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Introduction

At the inner edge of the radiation belts, the trapped proton uxes are highly

anisotropic due to the interaction of the particles with the Earth's atmosphere.

An important part of the ux anisotropy consists of a steep pitch-angle distribution

related to the atmospheric loss cone. An additional azimuthal anisotropy appears

for the high-energy trapped proton uxes. This anisotropy is observable when the

scale length of the proton uxes is comparable to or shorter than the size of the pro-

ton gyration radius. The azimuthal anisotropy results in an East-West asymmetry

e�ect where the uxes of protons coming|for a given position|from the East are

higher than the uxes of proton coming from the West. Generally, for spacecraft

shielding calculations, omnidirectional radiation uxes are assumed since large vari-

ations in spacecraft attitudes tend to average out any anisotropies. However, when

the spacecraft attitude is stabilized, the anisotropies in the radiation distribution

can not be ignored, and a complex shielding analysis has to be performed. Such

circumstances are met with the International Space Station, the attitude of which

will be approximately stabilized along its velocity vector. Employing only omnidi-

rectional model could result in errors in the shielding analysis and a hazard to the

crew and electronics.

In the �rst part of Technical Note 6, the model of Watts et al. (1989) which com-

bines the Heckman and Nakano (1969) pitch-angle distribution with the Lenchek and

Singer (1962) East-West asymmetry factor has been reviewed and discussed. The

Watts et al. model has been used by the Science Applications International Corpo-

ration (SAIC) to evaluated radiation shielding for manned spacecraft (Armstrong

et al., 1990; Appleby et al., 1992) and to analyse data from the LDEF satellite

(Armstrong et al., 1992a and 1992b). In the software tools ANISO and ANISOPOS

developed in the framework of the TREND-3 study, the model of Watts et al. (1989)

and an alternative version based on the Badwar and Konradi (1990) pitch-angle dis-

tribution have been implemented. The purpose of both software is to provide angular

dependent proton ux spectra starting from standard omnidirectional ux NASA

model AP-8. Since unidirectional trapped proton ux data bases now are available,

directional models of the radiation belt can be built directly from these data bases.

To this end, the trapped proton models should have the capability to incorporate
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2 INTRODUCTION

the observed unidirectional ux distributions. The purpose of this second part of

Technical Note 6 is the introduction of a generalised anisotropy model for the LEO

radiation environment.

The Lenchek and Singer (1962) East-West asymmetry factor, the Heckman and

Nakano (1969) pitch-angle distribution, and consequently the anisotropy model of

Watts et al. (1989), depend explicitely on the local value of the magnetic dip angle

and of the atmospheric scale height. A trapped radiation belt model based on this

type of description of the anisotropy will probably poorly satisfy the contraints

imposed on the angular ux distribution by Liouville's theorem (Roederer, 1970;

Hess 1968), which links the unidirectional particle uxes observed at two di�erent

geographic position located on a same magnetic drift shell (Kruglanski and Lemaire,

1996). Such a link introduces a compulsive constraint on all model depending on

local value. For the particular case of the atmospheric scale height, the problem can

be bypassed by the use of an e�ective scale height obtained by an average over the

whole drift shell and helicoidal trajectory of the protons. But this procedure cannot

be generalized.

In order to obtain a more general description of the trapped proton anisotropy,

we introduce an alternatieve approach to that of Watts et al. (1989). This approach

is based only on the use of a coordinate system attached to the magnetic �eld lines.

It results in a model which does not include parameters depending explicitly on

the geographic location where the model is evaluated. This kind of approach is not

original. It corresponds to the use of action variables, i.e. the adiabatic invariants

�, J and � (Schulz and Lanzerotti, 1974).

In fact, the trapped radiation models make use of coordinates stemed from the

adiabatic invariants, e.g. the (E, B, L) coordinates. They are based on the common

guiding centre and in�nitesimal gyroradius approximations. Our approach takes

into account that, when the East-West asymmetry e�ect is observable, it clearly

invalidates the in�nitesimal gyroradius approximation. Nevertheless, the guiding

centre approximation generally continues to hold. The protons still have helicoidal

trajectories along the magnetic �eld lines, bounce between their mirror points and

drift around the Earth. The proposed model of the proton anisotropy continues to

take advantage of this general guiding centre approximation but takes into account

the �nite size of the proton gyroradius.

In Chapter 4, we describe our new approach based on an extension of the usual

(E, B, L) coordinate system and which allows to de�ne a general proton East-West

asymmetry model.

In Chapter 5 of this Technical Note, we confront our East-West asymmetry model

to unidirectional proton ux measurements.

DRAFT September 8, 1998 BIRA



Chapter 4

Generalised anisotropy model

This chapter is devoted to the description of a generalised anisotropy model for the

trapped proton radiation belt. The description includes the de�nition of magnetic

drift shell parameters, a spatial natural coordinate system, and an azimuthal angle

parametrising the East-West asymmetry.

4.1 Magnetic drift shell parameters

In the inner magnetosphere, trapped particles experience a cyclotron, bounce and

drift motion. The cyclotron motion, which is clockwise for protons, is characterized

by its Larmor radius (or gyroradius) r

g

. The bounce motion occurs along magnetic

�eld lines between mirror points of magnetic �eld intensity B

m

. The drift motion

(westwards for the protons) is perpendicular to the magnetic �eld lines (Roederer,

1970). Three adiabatic invariants are associated with these three di�erent motions.

