symmetrical with respect to the quadrants P, <0,p,>0and
D, > 0, p, < 0, but it is asymmetrical with respect to the quadrants P, >0,p,> 0, and
P, < 0, p, < 0. This asymmetry allows currents in any direction in the (Vy, V,) plane :
these must be chosen to be consistent with the specified directions of B at x = £ e and our

sign conventions.

The expression (2.34) should not be considered as an exact representation of the actual
velocity distribution, but as one possible solution of Vlasov’s Equation (2.38) satisfying the
boundary conditions (2.32) and (2.33). This solution is not unique. By this particular choice
for f; we describe only one set of structures among a much broader family of similar current
sheaths. Our aim is to find a solution which describes the basic features of the observations,
viz., the observed thickness and the laminar nature of the transition. One cannot expect the
function (2.34) to describe the detailed structure of every tangential discontinuity.
Nevertheless, one can calculate, self-consistently, a possible set of structures and determine

their characteristic thickness.

In the Appendix we give the algebraic expressions for the moments of f.; these
moments Q3™ " (Equation 2.22) satisfy the general transport equations and the boundary
conditions at x = * e. The general formula for Q{™" given in the Appendix, can be used in
the right-hand side of the field Equations (2.8)-(2.11), (2.15)-(2.16) to model the electric
current and charge density distribution. The distribution of the electric and magnetic
potentials and fields are finally determined by numerical integration of these differential
equations. The method of integration and the description of the numerical solutions are

_given in the next section.

-12-



3. SUMMARY OF THE EQUATIONS AND THE METHOD OF SOLUTION

It is rather convenient to introduce non-dimensional variables and define the new units

given in Table L. In this new unit system the equations are

dB, - 001 ' '
&__ - Z ZiQi , . (3.1)

1
dB, 010
— = .3 Z Q , .
dx i Qi ‘ (3-2)
dA,

=-B. . .
dx y 3.3)
dA, }
— = B, .
= . (3.4)
~ KT,. d%¢

e _ 7 _ 000 ‘

T o R -Zi) Zi Qi . : (3.5)

€

Note that the RHS of (3.5) is the relative excess of electrons, or thencharge separation
density (n, - Zi onnion)/n‘,_. In addition, one has the following relations which are obtained
from (2.22) with = f(W(¢ , A, A,), P(9, A, A,)) given by (2.34): e, Q00! = Q001(y,
A, A), Q10 = QP00 A, A,)), and Q900 = Q3%%, A, A)). Note the Q7% is the
dimensionless denSity of the ith species, and Q?ol, Q?lo are the dimensionless currents
carried by species i along Z and y, respectively. Thus, for a proton-electron plasma wé have
11 equations for the 11 functions B (x), B,(x), A, (x), A,(x), #(x), Q2°%(x), Q¥'°(x).
Q90! (x), Q999(x), Q219(x), and Q42 (x).

‘The solution of our system of equations is greatly simplified by noting that the right-
hand side of (3.5) is generally small in usual circumstances. Indeed, unless the second
derivative of the non-dimensional electric potential (or the variation of the electric field) is

unreasonably large (1d%2¢/dx?|> 10*), the charge separation density is of the order of

-13-
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TABLEI . The New Units

The corresponding value in familiar units is given for N,
w is the permeability of free space; m, is the electron mass e is the electron charge.

= Scm'3 T

=15x10° K; k is the Boltzman Constant ;

Symbol

Value

Variable New Unit

Density i N, Nie 5 cm

Distance X (m,JuN, e?)!/? 237 km

Temperature 'I‘Ai;«Tr’i .. 'l‘l'e 1.5x 10° K

Velocity Wiv . (2KT, fm )/ 2132 kmxs!

Pressure Pxy, i’ Pxx, i 2Nl,ekT!,e 207 x 10’10 dyne x cm’2

Particle Flux. F, Fy; N, (2T, /m )"/ 1.06.x 10° em? x5

Curient Density Jy‘ ol eNI’e(2le' ‘E/me)”2 1.76 x 10 amp x m2

Electric Potential ¢ le’ e/e 129 Volt

Electric Field E, (2T, N, fm, )/ 543 mV m’!

