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FOREWORD 

This article has been presented at the International Conference 
"Evolution of Planetary atmospheres and climatology of the earth". It will 
be published in the proceedings volume edited by the "Centre National 
d'Etudes Spatiales". 

AVANT-PROPOS 

Ce texte a été présenté au Colloque International "Evolution des 
atmosphères planétaires et climatologie de la terre". Il sera publié dans 
les comptes rendus de ce colloque préparés par le "Centre National d'études 
Spatiales. 

VOORWOORD 

Volgende tekst werd voorgedragen op de Internationale Conferentie 
"Evolution of Planetary Atmospheres and climatology of the Earth". Hij zal 
verschijnen in de mededelingsbundel uitgegeven door de "Centre National 
d'Etudes Spatiales". 

VORWORT 

Dieser Text wurde vor der internationalen Konferenz "Evolution of 
planetary atmospheres and climatology of the Earth" vorgetragen. Er wird 
in die Übertragung dieser Konferenz durch das "Centre National d'Etudes 
Spatiales" veröffentlicht. 



SOME EVOLUTION AND STABILITY TRENDS DEDUCED FROM ENERGY 
AND WATER VAPOR BALANCE MODELS 

by 

C. NICOLIS 

ABSTRACT 

A hierarchy of models of climatic evolution is considered. First, 
an energy balance model is used to analyze the influence of systematic 
increase of solar energy output over the last hundred million years. 
Plausible scenarios of evolution of infrared cooling rates, of heat 
transfer coefficient and of polar temperature are constructed. Next, the 
dynamical coupling between humidity and temperature is constructed at the 
level of a two-variable planetary model. The stability properties of the 
steady-state climatic regime of the last 250 myr are discussed both 
analytically and by numerical simulations. 

RESUME 

On examine une série de modèles d'évolution climatique. En 
premier lieu, on utilise un modèle de bilan énergétique pour analyser 
l'influence de l'accroissement systématique de la constante solaire durant 
les dernières centaines de millions d'années. On développe de scénarios 
plausibles d'évolution des coefficients de refroidissement infra-rouge, du 
coefficient de transfert de chaleur ainsi que de la température polaire. 
Ensuite, on considère les effets du couplage dynamique humidité-température 
au niveau d'un modèle planétaire à deux variables et on analyse les 
propriétés de stabilité du régime climatique des dernières 250 millions 
d'années. 



SAMENVATTING 

Een reeks modellen voor de evolutie van het klimaat worden 
onderzocht. De invloed van de systematische groei van de zonneconstante 
tijdens de laatste 100 miljoen jaren wordt bestudeerd met behulp van een 
model dat steunt op de energiebalans. Verschillende mogelijkheden voor de 
evolutie van de warmtegeleidingscoëfficient, de coëfficiënt voor infra-rood 
koeling en de temperatuur aan de polen, worden uitgewerkt. Vervolgens wordt 
de invloed van de dynamische koppeling vochtigheid-temperatuur in acht 
genomen in een twee-dimensionaal planetair model, en de stabiliteits-
eigenschappen van hét klimaat regieme tijdens de laatste 250 miljoen jaren 
worden onderzocht. 

ZUSAMMENFASSUNG 

Eine Hierarchie von Modelle für die Klimatische Evolution is 
besprochen. Erstens ist die Energie gleichung gebraucht um den Influss 
einer steigerder Sonnenkonstante systematisch zu beschrieben über die 
letzten jundert millionnen Jahre. Mögliche Senarios für die Evolution der 
Infraroten verküllen., der wärme transfer Koeffizient, uii der polaren 
Temperatur sind gebraucht worden. Zunächst, ist die dynamische Verkuppeling 
zwischen Feuchtigkeit und Temperatur in begriff genommen worden. Die 
Stabilität dieser klimatischen Modelle ist für die letzten 250 myr 
analytischer weise und numerischer weise analysiert worden. 
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1. INTRODUCTION 

The influence of solar output on surface temperature of the earth 
has been analyzed by Budyko (1969) and Sellers (1969) on the basis of the 
ice-albedo feedback. They found that a slight variation of the solar 
constant can induce climatic catastrophes associated with transitions to an 
ice-covered or an ice-free earth. 