The �rst adiabatic invariant corresponds to the particle magnetic moment and

is given by

� �

p

2

?

2m

0

B

=

p

2

2m

0

B

m

; (4.1)

where p

?

is the component of the particle momentum p normal to the local magnetic

�eld vector B and m

0

is the rest mass.

The second adiabatic invariant, evaluated along the bounce path, is often called

the integral invariant and is given by

J �

I

p

k

ds = 2pI ; (4.2)

where p

k

is the component of p parallel to B and s is a curvilinear coordinate that

measures distance along a �eld line. The quantity I introduced in Eq. (4.2) has

3



4 GENERALISED ANISOTROPY MODEL

the dimension of a length and only depends on the magnetic �eld con�guration and

on the value of B

m

. One should note that I, called the integral invariant function,

is adiabatically invariant only in a static magnetic �eld (in the absence of other

external forces, i.e. when the particle can not be energised).

The third adiabatic invariant corresponds to the magnetic ux enclosed by the

drift path of a particle. It is given by

� � q

Z

S

B � dS ; (4.3)

where q is the particle's charge and dS an element of a surface delimited by the drift

shell, e.g. by the equatorial drift path. Equations (4.1) and (4.2) can be combined

to provide a derived adiabatic invariant:

K �

J

p

8m

0

�

= I

q

B (4.4)

(Kaufmann, 1965) which only depends the magnetic �eld con�guration.

The drift motion of trapped particles generates a shell encircling the Earth. The

family of magnetic �eld line segments on which the particle guiding centre moves

forms a closed surface which is identi�ed as the magnetic drift shell of the particle.

A drift shell is unequivoquely de�ned by the three adiabatic invariants �, J and �.

In the case of a strictly static magnetic �eld, the particle energy E is a constant

of the motion and two adiabatic invariants su�ce to label a magnetic drift shell.

It is convenient to use the magnetic �eld intensity at the mirror points (B

m

) in

combination with the integral invariant function (I).

Since the quantity I is not an easy coordinate to interpret and does not vary

linearly with any familiar physical quantity, McIlwain (1961) introduced a shell

parameter

�

L, which is a function of both B

m

and I. The function is such that, in

a pure dipole magnetic �eld (where drift shells are axially symmetric), L is equal to

the distance from the dipole centre to the equatorial crossing of the particle guiding

centre. The shell parameter L is expressed in Earth radii (R

E

). Hilton (1971) has

derived a simple analytical apprximation relating L to B

m

and I. The coordinates

(B

m

, L) fully identify a magnetic drift shell in a static magnetic �eld (Roederer,

1970).

�

The shell parameter is sometimes noted as L

m

to stress that the integral of Eq. (4.2) which

determines I is delimited by the mirror points

DRAFT September 8, 1998 BIRA



4.2. Finite gyroradius effect 5

4.2 Finite gyroradius e�ect

In the following, we consider the directional ux f

P

(E; �; �) of trapped particles

of energy E observed at a point P in space and in the direction (�; �). The look

direction is speci�ed by spherical angles � and � relatively to a coordinate system

(x; y; z): � and � correspond to the polar angle between the look direction and

the z-axis, and to the azimutal angle between the projection of the look direction

in the plane xy and the x-axis, respectively. In the next sections, the coordinate

system will be choosen such that the z-axis corresponds to the direction of the local

magnetic �eld vector. In our system, the directional ux f

P

(E; �; �) will then be

related to particles with a velocity vector in the direction (� � �, � + �), i.e. with

a pitch angle

y

of � � �.

According to Liouville's theorem, the directional ux f

P

(E; �; �) can be converted

into a function of energy and the adiabatic invariants only. When trapped particle

uxes are mapped generally with the help of the (E, B

m

, L) coordinates,

f

P

(E; �; �) = j

?

(E;B

m

; L) (4.5)

where j

?

is the perpendicular ux observed at the mirror points (Roederer, 1970).

B

m

and L depend both on P, � and �. Once the relationship between the coor-

dinates (B

m

, L) and both location and direction of observation is established, the

local particle uxes and their anisotropies are determined everywhere in the mag-

netosphere.

Liouville's theorem links particle uxes at di�erent locations along a particle

trajectory. In the in�nitesimal gyroradius approximation, the helicoidal trajectory

of a particle is reduced to its magnetic drift shell and the position where the particle

is observed is considered to be part of its drift shell. The guiding center of the

particle coincides then with the �eld line passing through the point of observation.

This approximation is generally applied in the construction of radiation belt models.

However, in regions of space where the scale length of the particle uxes becomes of

the same order of magnitude, or smaller, than r

g

, this approximation is no longer

valid. This is in particular the case for energetic trapped protons in the inner edge

of the radiation belt, near the loss cone. The loss cone results from the slowing

down of the trapped protons due to their interactions with the Earth's atmosphere.

Its main e�ect on the trapped proton uxes is the steep pitch-angle distribution

observed at low altitudes (Freden and White, 1960).

For a point of observation located at the inner edge of radiation belt, the observed

y

The pitch angle of a trapped particle is de�ned by the angle between the particle momentum

p and the magnetic �eld vector B. At the particle mirror points, where B = B

m

, the pitch angle

is equal to 90

�

.