Magnetic Induction - By ;B, (2ule Np e)l/2 5.1 gamma

Vector Potential AA, (2KT, ;m [e)!/? —

Heat Flux q ;9 Nl' E,'(zk'I‘l'e/me)”2 2.20 x 10°2 ergxcm2 xs
. mint]

Higher Order Moments Q™ Ny (2KT fm) ™ 2 — -




-s[-

TABLEII

Boundary Conditions

Figure No 2 2 3 3 4 4 5 )
Model No. a b c d e f g h
Number density N, ™ 5 5 5 5 5 5 5 5 cm’3
N, 5 5 5 5 5 5 5 5
N, (* 25 45 5 5 5 5 5 5
N, 25 15 1 1. 3.69 i 2862 1273
Temperatures T, ® 15 1S 1.5 15 1.5 1.5 IS 1.5 10° K
T, ® 05 05 05 05 0.5 0.5 0.5 0.5
Tr'e ™ 1.5 1.2 1.5 1.5 1.5 1.5 L5 1.5
Tr,p ™) 0.5 0.2 0.5 0.1 1 1 1 0.25
Magnetic field intensity B, *) 2 2 2 2 24 2 2 2 Gamma
and angle at - o ¢, ™) -45 -45 -45 -45 0 0 -45 -45 degree
Rotation parameter p *) 1.5 0.8 0.8 0.8 o oo 0.5 0.5
Electric potential =) (4.1) 0 0.0584 -0.402 -0.100 -0.181 -0.643 -0.223 0.133 Dimensionless (see
difference Table D
Density at + o n(<) (4.2) 25 484 334 4.52 4.43 262 4.0 5.71 cm3
Magnetic field intensity B, (calc.) 462 3.89 3.93 3.68 0.5 3.98 2.15 1.32 Gamma
and angle at x = + o 9, (calc.) -.18 -633 -64.2 -63.1 0 0 -548 -364 degree

(*) are given as input ;(4.1) means that ¢(=°) is given by equation (4.1) ;{calc) means that this quantity is obtained from the numerical integration stopped at
x =+oo:je, atalarge distance from the current layer.



eopok’l‘.e/me: i.e., the square of the electron thermal speed divided by the square of the
velocity of light; for T, =15x 10°K the charge separation density (n, - Zionnion)/ n, is
less than (2-3) x 10°3. Under normal conditions it is expected that the right-hand side of
Equation (3.5) is always very small and that the quasi-neutrality condition is satisfied. This
implies that under normal circumstances the electric potential ¢ can be calculated by solving

the algebraic equation

2Z,Q0%0,A,8,) =0, . \ (3.6)

instead of integrating thé non;linear differential Equation (3.5). In other words, the electric
potential is adjusted to have an electron density distribution n (x) exactly equal to the total
ion charge density in the presence of the potential A(x). One thus obtains an equation for
¢(Ay, Az.). Given ¢(A'y (x), A, (x)), one can calculate Ex = - d¢/dx and one can verify a
posteriori that d2¢/dx? and An/n are negligibly small.

Our equations reduce to those of Sestero (1964) if we set T,;=T,,=constant, T, , =

T
T _ = constant and A, =0 In other words, Sestero considered the special case of an

1e
isothermal boundary layér with Br parallel (or antiparallel) to Bl. In this case one obtains an
analytical expression for ¢(Ay)by setting the RHS of (3.5) equal to zero (Sestero, 1964;
Equation 19). Equations (3.3) and (3.1) do not enter since By = A, = 0 by assumption.
Integrating the distribution function with ¢ = ¢ (Ay) gives analytical expressions for
Q2'%(A,) and Q¥!°(A,) (Sestero, 1964; Equation 17) which may be substituted into the
RHS of (3.2). Combining (3.2) and (3.4) then gives a single differential equation for Ay(x)
which can be solved numerically. This essentially completes the solution, for now one can

obtain B, from (3.4), ¢ from the formula for ¢(Ay ), E from ¢(x), etc.