Recently, it was pointed out that the sun is a variable star 
whose energy output has systematically increased over the past billion 
years (Neumann and Rood, 1977). Yet, as well known, there has been no 
glaciation during the mesozoic and early cenozoic eras. In an attempt to 
resolve this apparent paradox, Sagan and Mullen (1972) invoke the possibi-
lity of an enhanced greenhouse_effect (due, for instance, to an increased 
NH^ concentration in the atmosphere) in the framework of a global energy 
balance model at the planetary scale. Moreover, by extrapolating their 
radiative calculations to the future they predict a catastrophic increase 
in temperature due to a runaway greenhouse effect fed back positively by 
the increasing H^O vapor concentration in the atmosphere. 

Implicit in the above considerations is the assumption that the 
various coefficients appearing in the energy balance equation can be para-
meterized in terms of the percentage cloud cover and/or the H^O concentration 
at ground level, which therefore appear to play a passive role. This is 
certainly reasonable for short-time predictions associated with slight 
variations of the thermal regime. On the other hand, in the presence of 
abrupt transitions that could possibly be induced by the various feedbacks 
present over long periods of time, this assumption is expected to break 
down. 

The purpose of the present communication is twofold. We first 
attempt to analyze some global trends of climatic evolution in the past 
250 myr up to the beginning of quaternary glaciations, using a model 
involving latitudinal energy transfer. The model presented in section 2, 
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incorporates the effect of evolving solar output, of infrared cooling, and 
of energy transport. We next turn, in section 3, to the modelling of the 
simultaneous evolution of temperature, T and relative humidity, h on an 
equal footing. The resulting equations, which are considered at a 
planetary scale, turn out to be very difficult to analyze because of the 
unknown form of cloud cover and precipitation rates as a function of T and 
h. For this reason we limit ourselves, in section 4, to qualitative 
methods, particularly to a linear_stability_analysis of present and past 
climatic regimes, using some data recently compiled by Sasamori (1975). The 
analysis suggests the existence of certain sources of instability arising 
from the positive feedback of humidity on temperature and vice-versa. 
However, using values of parameters close to present day ones, it. is found 
that the steady-state climatic regime remains stable. Some representative 
evolution trajectories of T and h are briefly discussed in section 5, 
whereas section 6 summarizes the results. 

2. ENERGY BALANCE MODEL 

The starting point is the energy balance equation of the earth-
atmosphere system in the form written by North (1975a, b) : 

C p = QS(r) [1- «(r, rg)]- I(T) + X^2 T (1) 

C is the thermal inertia A the heat transfer coefficient, I the infrared p - _ 
cooling rate, Q the solar constant, S(r) the percentage of incident flux at 
position r, arid a(r, £ ) the albedo. Following Budyko (1969) a is to be 
approximated by a discontinuous function around r , the locus of the ice ~s 
boundary. However, we are here interested in the climatic history of the 
past 250 myr or so, up to the quaternary period. It will therefore be 
legitimate to restrict eq. (1) to an ice-free earth and hence set : 
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(r, r ) = a (2) ~ ~s o 

Moreover, we will adopt the commonly used expression' for the infrared 
cooling rate : 

I (T) = A + BT (3) 

where T is now expressed in degrees centrigrade, and the values of the 
cooling coefficients A and B include the effect of cloud cover. 

We shall regard Q as slowly varying in time according to the law 
suggested in Neumann and Rood (1977) : 

1 dL 12.5 x 0.01 
- — <4) 

L dt 1 + 1.66 X - 1.66 x 10 t 
o 

where L is the luminosity of the sun, is the initial hydrogen mass 
fraction and t is the time in billions of years. 

Finally, the mean annual latitudinal distribution of radiation 
S(x) can be expressed in Legendre polynomials as follows (North, 1975a, b) 

3 x2 - 1 
S (x) =1 + S 2 P2(x)= 1 " 0.482 (5) 

where x is the sine of the latitude, and the factor S 2 is fitted from 
astronomical data. 