IASB September 8, 1998 DRAFT



6 GENERALISED ANISOTROPY MODEL

ux of energetic trapped protons is known to depend on the look direction, even

for a �xed pitch angle (Watts et al., 1989). This e�ect is known as the East-

West asymmetry (Heckman and Nakano, 1963). For instance, aboard the SAMPEX

spacecraft, the countrate associated to 86{120 MeV protons and observed at L �

1:15 and B

m

� 0:197Gauss varies by a factor of 6 between the periods when the

detector is looking to the East and the periods when it is looking to the West

(Looper et al., 1998). This East-West e�ect is explained by the fact that protons

viewed with the same pitch angle but in di�erent azimuthal directions have their

guiding centres on di�erent magnetic �eld lines and thus belong to di�erent drift

shells, where the uxes are rather di�erent from each other. Consequently, to take

into account that the guiding centres of the observed protons no longer correspond

to the point of observation, the L value L

GC

associated with the guiding centre

should be used instead of the L value associated with the point of observation. This

approach means that the ux maps have to be organized in (E, B

m

, L

GC

).

4.3 First order expansion of the perpendicular

ux

The shell parameter L

GC

associated to a guiding centre depends on the look direction

and also on the particle energy through the Larmor radius

r

g

=

p

qB

sin� (4.6)

where p and q are the momentum

z

and charge of the proton, respectively, and B the

local magnetic �eld intensity. Therefore, when building and using a model of the

form f(E;B

m

, L

GC

), L

GC

has to be evaluated for every look direction and for each

energy covered by the instrument. As the computation of L involves an integration

along a �eld line segment, building and using such models is very demanding of

CPU time.

To avoid the evaluation of L

GC

when using the j

?

(E;B

m

; L

GC

) map, an alterna-

tive approach which uses an expansion to �rst order in L of the perpendicular ux

is applied instead. With this approximation, Eq. (4.5) can be written as

f

P

(E; �; �) = j

?

(E;B

m

; L

GC

)

= j

?

(E;B

m

; L) + �L�

@j

?

@L

�

�

�

�

E;B

m

+O

(2)

(�L)

(4.7)

z

The particle momentum and energy are related by p

2

c

2

= E

2

+ 2m

0

c

2

E where c is the light

velocity and m

0

the rest mass of the particle. For proton, m

0

= 1:6725 10

�27

kg.
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4.4. Natural coordinate system 7

Figure 4.1. Left panel: representation of a magnetic �eld line segment and of three

neighbouring magnetic drift shells separated by one gyroradius. The circles represent the

proton gyration motions. e, n and b are the vectors tangent, normal and bi-normal to the

magnetic �eld line, respectively. Right panel: Cut view in the plane (n;b) perpendicular

to the magnetic �eld.

where �L � L

GC

� L. The L

GC

evaluation problem is now reduced to evaluating

�L, for which we propose an analytical expression in the next section. As shown

below, �L is in close relationship with the distance between the point of observation

P and the drift shell of the observed protons. For example, when P is located in the

magnetic equatorial plane of a centred dipole �eld, �L is equal to the distance

between the drift shell and P. The term @j

?

=@L can be computed either by direct

derivation of j

?

or by comparison of experimental measurements at di�erent �L.

4.4 Natural coordinate system

To evaluate �L = L

GC

�L, we will characterize the look direction by a pair of polar

and azimuthal angles (�; �) measured in a local coordinate system attached to the

IASB September 8, 1998 DRAFT



8 GENERALISED ANISOTROPY MODEL

Figure 4.2. Representation of the helicoidal trajectory (dashed curve) of a particle around

its guiding centre (dot-dash curve). When the particle passes through the point P (P

0

),

its instantaneous guiding centre is located at Q (Q

0

, resp.). The two points P and P

0

are

located on the same magnetic �eld line (solid curve).

local magnetic �eld line. Since the drift velocity of the guiding centre of a particle

is perpendicular to both the magnetic �eld vector B and the perpendicular gradient

r

?

B (Roederer, 1970), a natural coordinate system is such that

{ the origin coincides with the point P of observation;

{ the z-axis points in the direction e of the magnetic �eld vector, e = B=B;

{ the x-axis points in the direction n of the normal to the magnetic �eld line,

n = r

?

B=jr

?

Bj;

{ the y-axis points in the direction b = e� n of the bi-normal to the magnetic

�eld line.

The coordinate system (e;n;b) is represented in the left-hand panel of Fig. 4.1 where

a magnetic �eld line and three neighbouring drift shells are shown. The typical

DRAFT September 8, 1998 BIRA



4.5. Evaluation of �L 9

cyclotron motion of particles attached to upper and lower drift shells are displayed

also. The �gure illustrates that particles coming from the right do not belong to

the same drift shell as particles coming from the left. If a gradient of particle ux

exists, the ux of particles observed from both direction will di�er. The righthand

panel of Fig. 4.1 is a cut view in the plane (n;b) on which the azimuthal angle ���

is de�ned.

In the coordinate system (e;n;b), the magnetic �eld line and the drift shell

passing through the point of observation P are parallel to the axis e and the plane

(n;b), respectively. Consequently, when a proton is observed in the look direction

(�; �), its pitch angle is equal to ���. Its gyration motion correponds to a clockwise

circular motion in the plane (n;b) which is perpendicular to B. Since the local

guiding centre Q of the observed proton lies in both the plane (n;b) and the plane

perpendicular to the look direction, the direction of Q is given by (�=2; � + �=2).