The procedure that we used to solve the more general set of Equations (3.1)-(3.5) etc..
is similar to that for the case considered by Sestero, excepf that we needed to use numerical
methods more extensively. The root ¢(Ay, A,) of (3.6) was found by the method of
successive approximations. With this, Q?OO, Q?,OI were obtained by integrating the distri-

bution function. Finally (3.1)(3.4) were integrated by the classical predictor-corrector

- 16 -



numerical method, which gave numerically stable results that satisfied the total pressure
balance condition (2.27). The numerical integration is to be started at a distance X, suffi-
ciently far from the current sheet. At this distance the magnetic field components 'By and
B, are determined by the parameters B, and ¢, defined by (2.12) and (2.13). Arbitrarily
large negative values must also be given to Ay (x;) and A, (x,), according to (2.14); Ay( X)) =
- 250 Bl and Az(xl) = pAy (x,) have proven to be sufficiently large values to require that the
integration is started at a sufficiently large distance from the discontinuity. surface. The

parameter p (the ratio, AZ/A of the two components of the vector potential at x = X,)

. y’
determines the rate of change of the magnetic field direction across the sheath. The value of
p and of the other boundary conditions (N, .; T, ;: B;; ¢,; NI ;> T, ;) are given in the Table 11

Li?

for each model discussed in this paper.

4. SOLUTIONS

One can distinguish basically two different types of boundary layers - electron boun-
dary layers whose thickness is on the order of a few electron gyroradii, and proton boun-
dary layers whose thickness is on the order of a few proton gyroradii. Here we refer to an

average gyroradius defined by

v/ 2km
2

- + 3.7
2 B B @7

1/2 1/2
Tl Tt J
1 T

where the temperature refers to protons or electrons, as appropriate. Each type of boundary
layer may appear in many different forms, depending on the bbundary conditions and the
nature of the distribution functions. The first two solutions that are discussed below
illustrate electron boundary layers. The ofhers illustrate different kinds of proton boundary
layers. We stress that the results are illustrative, since measurements of boundary conditions
and details of the distribution fﬁnctions which are needed to completely specify real cases
are not available. All of the results will be given in the dimensionless units listed in Table I.

In particular, note that distance along the x-axis is scaled in ’electron skin depth’ units (e.g.,
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Ax = 1 for 2.37 km and 100 km corresponds to Ax = 42). The electron and proton
gyroradii are probably more relevant, and these are shown for reference in the top panel in

each of the figures to be discussed.
4.1. Electron boundary layers

Figure 2 illustrates the solutions corresponding to the boundary conditions given in
columns (a) and (b) of Table IL. In these examples, the direction of B changes across the
layer, from ¢, = - 45° to ¢ = - 18° in model (a) and to ¢ = - 63.3° in model (b), and the
2y to B, = 4.62y in model (a) and to B, =

3.89y in model (b). The number density n, = n, decreases from n p(- )= N 3

magnetic field intensity increases from B,
Lep = Scm’
ton, p(+ w)= 2.5 cm3 in model (a) and to n, p(*r w)=4.84 cm? in model (b).

In the example on the left side of Figure 2, the electron temperature does not change
(Tr’e = Tl,e in model (a)). The current along ¥ is driven primarily by a ’heat flux’ due to a
tail in the direction of the electron distribution function. The self-consistent electric field
which drives the- current, together with the corresponding potential and the charge
separation, are shown in the top three panels of Figure 2. One can see from Figure 2 that
the sheath does indeed have the dimensions of a few electron gyroradii. This is seen in the

observables B and n and in the other quantities as well.

The electron drift speed, shown in the middle panel of Figure 2 together with the
Alfvén speed;, V, = B(u Enimi)'”2 in (2k’I‘l,e/me)”2 units, is particularly interesting.
The electron drift speed exceeds the Alfvén speed in a narrow region on the order of four
times the electron gyroradius, a,, where most of the electron current is confined and where
the largest change of the magnetic field occurs. Electrostatic instabilities are triggered when
W, >V, (Papadopoulos, 1973). Therefore, it is expected that the narrow current sheaths
represented in Figure 2 will broaden rapidly by wave-particle interactions. This broadening
of the electron current sheath will stop when the electron drift is reduced below. the
threshold for zero growth rate of the unstable modes. In this final situation the perpen-