We now insert eq. (2) to (5) into eq. (1). It is convenient to 
express the result in spherical coordinates. We also perform a longitudinal 
average and observe that the evolution of T due to planetary factors is 
much shorter than that arising by the evolving solar output. Hence we 
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regard the long-term evolution of T as a sequence of quasi-steady states 

each one corresponding to the value of Q appropriate for a given epoch. We 

finally obtain : 

d d I(x) 3Q(1 - 4 ) 
— (1 - x ) — I(x) - + S

2
 x = 

dx dx D 2D 

Q(1 - a ) ,S 
( - 1 - 1 1 (6) 

D 2 

2 
where D = X/r B and r is the earth's radius. This equation is subject to 

o o 

two boundary conditions expressing the absence of heat transport at the 

poles and across the equator : 

» - *
2

>
1 / 2

 § U - » - *
2

>
1 / 2

 I L - " > 

Eq. (6) and (7) were analyzed in some detail in a previous communi-

cation (Nicolis, 1978). The exact solution satisfying the boundary conditions 

is : 

Q d - « ) . . 1 2 
A + BT (x) s l(x) = r

 ( 2 D +

 3 " 6
 S

2
 +

 2
 S

2
 X 1 ( 8 ) 

2D + j 

From this expression one can express the equatorial temperature, corres-

ponding to the value of Q at a given epoch as deduced from eq. (4) and 
— - 1 - 2 

the present-day value Q = 1.918/4 = 0.479 cal min cm 

A + BT = Q( 1 - a ) (\ ) (9a) 
e q

 °
 1

 12D + 2 

or equivalently : 
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2 
, Q(1 - o J (1 " o- ) ~ (A + B T ) 

D = 1 2 L - SSL ( 9 b ) 

A + B T - Q (1 - a ) 
eq o 

Substituting (9b) into eq. (8) one can then compute the polar temperature 

in terms of T , Q, a and the infrared cooling parameters A, B in the 
eq o 

form : 

Q (1 - a ) - A 
T = 3 2 - 2 T (10) 
P B eq 

From this expression we can reconstruct plausible pathways of evolution 

of the polar temperature as follows. We begin by requiring a more or less 

invariant equatorial temperature T throughout the past 250 myr, say 25°C, 

in accordance with paleoclimatic data. We also argue that the cooling 

coefficients A , B must have been less than the present day ones through an 

enhanced greenhouse effect (Sagan and Mullen, 1972; Budyko, 1974, 1977). 

To account for such a possibility we vary A , B for each epoch, between the 
- 1 - 2 

present-day values used in North (1975a) A = 0.288 cal min cm , 
- 1 - 2 - 1 

B = 0.00208 cal min cm K and values less than the present-day ones 

by 1% up to 10%. We also vary the albedo a^ in a similar fashion. 

Most of these variations give unacceptable values for the thermal 

transfer coefficient D (eq. (9b)) and/or for T (eq. (10)). As a matter of 
P 

fact, the results are rather sensitive functions of the parameters as 

illustrated in Fig. 1. This already eliminates a great number of combi-

nations of these parameters. Among the remaining ones we select those 

combinations which give an evolution of T^ toward freezing values as time 

evolves to the beginning of quaternary glaciations. Fig. 2 represents two 

pathways of evolution of T determined from the above described procedure. 
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1 P o l a r temperature as a function of the percentage decrease in A and the 
- heat influx Q(1 - a Q) (or equivalently, of the time in myr ago). The 

equatorial temperature is taken equal to 25°C. 



T I M E (106 yrs AGO) 

2.- Two plausible evolutions of polar temperature for equatorial temperature 
fixed at 25°C and for albedo a Q = 0.33. D = heat, transfer rate. A, B = 
values of infrared cooling coefficients. At the points on the curves 
corresponding to 5, 20, 50 and 250 myr ago the values of these parameters 
resulting from the analysis of section 2 are indicated. 



We see that past values of A, B are smaller than the present ones by a 
few percent whereas the heat transfer coefficient decreases systematical^ 
ly in time. Both trends are compatible with currently available informa-
tion on paleoclimates. In particular, the decrease of D can be attributed, 
at least in part, to the increasingly poor equator-pole energy exchange 
arising from the progressive isolation of the Arctic during the last tens 
of millions of years (see also Budyko, 1969). 