The distance between the local guiding centre and P is the Larmor radius r

g

given

by Eq. (4.6).

In the following, we will assume that r

g

remains much smaller than the scale

length of the magnetic �eld. Since the scale length of the magnetic �eld is about

a third of the geocentric distance, this assumption remains valid in a large energy

range. With this assumption, the magnetic �eld does not change signi�cantly from P

to Q and we can assume that the coordinate systems (e, n, b) at these two locations

are identical. The drift shell of a proton observed in the look direction (�; �) then

contains Q and is parallel to the plane (b; e). The distance from P to the drift shell

is given by

d

P

(�; �) = r

g

cos(� + �=2) = �

p

qB

sin� sin � : (4.8)

One should note that protons viewed in the direction (�; � � �) will belong to

the same drift shell as protons viewed in the direction (�; �) and that the proton

uxes in these two directions should be identical. In particular, when the azimuthal

directions � is equal to 0 or �, the drift shell of the observed protons passes through

the point of observation and �L = 0.

4.5 Evaluation of �L

To establish the relationship between �L and the parameters such as �, �, B, L, and

E, we will �rst connect �L with these parameters at the local magnetic equator

x

.

Afterwards the parameters at the local magnetic equator will be connected to the

same parameters at the current point of observation.

x

In a non-dipolar magnetic �eld, we de�ne the local magnetic equator as the surface where the

magnetic �eld intensity is minimum along magnetic �eld lines.

IASB September 8, 1998 DRAFT



10 GENERALISED ANISOTROPY MODEL

Since L is de�ned in a centred magnetic dipole by the geocentric distance of the

drift shell in the equatorial plane, we can assume that �L is well approximated by

the distance at the magnetic equator between the drift shell of the observed proton

and the drift shell passing through the point of observation, i.e.

�L � �d

P

0

(�

0

; �

0

) (4.9)

where (�

0

; �

0

) is the look direction of protons belonging to the same drift shell as Q

but viewed from a point P

0

in the magnetic equatorial plane which belongs to the

magnetic �eld line passing through P. The minus sign takes into account that the

distance to the drift shell is measured along the n-axis which points to decreasing

L direction.

The previous statements are illustrated in Fig. 4.2 where the dashed curve rep-

resent the helicoidal trajectory of a proton passing through P. Its guiding centre

is represented by the dot-dash curve and includes the point Q. The magnetic �eld

line passing through P is represented by a solid curve. The axes of the coordinate

system (e, n, b) are represented at both points P and Q. According to the conser-

vation of the magnetic moment, after one, two, three,. . . gyrations, the trajectory

of the proton will cross again the magnetic �eld line passing through P. So, protons

belonging to the guiding centre passing through Q can be always observed from the

equatorial point P

0

of the magnetic �eld line passing through P. For the sake of

clarity, the helicoidal trajectory of Fig. 4.2 is passing through P

0

after one gyration

motion, which is generally not the case.

The protons belonging to the guiding centre passing through Q can be observed

from both locations P and P

0

but with di�erent look directions: (�; �) and (�

0

; �

0

),

respectively. The relationship between the polar angles � and �

0

is directly given

by the conservation of the �rst adiabatic invariant:

sin

2

�

0

B

0

=

sin

2

�

B

(4.10)

where B

0

is the magnetic �eld intensity at P

0

. On the contrary, the relationship

between the azimuthal angles � and �

0

is not easily established. Nevertheless, a

simple relation is obtained for particular values of �:

1. When � = 0 or �, d

P

(�; �) = 0, i.e. the magnetic �eld line passing through P

belongs to the drift shell of the observed proton. Consequently d

P

0

(�

0

; �

0

) = 0

and thus �

0

= 0 or �.

2. When � = ��=2, the drift shell of the observed proton is the most inner

observable one. Since, in the magnetic equatorial plane, the drift shell shall

stay the most inner one, �

0

= ��=2.

DRAFT September 8, 1998 BIRA



4.6. Comments 11

3. When � = �=2, the drift shell is the most outer observable one and �

0

= �=2.

For these particular cases, we simply get the relation

�

0

= � : (4.11)

The simplicity of Equation (4.11) is due to the choice of the coordinate system, the

n-axis of which is always perpendicular the drift shells. With regard to the other

approximations made previously, we assume that the validity of Equation (4.11) can

be reasonably extended to the full range of the azimuthal angles.

From Equations (4.8), (4.9), (4.10) and (4.11), the variation of the shell param-

eter with the azimuthal angle � is approximately given by

�L = r

g0

sin�

=

p

q

q

B

0

B

m

sin� :

(4.12)

The magnetic �eld intensities B

0

and B

m

are related to the local values by the

relations

8

>

>

>

<

>

>

>

:

B

m

=

B

sin

2

�

B

0

=

M

L

3

(4.13)

where the magnetic moment M is arbitrary set to the same value used to compute

the parameter L (McIlwain, 1961), i.e. 0.311653GaussR

�3

E

. When combined to

Eq. (4.7), Eq. (4.12) provides a description of the unidirectional proton uxes which

includes the East-West asymmetry.