dicular electric field, E_, will be significantly reduced and the total magnetic field variation
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will be spread over a distance larger than 4-electron gyroradii. During this transition period
of pitch angle diffusion more electrons are scattered into trapped orbits. As a consequence
the trapped particle population is changed as well as the electric potential distribution
required to maintain the quasi- neutrality. The electron pitch angle distribution f_ (v)
becomes eventually. more isotropic inside the sheath. Therefore, narrow éurrent sheaths like
that illustrated in Figure 2 are highly unstable and will evolve in a short time toward broader
ones for which the electrons may still be the electric.current carriers but in which their drift
velocity W, doesn’t exceed the Alfvén speed V,. When this stage is reached, the much
slower Coulomb collisions will broaden ‘it even more. Since the electron Coulomb collision
time is only one dayat 1 AU, it is expected that the electron velocity distribution reaches
rapidly an equilibrium state where it is nearly isotropic and where the electrons no longer
~ carry the electric current responsible for the most commonly observed large tangential
discontinuities in the solar wind. Note that if electron sheaths with a thickness of only 4
electron gyroradii were present in the solar wind, they should be seen in the high resolution
magnetograms as large amplitude changes in By and B, over a period of 0.1 s, close to the
time resolution of the IMP I magnetometer (0.08 s). Among the 400 directional disconti-
nuities that we examined (Burlaga et al., 1976) none had a thickness comparable to that
expected for an electron sheath. This can be considered as,evidence for a mechanism such as
that just discussed, which can destroy an electron sheath in a time less than the transit time

of the solar wind between the Sun and 1 AU.

The event shown on the right-hand side of Figufe 2 (model (b)) is similar to that which
we have been discussing except that the distribution function is now chosen such that both
the electron and proton temperatures change across the layer (see Table II). This does not
alter rhe essential features of the structure. Again the width is on the order of several a,, and

the drift speed W, exceeds the Alfvén speed. It too is probably unstable and it is not likely

to be observed in the solar wind.

-20-



4.2. Proton boundary layers

For simplicity, we shall assume in the following discussion of proton boundary layers
that the electron velocity distribution is an isotropic maxwellian function throughout the
boundary layer - i.e., that the electron pressure anisotropy is everywhere zero as well as the
T T__ in Equation (2.34)). We shall further restrict the

electron fluxes (N, = N e =T,
discussion to a two- component (proton and electron) plasma. In this case (3.6) can be

r,e :
solved explicitly for ¢(+ ) and ¢(- «). In particulér,

T T

p(+) = P ln(N"p ) ; (4.1)
Tl,e(Tr,e + Tr.p) N ‘

r,e

and a similar expression exists for ¢(- ) where the subscript r is replaced by the subscript !.
When N, p = N
because Nr,p/Nx,e is smaller than unity in Equation (4.1) (see Table II).

e ONE finds that ¢(- =) = 0. The value of ¢(+ o) is negative in the model (¢}

The electron and proton densities at x = + o are given explicitly by

(Tep/(Tep ¥ Tro)] N T

np r.e

T, +T,
n(+®) = n (+=)=N re! Trp ¥ Tre)) (4.2)

and a similar expression for n (- =) and np(- o) with the subscript r replaced by 1. Whep
N, = Nl e ONe finds that ne(-°°) = np(-°°) = Nl - The values of n, (+ =) (in cm'3), and

Lp
the value of ¢(+ =) (in volts) are given in Table II for each model.

From the total pressure balance Equation (2.27) one has the following equation which

must be satisfied throughout the boundary layer

B2 €, E2 _
Zi: Pyxit 2. + 3 = const, . (4.3)
where p,, ;= n,kT, , ;. Various combinations of changes in n, T, and B across the boundary
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layer are possible, and several will be considered below. We shall present plots of the proton
drift spéed, Wp, and the total proton heat flux, q. The y-component of the drift speed Wy i

is related to the second and third order moments and to the electric field Ex , by

aQZlO Ze
- — [nW,E, -B,(Q*°0-Q020).B Q1] = 0 (4.4)

9x

where Q290 and Q020 are related to the partial pressure tensor by

p p
200 XX XX
= = : 45
Q o - | (4.5)
Q020 = EXL + Wi = .p_yl (4.6)
m m
P .
Qo2 = P e 4.7

(the subscript i for the particle species is omitted in (4.4)-(4.7)). The heat flux components

.y and q, ;, are defined in terms of the third order moments by
qy = m/2[0210 + QO30 + QOI3] + manwy _Wxny _
1 y
-WyPyy-Wszy-'z-Wy[Pyx+Pyy+Pzz]; (4.8)
and a similar expression for q, .

Several self-consistent solutions of the boundary layer equations will now be discussed.
First, we consider two cases in which both the magnetic field intensity and direction change,
then we discuss two cases in which the magnitude but not the direction changes, and finally

we present two cases in which the field direction but not the intensity changes across the

boundary layer.