3. THE ENERGY-HUMIDITY COUPLING 

As pointed out already, the infrared cooling coefficients A, B as 
well as the albedo a depend on the cloudiness n, which in turn is a o 
function of the temperature T and the specific (or the relative) humidity. 
Moreover, A and B depend on the water vapor distribution. For small changes 
of the thermal regime these quantities may be kept constant, but for 
appreciable changes they must be varied in a self-consistent way. The 
natural approach to this problem is to treat the coupled balance equations 
for energy and water vapor of the earth-atmosphere system. For simplicity, 
we hereafter consider these equations at a planetary scale by averaging over 
the effect of both longitudinal and latitudinal transport. 

We first deal with the energy balance equation. Because of the scale 
of description adopted, the only terms other than the radiative ones 
surviving in the equation refer to the energy loss and gain arising, 
respectively, through evaporation and condensation which is considered 
proportional to the amount of precipitation. We thus obtain (Budyko, 
1978) : 

C — = 0 [ 1 - a (n(T, h))] - I(T,h) - L [ E(T,h) - r(T , h ) ] p dt o 
(11) 

where h is the relative humidity at ground level, n the cloudiness, LE 
the latent- heat of evaporation and Lr the heat input for condensation. 
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We turn now to the evolution of h. As a matter of fact, it will 

first be necessary to argue in terms of the water vapor mixing ratio, 

q. At an planetary scale, the only processes contributing appreciably 

to the rate of change of this quantity are evaporation and precipitation. 

Hence we write 

where N is the column density of air and E, r are now expressed in terms 
- 2 - 1 

of T and q (in g cm sec ). In order to convert eq. (12) into an equation 

for h we use the expression (Budyko, 1974) 

where x is a proportionality coefficient and q g is the saturation specific 

humidity; we also recall the definitions of h, q, and that of q g(T) at ground 

level (Cess, 1974) : 

N J2. = E (T, q) - r (T, q) 
dt 

(12) 

E = x (qg (T) - q) (13a) 

q (T) = 0.622 x 2.2 x 10 6 e 

5,385 
273+T 

atm (13b) 

where T is in degrees centigrade. We finally obtain : 

N 
dh , 5,385 
—— + n r(T, h) 

(273 + T) 
(14) 

We can now write eq. (11) in a somewhat more explicit form by using 

eq. (14) as well as the following expressions for a and I (Budyko, 1974) 



a = X + n n(T, h) o o o 

I = A + BT (15) 

A = A - A1 n (T, h) 

B = B - B n(T, h) 

We thus obtain : 

C = q [ 1 - X - fi n(T, h)] - A - BT + (A. + B T) n(T, h) p dt o o 1 1 

- L X q (T) (1 - hj + Lr(T, h) (16) 

The main difficulty with eq. (14) and (16) lies in the occurence 
of the unknown functions n(T, h) and r(T, h). In this respect however, 
Sasamori (1975) has compiled data enabling the evaluation of the 
derivatives of these functions for present-day climatic conditions. As we 
show in the next section, this information can be used to make some pre-
dictions about the stability and other qualitative properties of the coupled 
temperature-humidity system. 

4. LINEAR STABILITY ANALYSIS 

Let (T , h ) be a steady-state solution of eq. (14) and '(16) corres-o o 
ponding to present-day climatic conditions or to one of the past climatic 
conditions depicted in the scenario of Fig. 2. We choose this as a reference 
state and look for the evolution in its vicinity following an initial 
perturbation. Such perturbations are of course inevitable in a complex 
system like the earth-atmosphere one. The question is whether the system 
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w i l l c o u n t e r a c t them a n d r e t u r n to the r e f e r e n c e s t a t e (we w i l l t h e n 

s a y t h a t it is a s y m p t o t i c a l l y s t a b l e ) , o r w h e t h e r o n t h e c o n t r a r y t h e 

p e r t u r b a t i o n s w i l l b e a m p l i f i e d (the r e f e r e n c e s t a t e w i l l t h e n b e un-

stable) a n d d r i v e the s y s t e m to a n e w c l i m a t i c r e g i m e . S t a b i l i t y t h e o r y 

( M i n o r s k i , 1962) a u t h o r i z e s u s to a n a l y z e t h i s q u e s t i o n b y l i n e a r i z i n g 

e q . (14) and (16) a r o u n d t h e r e f e r e n c e s t a t e . T o t h i s e n d , w e s e t 

T = T + 5 T ( t ) 
o 

(17) 

h = h + S h ( t ) 