4.6 Comments

In such a way, Eqs. (4.7) and (4.12) provide a complete description of the trapped

proton uxes at any location in the whole magnetosphere. Equation (4.7) can be

re-written to highlight the main parameters:

f

P

(�; �) = j

?

(E;B

m

; L) +

"
p

E

2

+ 2m

0

c

2

E

qc

p

MB

m

L

�3

#

sin � �

@j

?

@L

�

�

�

�

�

E;B

m

(4.14)

From Eq. (4.14), it appears clearly that the observed ux f

P

(�; �) is only a function

of E, B

m

, L and � where the perpendicular ux j

?

(E;B

m

; L) and @j

?

=@L have to

IASB September 8, 1998 DRAFT



12 GENERALISED ANISOTROPY MODEL

be determined from unidirectional measurements. As a default, the NASA unidirec-

tional model UP-8 can be used. On should note that the perpendicular ux model

depends only on the particle energy E and drift shell labels (B

m

, L).

As stressed in the �rst part of Technical Note 6 (Kruglanski and Lemaire, 1996),

the constraint on f

P

resulting from the application of Liouville's theorem can be

written as

Z

2�

0

f

P

(�; �)

E

d� =

Z

2�

0

f

0

P

(�

0

; �)

E

d� (4.15)

where the both points P and P

0

are located on the same drift shell (i.e. B

m

= B

0

m

and L = L

0

) and where the pitch angles � and �

0

are related by the conservation of

�. In the case of the ux function of Eq. (4.14), the equality of Eq. (4.15) is always

true. Equation (4.14) complies with Liouville's theorem.

The trapped proton East-West asymmetry e�ect is usually linked to atmospheric

scale height (Lenchek and Singer, 1962; Watts et al., 1989). In our aproach, no

atmospheric parameter appears in Eq. (4.14). In fact the e�ect of the atmosphere

is already present in the model of the perpendicular ux j

?

. Nevertheless, it would

be nice if an e�ective scale height could be deduce from Eq. (4.14). To this end, we

introduce a ux scale height de�ned by

H

j?

�

j

?

@j

?

@L

�

�

�

�

E;B

m

(4.16)

Note that there is no minus sign present in the de�nition such that the scale height

is positive when the ux j

?

increases with L.

As a �rst order approximation, it can be easily shown that Eq. (4.14) is equivalent

to

f

P

(�; �) = j

?

(E;B

m

; L) exp

0

@

sin�r

gm

H

j?

s

B

m

ML

�3

1

A

(4.17)

where r

gm

is the Larmor radius at the mirror point of the particles. An East-West

asymmetry factor can be deduced from Eq. (4.17) by comparing the ux of particles

from the local magnetic West (� = �=2) to the ux of particles coming from the

local magnetic East (� = ��=2):

f

P

(�; �=2)

f

P

(�;��=2)

= exp

 

2r

gm

H

j?

= sin�

0

!

(4.18)

One should be aware that Eqs. (4.17) and (4.18) have been established for small

value of the exponential argument.
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Chapter 5

Comparison with observational

data

Equations (4.7) and (4.12) of the Chapter 4 provide a new semi-empirical model for

the description of the trapped proton anisotropy at low altitudes. In this model the

dependence of the particle ux on the azimuthal angle � is based on theoretical as-

sumptions while the dependence on the pitch angle � has to be obtained empirically

from a data set of measurements.

This new semi-empirical model has to be confronted with measurements of di-

rectional proton ux in the radiation belts. Note that the model also needs data for

the values of j

?

and @j

?

=@L. Three datasets of unidirectional proton uxes in the

SAA have been studied in TREND-3:

{ AZUR/EI-88 with a �eld of view of �21

�

;

{ SAMPEX/PET with a �eld of view of �30

�

;

{ UARS/HEPS with a �eld of view of �15

�

.

A detailed description of these satellite missions and their instruments can be found

in Technical Note 5 part I, II and III, respectively. Unfortunately, up to now, only

the PET data can be used to test and evaluate the new model, since

{ a lack in the AZUR documentation prevents the computation of the azimuthal

angle from the ephemeris data;

{ the 3-axis stabilised attitude of the UARS spacecraft reduces the variation of

� to a very small angle range for a �xed value of B

m

and L.

13



14 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.1. (B;L) diagram of the SAMPEX 86{120 MeV proton countrate. The rectan-

gular box corresponds to the bin selected to test the new semi-empirical model.

To test the new semi-empirical model, we have selected from the SAMPEX/PET

data a bin in (E;B

m

; L) space for the period of time which extends from mid 1994

to mid 1995. The bin is speci�ed by

0:195 < B

m

< 0:205 ;

1:23 < L < 1:25 ;

86:1 < E < 120:0 :

(5.1)

The IGRF 1995 magnetic �eld model is used to evaluate the B

m

and L values.

The energy range corresponds to the channel pen/p81 of the PET instrument. The

Larmor radius at the mirror point corresponding to the central point of the bin

speci�ed by Eqs. (5.1) is equal to 77.2 km. It varies from ??? to ??? km inside te

bin. The bin is represented on Fig. 5.1 where the countrates of the channel pen/p81

are shown as function of B

m

and L.