Figure 3a shows a situation in which the proton temperatures T p and T, p are equal,
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and an increase in |B| is compensated by a decrease in density (model ¢ in Table II). The
field direction changes as well, and accordingly there are components of current along both
¥ and Z. These are apparently due to a distortion in the proton distribution function which
is equivalent to a heat flux. The resulting drift speed is less than the Alfvén speed, so the
structure is expected to be stable. The width of the magnetic field transition is a few proton
. Larmor radii, consistent with the fact that the current is carried by protons which are
gyrating and drifting in the magnetic and electric fields. The magnetic field intensity changes

smoothly across the layer, consistent with the simple, single peaked current distribution.

The case (model (d)) in the right panel of Figure 3 is similar to the one just discussed.
except that the proton temperature is assumed to decrease across the layer and thus a
smaller drop in density is needed to compensate for the increase in {B). The smaller cﬁange
in d'ensity gives a smaller separation in charge density and a smaller change in electric field.
Again, however, the current is mainly due to an equivalent heat flux in thle proton velocity
distribution, and the single hump in the current density gives a smooth transition in B. As in

the previous case, the thickness of the boundary layer is a few proton gyroradii.

A somewhat more complicated boundary layer is shown in the left side of Figure 4
" (model (e)). In this case, we assume that the magnetic field direction does not change, while
the magnitude decreases across the boundary layer. The density is assumed to decrease only
a little, and the decrease in n and |B| is balanced by an increase in Tp. In this case; the
. charge separations and changes in the electric field are small, and the boundary layer is
broad, approximately JOap. The current density and drift speed show a 3-humped structure
which causes an irregular variation of |B| across the layer. The two large humps in J and Wp
are probably due to the anisotropy in ion pressure, while the small hump seen in Wp @s

associated with a heat flux.

The event shown on the right of Figure 4 (imodel (f))-is similar to that just discuésed in
thut the direction of B is constant throughout the layer while its magnitude increases. In this
case, however, the change in density is assumed to be large. This large change is obtained by

assuming that both Tp and |Bj increase, so that both effects must be compensated for by a
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decrease in n, in order to maintain pressure equilibrium. Because of the large density
change, there-is a larger charge separation and a larger change in E, than in the previous
case. The boundary layer is thinner, being only a few a, in extent. The current density and
Wp appear to have a relatively simple form, resulting in a smooth magnetic field transition,
but the simplicity might be illusory, since.there are significant changes in both the heat flux

and anisotropies in the ion pressure.

Finally, let us consider two cases in which thg magnetic field intensity is nearly
constant but the direction changes by - 9.8° and 8.6°, respectively, across the boundary
layer. The first case, shown in the left of Figure 5 (model (g)) is based on the assumption
that there is a decreasé in density which is balanced by an increase in Tp, with only a small
change in |B|. The charge separation and electric field change are extremely small (< 10°%
mVm!; Ah/n < 4 x 10°%) the thickness of the layer is only =~ 2ap‘ The current shows a
single maximum, which is apparently due to an equivalent heat flux, and the variation in the

field direction across the layer is accordingly uniform.

Model (h), on the right of Figure S, is very similar to the preceding one; here the
density increases while the temperature decreases, whereas in the preceding case the density
decreases while the temperature increases. Again there are small changes in E_ and in the
charge separation, the thickness is ~ 2ap, the current density varies in a simple way and is

related to the heat flux, and the field direction rotates by - 8.6° uniformly across the layer.

All of the proton boundary layers discussed above have some features in common
despite the variety of boundary conditions that were assumed. In every case, the thickness
was greater than one Larmor radius, as one expects because the-currents are due to gyrating
protons. The thickness is always on the order of a few a,, consistent with the observations
of Burlaga et al. (1976). The drift speed of the gyrating protons that carry the current is
~ always less than the Alfvén speed, consistent with the apparent stabjlity of the boundary

3

layers that are observed.