S u b s t i t u t i n g i n t o e q . (14) a n d (16), e x p a n d i n g t h e r i g h t h a n d side in 

T a y l o r s e r i e s a r o u n d ( T q / h Q ) and n e g l e c t i n g q u a d r a t i c o r h i g h e r t e r m s , 

w e o b t a i n : 

C f r - f - Q " ( I S ) - B + (A, + B , T ) ( j £ ) + B , n 
p d t [ o \ 3 T / 1 1 o \ 3 T / l o 

+ L — ) 3 T ) 
, m , T 5,385 

- X q (T ) L 2 

o (273 + T ) 
(1 - v l 6 T 

l -
Q 

3 n \ 

3 h / 
+ (A. + B, 

3_r 

3 h + l r r + x q (T ) 
s o 

L 5 h (18a) 

N 
dS h 

.dt 
+ h 

5,385 d5 T 

° (273 + T ) 2 d t 

o 

5,385 

a (T ) 
s o 

(273 + T ) 
o 

"(If) J 
r\ J 

-[ X + 
q (T ) 
s o 

6 h (18b) 
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We have set n = n ( T , h ) , r = r(T , h ). Note that T is to be cal-o o o o o o o 
culated by integrating expression (8) over latitude, whereas h^, r^ are 
determined from the steady-state conditions E(T , h ) = r(T , h ). Adopting o o o o 
again the quasi-steady state picture discussed in section 2, we may regard 
the coefficients of 5 t and 5h in eqs. (18) as time-independent. Hence we 
seek for solutions of the form 

oT = 5T e 

5h = Sh e 
(19) 

cot 

and compute co from the characteristic equation. If it turns out that 
Reto > 0 for at least one of the roots of this equation« (T , h ) will be o o 
unstable. If Reco < 0 for both roots, then (T , h ) will be asympto-o o 
tically stable. 

To simplify notation we write (18a) , tl8b), in the form 

/s 
w ST = aST + 08h 

(20) 

5 305 / \ /\ 
co 6h + ah — j 6 t = 76T + e5h 

° (273 + T ) o 
where a, 7 , e are defined by comparing eq. (20) to eqs. (18). The 
characteristic equation then reads : 

5,385 h 
03 - (a + e S - j P ) co + (cte - 0y) = 0 

(273 + T ) o 

2 
or co - Tco + A = 0 (21) 
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Depending on the signs and relative magnitudes of T and A we will have 
monotonic or oscillatory damping, oscillatory instabilities or saddle 
point behavior. Moreover, the sign of a, 0 , 7, e will give us the way 
humidity and temperature feed back into their own rate of change or on the 
rate of change of the other variable. On inspecting the complete expressions 
for these coefficients, eqs. (18), one could then see, for example, how the 
cloud cover acts on a global scale to affect the system's dynamics. This 
analysis is carried out in the next section. 

5. RESULTS 

Eqs. (18) to (21), have been evaluated numerically as follows. Values 
of Q and of the infrared cooling coefficients are chosen for various epochs 
according to a particular scenario, for instance that represented by curve 
b) of Fig. 2. Next, the derivatives 

are computed from the "sensitivity factors" recently evaluated in Sasamori 
(1975). The remaining factors L, x are taken from thermodynamic data 
and from Budyko (1974) . A first result is that, throughout the past 250 myr, 
the coefficient a remains negative. According to eq. (18a) this means that 
for a fixed relative humidity, the thermal regime itself tends to be 
stable^. A similar property holds for the humidity equation, namely e < 0. 
Note that from eq. (18a), the coefficient a itself contains a purely thermal 
contribution and a contribution due to humidity. The latter turns out to be 
even larger in absolute value than the purely thermal one. Thus, the direct 
effect of humidity on temperature amounts to a strong negative feedback. 

1 g 
The results persist even when ^ is varied in the range - 0.01 to - 0.03. 
Tftis corroborates an idea developed by Budyko (1974, 1977) and Cess 
(1976) that cloudiness feedback is bot particularly effective in af-
fecting the thermal regime. 



The situation is very different with the coupling coefficients 0 

and y, which turn,out to be both positive and large. In other words 

the dynamical_coupling between humidity and temperature amounts to a 

strong positive feedback. 

Potentially, the competition between these two opposing tendencies-

stabilizing trend through a and e , and a destabilizing one through 0 

and y— can give rise to a breakdown of stability of the reference state. 