The magnetic drift shell (L = 1:24, B

m

= 0:2) which corresponds to the central

point of the selected SAMPEX data bin, is represented in a 3-D view in Fig. 5.2.
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Figure 5.2. Representation of the magnetic drift shell L = 1:24, B

m

= 0:2. The two bars

correspond to two mirror points in the southern hemisphere with a longitude of 51

�

W and

15

�

W, respectively. The IGRF 1995 magnetic �eld model has been used to trace the drift

shell.

The drift shell is clearly not axially symmetric and is mainly deformed near the

SAA region. The altitudes of the southern mirror points are shown on Fig. 5.3 as a

function of the mirror point longitude. The lowest altitude on the shell is located at

the mirror point 394.3 km, 25.7

�

S and 51.0

�

W. The location of this particular mirror

point is indicated by a dotted line in Fig. 5.3 and by a dark bar in Fig. 5.2.

In Sect. 5.4, the new semi-empirical model is compared to two other models for

two mirror points on the drift shell: the point of lowest altitude, and a second one

located at 720.8 km, 7.9

�

S and 15.0

�

W (The second mirror point is highlighted on

Figs. 5.2 and 5.3).
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16 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.3. Geocentric altitude of the southern mirror points of the drift shell (L = 1:24,

B

m

= 0:2) as a function of the mirror point longitude. The dotted lines indicate the mirror

point with the lowest altitude (at 51

�

W of longitude) and an other mirror point located

at 336.5 km higher (at 15

�

W of longitude).

5.1 Variation of L

GC

Equation (4.12) predicts a variation of the shell parameter with respect to the az-

imuthal parameter given by

�L = r

gm

s

B

m

B

0

sin � (5.2)

where r

gm

andB

m

are the gyroradius and magnetic �eld intensity at the mirror point.

The validity of Eq. (4.12) or (5.2) depends only on the con�guration of the magnetic

�eld model. Instead of selecting, at random, geographic positions and look directions

to evaluate the validity of these equations, we have used the SAMPEX ephemeris

as a test case for the assumptions and approximations underlying Eq. (5.2).

For each point of the ephemeris in the bin de�ned by Eqs. (5.1), we have evaluated

the shell parameter L as well as the value L

GC

of the shell parameter at the guiding
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5.2. Flux scale height 17

Figure 5.4. The variation �L of the shell parameter obtained in Eq. (4.12) as a function

of the azimuthal angle � (solid curve) is compared to the di�erence L � L

GC

obtained

from the SAMPEX ephemeris (+ symbols) in the coordinate bin de�ned in the text.

centre of 100MeV protons. In Fig. 5.4, the di�erence L � L

GC

is compared to

the sinusoidal variation �L predicted by Eq. (4.12) for B

m

= 0:20 and L = 1:24.

The relatively good agreement between �L and the ephemeris data validates the

approximation done in the determination of �L. The residual scattering of the

ephemeris data is attributed to the range of B

m

and L in the bin. There is a small

acceptable disagreement around � = ��=2.

5.2 Flux scale height

To apply the new semi-empirical model, the pro�le of the perpendicular ux with re-

spect to L �rst has to be determined. This pro�le will provide the two undetermined

parameters of Eq. (4.7): j

?

and its derivative with respect to L.

The pro�le of the perpendicular ux as a function of the shell parameter L

has been obtained by selecting the PET data for which �0:05 < sin� < 0:05,
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18 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.5. Dependence of the SAMPEX 86{120 MeV proton countrate on L for 0:195 <

B

m

< 0:205 and j sin�j < 0:05. The dotted curve corresponds to a linear �t based on the

data for which 1:23 < L < 1:25.

0:195 < B

m

< 0:205 and 1:15 < L < 1:35. The selection on sin � �lters those

measurements with L

GC

values close to L, so that j

?

is well approximated by the

mean of the selected uxes, and that a linear �t can be used to determine @j

?

=@L.

Figure 5.5 shows the dependence on L of the proton countrate of the data points

that meet the above conditions. Note that individual points are not represented on

the �gure due to the small livetime of the measurements. In Fig. 5.5, the data points

have been binned in twenty L bins between L = 1:15 and 1.35. The problem relative

to small livetime is speci�c to the PET data and is fully discussed in Technical Note

5, Part II.

Figure 5.6 shows a \zoom" of Fig. 5.5 around L = 1:24. The data points have

again been binned in twenty L bins between L = 1:23 and 1.25. A linear �t of the

binned ux of Fig. 5.6 is used to evaluate the ux at L = 1:24 and the value of its

derivative. The linear �t is given by

j

?

= 0:375 cm

�2

s

�1

sr

�1

MeV

�1

;

@j

?

@L

= 4:63 cm

�2

s

�1

sr

�1

MeV

�1

R

�1

E

: (5.3)
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5.3. East-West asymmetry 19

Figure 5.6. Dependence of the SAMPEX 86{120 MeV proton countrate on L for 0:195 <

B

m

< 0:205, 1:23 < L < 1:25 and j sin�j < 0:05. The solid line corresponds to a linear �t.

The linear �t is represented on Figs. 5.5 and 5.6 by a dotted line and a solid line,

respectively. One should note the large scattering of the binned data around the

linear �t. The scattering is related to the Poisson statistic behaviour of the PET

measurements. Unfortunately this behaviour complicates the evaluation of the new

semi-empirical model.