The currents .in the case that the field changes only in direction are an order of

magnitude smaller than those associated with changes in field intensity, but in both cases
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the current densities are much smaller for tH_e proton boundary layers than for the electron
boundary layers discussed earlier. In fact, the ratio of peak electron to peak proton current
density is approximately the ratio of the corresponding thermal speeds, viz.,((Te/Tp)/-
(m, /mp M/2 ~ 70. However, the smaller proton currents are spread over a layer which is
thicker than the electron boundary layer‘ it is thicker by a factor equal to the ratio of the
gyroradii of the protons and of the electrons, viz. ((T /T )/ (m, /m »1/2 =~ 25, so the total
current, I = f J dx, is of the same order of magnitude in both cases. It can be shown that
each type of charged particles contributes to the total value of I (and 1) by an amount
proportional to |Z,|3; averaged over the current layer. (1Z;] is the charge number, and B; is
the ratio of partial kinetic pressure nikTi, and the magnetic pressure B2/2u o). Since ABy =
" I and AB =-u, I the total jump in the magnetic field components across a tangential
discontinuity is expected to be approximately proportional to <Z.|Z, Iﬁ >, where the
brackets mean the average value over the whole layer (i.e.,<A> =lim f Adx/ f dx)

X0

5. SUMMARY AND DISCUSSION

We have presented a theory for thin boundary layers associated with MHD ’discon-
tinuities’ in a collisionless plasma, such as those observed in the solar wind. Since the
observed bou_rrdary layers have a thickness on the order of a few Larmor radii, a kinetic
theory which includes the effects of particle orbits is appropriate. We take the Vlasov
equation as our starting point - i.e., we assume that the plasma is indeed collisionless over
‘the small scales in the boundary layer, and we assume that the particles interact only with
~ the magnetic and electric fields. We obtain self-consistent solutions of the Vlasov equation
and Maxwell’s equations for stationary, one-dimensional configurations corresponding to
several sets of boundary conditions. Our method; which is an extension of that used by
Sestero (1964) to allow for changes in magnetic field direction and temperature, is basically
the following. We choose a form of the distribution function which satisfies Vlasov’s
equation and reduces to a Maxwellian distribution at * e, and we integrate this to obtain

jon and electron densities and currents which are functions of the electrostatic potential
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#(x) and the vector potential A. A and ¢ are related by an equation which is solved
numerically by neglecting the charge separation to first approximation. The currents and
densities are then introduced into Maxwell’s equations for B which are integrated numeri-
cally to obtain a solution for A(x), from which all other relevant quantities can be
computed. "

Two kinds of boundary layers are possible. In one the current is carried by electrons,

and in the other the current is carried by protons.

Two examples of electron boundary layers were discussed. In both cases, the thickness
was on the order of a few electron Larmor radii, and the field changed smoothly across the
layer. The drift speed was found to exceed the Alfvén speed in the boundary layer, and such
a situation is unstable. Thus, such stationary boundary layers are not expected to be
observed. In fact, no boundary layers with dimensions as thin as several electron gyroradii

have been detected in the solar wind.

Several kinds of proton boundary layers were examined. We considered situations with
both a change in magnetic field intensity and direction, with directional changes only, and
with intensity changes only. In every case, the thickness was on the order of a few proton
gyroradii and the magnetic field changed relatively smoothly through the layer.‘The thick-
ness and variation did, however, depend somewhat on the boundary conditions. The drift
speed was always less than the Alfvén speed, consistent with the fact that such structures are

actually observed in the solar wind.

" An infinite number of configurations is possible, corresponding to the number of
boundary conditions that are allowed. It is not possible, perhaps not even important, to ’fit’
in detail each and every boundary layer that is observed. Nevertheless, the solutions that we
. have presented illustrate the basic physics involved in these layers and our general con-
clusions are coﬁsistent with the general characteristics of the boundary layers most

commonly observed in the solar wind near 1 AU.
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The theory that we presented should be applicable to conditions that exist in the solar
wind away from 1 AU. Thus, we expect that the thickness will always be found to be a few
to several proton gyroradii. The gyroradius varies as \/’F/_é Little is known yet about T(r),
but the magnetic field intensity is observed to change as predicted by Parker’s model, being
close to r'2 near the Sun and r'! far beyond 1 AU. The temperature probably falls off less
rapidly than the adiabatic rate, T ~14/3  Thus, one expects the gyroradius and therefore the
thickness of the boundary layers to increase with distance from the Sun. Particle and field
measurements are needed to test this prediction. The preliminary Pioneer 10 results seem to
be consistent with our theory in that an increase in thickness with distance has been
reported (Tsurutani and Smith, 1975). However, the thickness in gyroradii has not yet been
determined inthat experiment. Similar studies are under way in the Helios and Mariner 10
data. If it is found that our theory is consistent with the observations we can assume that
thickness is a few proton gyroradii as predicted, and then use the observed magnetic
boundary layers as thermometers to determine the proton temperature. An extension of the

theory predicted in this paper is needed to realize this application.
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Appendix : Moments of the Velocity Distribution Function