Yet, on numerically evaluating the coefficients one finds that the factors 

T and A in the characteristic equation (21) are, respectively, negative 
2 

and positive with T - 4 A > 0 . This means that both roots of this equation, 

say and cô  (with I u^l < co | ) are real and negative. According to 

stability theory (Minorski, 1962) the steady state (T , h ) is therefore o o 
stable and behaves like a node. 

The next point of interest concerns time scales. It appears that |coJ » 

—8 —1 

which is of the order of 10 min , is smaller than | coJ by a factor of at 
3 

least 10 . Thus, one of the stable modes relaxes to zero at a relatively 

fast scale, whereas the other one evolves more slowly at a geological time 

scale. More precisely, the way these two modesare superposed in the time 

development of 8T(t) and 6h(t) is given by the equations : 

- 0 6 h + (a; - a ) 6 T cj.t 0 ô h + (a - to, ) 5 T w „ t 
fiT(t) = ^ 2 o e 1 + o 1 o e 2 

(22) 
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co — o: - 0 8 h + (co - a) 6 T co,t 
5 h ( t ) = 2 ? o e 1 + 

* w 2 -

co - a 0 5 h + (a - co,) 5T co„t (23) 2 O 1 O 2 + e 
' W 2 ' "l 

where 8h Q are the initial values of the perturbations. 

Fig. 3 and Fig. 4 describe the time course of temperature and humidity 
as given by eqs. (22) and (23) for some representative values of initial 
conditions. A significant feature is the occurence of overshoots (or under-
shoots) before the stage of systematic decrease of the perturbations and 
the ultimate stabilization toward the reference state is reached. 

6. C O N C L U D I N G R E M A R K S 

We have seen that simple energy balance models are capable of 
reproducing some general trends of past climatic evolution. At each epoch 
the latter is characterized by a pronounced thermal stability, although 
in a long time scale it is slowly modulated by the sun's evolving energy 
output. 

The situation remains stable when a two-variable description in terms 
of temperature and humidity is adopted. It is found that, despite the 
temperature-humidity positive feedback, the climate system is characterized 
by an inherent stability. As a result, there is a tendency to evolve back 
to the steady-state regime (Tq, hQ), although the transient behaviour may 
present some interesting features like the occurence of overshoots. 
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l o g t m i n 

Fig. 3.- Time evolution of temperature and relative humidity perturbations 
for 6T = 0 2°C 6h = - 0.03. The following values are chosen : 

° ' -2 ° -1 - -1 -2 -1 Q = 0.479 cal cm min A = 3.24 x 10 cal cm min 
A1 = 6.94 x 10"2 cal cm-2 min-1 , B = 3.24 x 10"3 cal cm" min 
Bx = 2.31 x lO"3 cal cm-2 min-1 K"1, T Q = 15°C, n Q = 0.5 
r Q = 1.8 x 10"4 g cm-2 min-1 , X = 7.5 x 10~2 g cm"2 min"1 , 
h = 0.77, 11 = 0.26 , C = 3.5 x 105 cal cm"2 
o ' o p 



6T 6h 
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Fig. 4.- Same plot as in Fig. 3, but for initial conditions 6T = 
6h = 0.03. ° 

o 
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In carrying out the numerical simulations reported in Section 5, 
specific values of the various parameters had to be adopted. Moreover, the 
values of the "sensitivity factors" leading to the evaluation of the 
derivatives of n and r compiled by Sasamori, have been utilized for past 
climatic conditions as well. It is not impossible that the stability will 
be compromized when some of the parameters will vary in rather wide ranges 
of values remote from present-day conditions. Unfortunately, one cannot be 
more specific at this time because of the scarsity of paleoclimatic data 
regarding claudiness n and condensation rate r. 

It would be interesting to project the analysis into the future to see 
how the temperature-humidity feedback is modified by the systematic 
increase of the solar constant. Similarly, a more realistic model of.two 
variables including latitudinal transport and/or the possibility of ice 
boundary is likely to add novel features. Finally, the dependence of the 
cooling coefficients A, B on the distribution of water vapor should eventually 
be taken into account following, for instance, the model developed by Cess 
(1974). In future work we hope to report on these points. 
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