5.3 East-West asymmetry

For the bin de�ned by Eqs. (5.1), we have evaluated the dependence of the observed

ux on the azimuthal angle �. In Fig. 5.7, the ux obtained with Eq. (4.7) is

compared to the SAMPEX/PET measurements in the selected bin. As before, the

data points have been binned, now in twenty � bins. Note that the bins around

� = 0

�

are empty.

Now that the dependence on L of the perpendicular ux is determined, Eq. (4.7)

can be used to evaluate the East-West asymmetry e�ect. The East-West e�ect
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20 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.7. Dependence on the SAMPEX 86{120 MeV proton countrate as a function

of the azimuthal angle � for the points in the bin (0:195 < B

m

< 0:205, 1:23 < L < 1:25),

i.e. the same points as Fig. 5.4. The solid curve corresponds to the linear �t of Fig. 5.6

where �L is obtained from Equation (4.12).

predicted by the new semi-empirical model is a sine curve, which is represented in

Fig. 5.7 as a solid line. The main trend of the binned data is well rendered by the sine

curve. Nevertheless the scatter around the sine curve is large. Part of the scattering

is due to the �nite size of the bin in both B, L and energy. Further uncertainties are

introduced by the relatively large opening angle (60

�

)of the PET instrument which

creates an uncertainty on the angles � and �. Finally, the saturation problem of the

PET (see TN5), resulting in low proton count rates, adds an inherent uncertainty

factor. The combined data scatter prohibits a quantitative assessment of the model.

Therefore, comparisons of the model to the directional dependence of PET data in

other bins will probably not improve the validation. Morever, even with one year of

data, the coverage in � is not complete in all (B;L) bins.
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5.4. Comparison with previous models 21

Figure 5.8. Representation of the coordinate system used to compare di�erent proton

anisotropy models

5.4 Comparison with previous models

In this section, we compare the new semi-empirical model to two other models: the

model of Watts et al. (1989) and the BK-MIN model developed early. Since both

models has been already discussed in Part I of this technical note (Kruglanski and

Lemaire, 1996), they are only briey reviewed. For the sake of clarity, the omnidi-

rectional uxes of both models are normalized to unity, and the look directions are

determined in a coordinate system such that

1. the Z-axis is parallel to the magnetic �eld vector;

2. the Y -axis lies in the local horizontal plane and points in the magnetic East

direction;

3. the plane XZ contains the zenith direction, i.e. it is a local vertical plane;

4. the plane XY corresponds to the local mirror plane.

The coordinate system is represented in a 3-D view on Fig. 5.8. The representation

in Fig. 5.8 includes the local horizontal plane, the local mirror plane and the local

vertical plane which contains the magnetic �eld vector. Note that the coordinate

system (Z, X, Y ) di�ers from the coordinate system (e, n, b) [de�ned in Sect. 4.4]
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22 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.9. Comparison of the Heckman & Nakano (1969) and Badhwar & Konradi

(1990) pitch angle distributions at L = 1:24 and B

m

= 0:2. The dotted and solid lines

correspond to the Heckman & Nakano (1969) distribution evaluated at an altitude of 720.8

and 394.3 km, respectively. The dashed line corresponds to the Badhwar & Konradi (1990)

distribution, whatever the altitude. Note that the normalisation is such that f(�=2) = 1.

by a rotation about the Z-axis only, i.e. the azimuthal angle � di�ers from the angle

� by an o�set. The value of this o�set depends on the magnetic �eld con�guration,

and thus on the geographic position.

The model of Watts et al. (1989) use the Heckman & Nakano (1969) pitch-angle

distribution. This distribution is given by

f

HN

(�) =

exp

 

�

(�=2� �)

2

2�

2

!

�

p

2�erf

 

�

�

p

8

!

(5.4)

DRAFT September 8, 1998 BIRA



5.4. Comparison with previous models 23

where the square of the standard deviation is

�

2

=

3

4

H

R

(2 + cos

2

^

I) ; (5.5)

H is the atmospheric scale height, R the distance from the Earth's centre, and

^

I the

magnetic dip angle, i.e. the angle between the magnetic �eld vector and the local

horizontal plane. For convenience, the angle

^

I is represented also on Fig. 5.8

The BK-MIN model uses the Badhwar & Konradi (1990) pitch-angle distribution

which is given by

f

BK

(�) =

8

<

:

� exp(�b�) �

0c

< �

0

< � � �

0c

0 otherwise

(5.6)

where

� =

sin�

0

� sin�

0c

p

B

0

; (5.7)

b and �

0c

are two parameters determined empirically. Note that the f

BK

pitch-angle

distribution does not depend on local variable (such as

^

I) but depends insteads on

the shell parameter L and particle energy E.

The Lenchek and Singer (1962) asymmetry function is used by both the Watts

et al. (1989) and the BK-MIN models. It is given by

g

LS

(�; �) =

exp(r

g

cos

^

I sin�=H)

2�I

0

(r

g

cos

^

I=H)

(5.8)

where the azimuthal angle � measures, in the local mirror plane, the deviation

from the X-axis. Note that the g

LS

function depends on the pitch angle through

the expression of the gyroradius [see Eq. (4.6)]. The azimuthal angle � is much

convenient to be evaluated than angle � but it has too a less physical meaning than

angle �.