Let us define the function of f(py, p,, W) by

3/2
m W ) |
f =N, (217le ) exp (-le n(-p,)n(-p,) +
3/2
m w
+ Nr ( 27’kTr ) exp ( '-kTr)[l -17(‘ py)n(' Pz)] (A])

where n(p) is the step function equal to zero for p < 0,-and equal to unity everywhere else:
The function (Al) is a solution of the time independent Liouville or Vlasov’s Equation
(2.28), since it depends only on the constants of motion (2.29). (2.30) and (2.31).

Whgn Ay and A , the components of the vector potential, are both equal to - e, f(py.
p,- W) becomes an isotropic maxwellian velocity distribution with the characteristic tempe-
rature T,, and density N, exp|- Ze¢(-°°)/le], where ¢(- =) is the electric potential at x =
-0, on the left-hand side of the tangential discontinuity (¢(- =) = 0 according to Equation
2.17).

When Ay andfor A, are equal to + e, f(py, p,. W) becomes again isotropic and
maxwellian with a characteristic temperature, T , and density N, exp[- Ze¢( + «)/kT ],
where ¢( + =) is the electric potential at x = + = on the right-hand side of the discontinuity
surface. '

The integral of (A1) over the velocity space is a finite positive number, Q%% and in
general, any higher moment, Q*™ " (Equation 2.22) of (Al) has a finite value as required for
any velocity distribution function.

(m+n+s)/2

2KT, , )

gmn = Nle( gsmo : (A2)

m,
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1 Z¢
™" = 7 sign(z )"ws ln,t1 exp ( ;) X

Zy
>+ nrtr(’“‘t"ﬂ)/2 exp (- - ) X

ce, [ —2) 5, |
R ,

t

Ziva, Zlva,

X[JlmJln-«fm(\/g )L’(\/t—)“ (A3

Where Z,lef is the electric charge and m; = me/'y2 the mass of the i-particles considered; a,,

a, and ¢ are the dimensionless vector and scalar potentials depending on x; n; = N, i/Ni o

n; =N /Nt =T /T sandt, ;= Tr,i/Tl,e' The functions £_ and_ are defined by
2 co
2
£ (x) = (1) [ oynevTay
n X
i
L,(x) = Erfe(x)
! 2
— — -X
L,(x) = T e (A4)

1 2 1
LH(x) = \7"— eX + 5 Erfc(x)

(1+x3)
Ly(x) = - ——\/—1'7——' e
" where Erfc(x) is the complementary -error function,

2 o0 5
1+ ¢ D" — NeY d AS
[1+ (1" - [ y"eY dy (A5)

[¢]

S
db = 2
M, =0
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o =1
1’{3=0etc.

The dimensionless densities, fluxes, momentum flux tensors, energy fluxes are given by

n, = %% (A6)
Fo=0; F, =a%!%; F,=q°0!; ' (A7)
P .= q200/42 ; P, ,=P,=0: (A8)
P ,=0; | P = q020/y2 ; Py'z=q°”/72 ; | (A9)
P, = 0; P,, =a’ i P, =q00%/y% ;. (A10)
e, =0; _ ey=(q21°+q°3°+q°‘2)/72;

e = (q?01 + q°21 + q003)/42  etc.. All)

z

The dimensional :quantities are obtained from Table I. This set of moments satisfy necessari-
ly the general transport equations (i.e., the Maxwell moments equations) deduced from

Vlasov’s equation (2.28).

It is obvious that (Al) is not a unique nor the most general solution of Vlasov’s

equation, but it is a function that satisfies the boundary conditions that we have imposed at

X = foeo,

Different temperature anisotropies (TII /T_L # 1) or/and non-zero bulk speeds (V|,
V. #0)on both sides of the discontinuity surface can be included in kinetic descriptions by

appropriate choices of f(py, p,, W). Although these generalizations increase the complexity
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of the mathematical expressions for Qj™ ", they can in principle be obtained and studied by
the same kinetic method. Roth (1975, personal communication) has derived such a generali-
zation to determine a minimum thickness of the plasmapause boundary when V, and V  are

not equal to zero.
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