5.4.1 Watts et al. (1989) model

The model developed by Watts et al. (1989) combines the the pitch angle distribution

proposed by Heckman and Nakano (1969) and the �nite gyroradius e�ect described

by Lencheck and Singer (1962). The conversion factor to transform omnidirectional

ux into directional ux is given by

W

HN�LS

(�; �) =

f

HN

(�)g

LS

(�)

sin�

(5.9)
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24 COMPARISON WITH OBSERVATIONAL DATA

where the atmospheric scale height for solar minimum is given by

H = 33:4 km� exp

 

R� 6371:2 km

383 km

!

(5.10)

(Colborn et al., 1990). At 394.3 and 720.8 km altitude, the atmospheric scale height

of Eq. (5.10) is equal to 93.5 and 219.3 km, respectively.

5.4.2 BK-MIN model

For the empirical BK-MIN model based on the pitch angle distribution of Badhwar

and Konradi (1989), the conversion factor

�

from omnidirectional uxes to unidirec-

tional uxes is given by

W

BK�LS

(�; �) =

f

BK

(�)g

LS

(�)

R

�

0

sin�

0

f

BK

(�

0

)d�

0

: (5.11)

For the purpose of the comparison, the parameters b and �

0c

of the Badhwar &

Konradi (1990) function have been �tted on the SAMPEX countrates presented on

Fig. 5.6. To facilitate the inter-comparison, the atmospheric scale height appearing

in function g

LS

is evaluated using Eq. (5.10) also instead of a �xed value. Note that

contrary to the Watts et al. (1989) model, the function W

BK�LS

satis�es Eq. (4.15),

i.e. Liouville's theorem averaged over the azimutal angle �.

5.4.3 New semi-empirical model

The new semi-empirical model is obtained by implementing Eq. (4.14) where the

pitch angle distribution of the perpendicular ux is described with the Badhwar and

Konradi distribution:

j

?

(E;B

m

; L) = Kf

BK

(�) (5.12)

where K is a scaling parameter to be �t on the data in the same way as the param-

eters �

0c

and b. The conversion factor from omnidirectional uxes to unidirectional

uxes is then given by

W

BK�beta

(�; �) =

f

P

[�; �(�)]

R R

f

P

(�; �) sin� d� d�

: (5.13)

�

One should note that a separate normalisation is applied in Eq. (5.11) instead of a global

normalisation, as described in Part I of the Technical Note
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5.4. Comparison with previous models 25

Figure 5.10. Dependence of the directional 100-MeV proton ux on the polar and

azimuthal direction at the position (394.3 km, 25.7

�

S, 51.0

�

W)
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26 COMPARISON WITH OBSERVATIONAL DATA

Figure 5.11. Dependence of the directional 100-MeV proton ux on the polar and

azimuthal direction at the position (720.8 km, 7.9

�

S, 15.0

�

W)
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5.4. Comparison with previous models 27

The functions W

BK�LS

and W

BK�beta

satisfy Eq. (4.15). The function W

BK�beta

has the advantage to be built in a more consistent way without depending on the

atmospheric parameter H.

5.4.4 Comparison

In Fig. 5.9, the pitch-angle distributions f

HN

and f

BK

are compared at two geo-

graphic locations: (394.3 km, 25.7

�

S, 51.0

�

W) and (720.8 km, 7.9

�

S, 15.0

�

W), i.e.

the two mirror points on the drift shell de�ned at the start of this chapter and high-

lighted on Figs. 5.2 and 5.3. Since the Badhwar & Konradi (1990) function depends

only on E and L, the f

BK

pitch-angle distribution is identical at both locations. On

the other hand, the variation of the ratio H=R from 1=72 to 1=32 between the two

locations implies an important change of the Heckman & Nakano (1969) pitch-angle

distribution. As mentioned (Sect. 4.6) already, a varying pitch-angle distribution is

not compatible with Liouville's theorem which imposes a single pitch angle distri-

bution for all mirror points on a given drift shell (B;L). Therefore, models based

on the f

HN

function have to be restricted to a region of space where the ratio H=R

does not vary.

The conversion factors, W

HN�LS

, W

BK�LS

and W

BK�beta

, of the three de�ned

models, are compared at the two di�erent geographic locations selected from the set

of mirror points of the magnetic drift shell L = 1:24, B

m

= 0:2, shown in Fig. 5.2.

As mentioned before, the two selected mirror points are located at (394.3 km, 25.7

�

S,

51.0

�

W) and (720.8 km, 7.9

�

S, 15.0

�

W), respectively.

In Figs. 5.10 and 5.11, the dependences of the ux on the polar and azimuthal

angles (�; �) predicted by both models are compared at the two geographic locations

for 100MeV protons. Only the conversion factors W

HN�LS

, W

BK�LS

and W

BK�beta

are represented on both �gures. In Fig. 5.10, which corresponds to the lowest mirror

point, the East-West asymmetry is apparent for the three models. One should note

that the new semi-empirical model is more asymmetric than the two others.

In Fig. 5.11, the asymmetry is much reduced for the W

HN�LS

and W

BK�LS

func-

tions. This reduction is due to the variation by a factor 7=3 of the atmospheric scale

height between 394 and 721 km of altitude. On the other hand, the asymmetry of

the new semi-empirical model remains unchanged. Between Fig. 5.10 and Fig. 5.11,

the function W

BK�beta

has not changed except by a small shift in the azimuthal

angle due to a variation of the o�set between the angles � and �.
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