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FOREWORD 

The paper entitled : "Derivation of zero-dimensional from 
one-dimensional climate models" will be published in Geophysical and 
Astrophysical Fluid Dynamics. 

AVANT-PROPOS 

L'article intitule : "Derivation of zero-dimensional from one 
dimensional climate models" sera publie dans Geophysical and Astro 
physical Fluid Dynamics. 

VOORWOORD 

Het artikel getiteld : "Derivation of zero-dimensional from 
one-dimensional climate models" zal verschijnen in het tijdschrift 
Geophysical and Astrophysical Fluid Dynamics. 

VORWORT 

Die Arbeit. : "Derivation of zero-dimensional from one-
dimensional climate models" wird in Geophysical and Astrophysical Fluid 
Dynamics herausgegeben werden. 



D E R I V A T I O N OF Z E R O - D I M E N S I O N A L FROM O N E - D I M E N S I O N A L 

C L I M A T E MODELS 

by 

C. N I C O L I S 

Abstract 

A one-dimensional energy-balance equation involving diffusive 

energy transport and taking into account the ice-albedo feedback is 

considered. A systematic elimination of the spatial degrees of freedom is 

performed. Th i s g ives rise to a zero-dimensional climate model 

displaying the explicit dependence of planetary albedo on planetary 

temperature and on some model parameters. In the general case, the 

zero-dimensional model involves memory effects as well as two 

characteristic relaxation rates. 

Résumé 

Dans ce travail nous utilisons un modèle du biian énergétique 

unidimensionnel incluant les transports d 'énergie suivant la latitude 

ainsi que l'effet de rétroaction de l'albedo sur ia température. En 

réduisant les degrés de libertés spatiales nous arr ivons à un modèlé 

planétaire. Ce dernier montre explicitement la manière dont l'albedo 

planétaire dépend de la température planétaire ainsi que d 'autres 

paramètres intervenant dans le modèle unidimensionnel. L 'étude du 

comportement dépendant du temps montre que d 'une manière générale le 

système donne lieu à des effets de mémoire caractérisés par l 'existence 

de deux temps de relaxation. 



Samenvatting 

Een ééndimensionale energiebalansvergeli jking waarbij rekening 

gehouden wordt met het energietransport door diffusie en de i js-albedo 

terugkoppeling, wordt bestudeerd. De ruimte-vri jheidsgraden worden 
t 

systematisch geëlimineerd, hetgeen een klimaat model geeft waarbij het 

planetaire a'lbedo expliciete afhankelijk is van de planetaire temperatuur 

en van enkele modelparameters; In hét algemeen geval vertoont dit 

nul-dimensionale model geheugen-effekten evenals twee karakteristieke 

relaxatie tijden. 

Zusammenfassung 

Ein unidimensionale Energie gleichung die diffusive Energie-
transporte und den Einfluss Eis-albedo einbegreift, is angenomen 
worden. Die Elimination der Raumvariablen is ausgeführt worden. Diese 
gibt ein zerodimensionales climatisches Modell vorin das planetare Albedo 
die Rolle eines parameter spielt. Der Einfluss dieses Parameter auf die 
Temperature sowice auf anderen variablen des Modelles is besprochen 
worden. Das algemeine zero-dimensionalen lyiodell enthält zwei 
charakteristr ische relaxationsperioden und "memory" Effekte. 
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I N T R O D U C T I O N 

One of the main tasks in the mathematical modeling of climate in ' 

terms of simple energy balance equations is to incorporate the most 

important feedback mechanisms present in the earth-atmosphere system. 

Previous studies (e .g . Budyko 1969, Sellers 1969) have shown the " 

importance of a positive feedback due to surface albedo, in the frame-

work of a one-dimensional ( 1 -D ) latitudinal model. In view of the role of 

this mechanism in determining climate sensitivity a number of authors 

developed rather sophisticated albedo representations (Lian and Cess , 

1977; Oerlemans and Van Den Dool, 1978) in terms of such factors as 

temperature, cloudiness and solar zenith angle. A common element in 

most of these representations is the occurrence of some discontinuity, 

related lu the existence uf an ice edge. 

On the other hand, it has been shown recently that many of the 

qualitative effects predicted by one-dimensional models, such as the 

occurrence of transitions between different climatic regimes, are also 

reproduced by globally averaged, zero-dimensional ( 0 -D ) models (Fraedr ich, 

1978 ; Crafoord and Kallen, 1978). In the latter, some very simple 

continuous (linear or piecewise linear) dependences of albedo on 

planetary temperature have been postulated. The question therefore 

arises whether such relationships can be justified from the experimental 

data, which all refer to zonally averaged latitude-dependent values. 

Th i s is not merely an academic problem, since certain linear albedo-

temperature feedbacks have been shown to be unphysical when used in 

the framework of a 1 -D model (Schneider and Gal-Chen, 1973). 1 

The purpose of this note is to express , in a self-consistent way, 

the dependence of the planetary albedo on planetary temperature, 

starting from a 1 -D energy balance model. The main point we make is 

that the 0 -D model can be viewed as an exact consequence of a 1 - D ' 



model when the spatial degrees of freedom are systematically eliminated. 

Th i s will enable us to deduce an explicit form of the albedo-temperature 

feedback which is : ( i ) continuous in a certain temperature range and 

(i i) dependent explicitly on such parameters as the eddy diffusivities 

and the infrared cooling coefficients. 

In section 2 we describe the 1 -D model used. In section 3 we 

perform an elimination of the space variables in the 1 -D model, based 

on the wide separation of the time scales occurr ing in the problem. The 

procedure may be summarized as follows. Let X and Y be two g roups of 

variables whose evolution is governed by a set of coupled f i r s t -order, 

autonomous differential equations. We assume that in the equation for V 

there is a large parameter k describing ' a fast relaxation process. Under 

certain conditions one may divide both members of the equation by A 

and switch to suitable dimensionless variables. .One then obtains : 

^ = f ( X , Y , e) , (Fa) 

e ^ = g ( X , Y , £) ( Fb ) 

where e = 1 « 1 and f, g are smooth functions of £ in the vicinity of 
A 

£ = 0.,We are interested in the behavior of the above system as £ 0. 

According to a theorem due to T ikhonov (Wasow, 1965, sec. 39), under 

certain conditions, as £ * 0, the solutions of the full system ( F ) tend 

to solutions of the reduced system : 

^ = f ( X , Y , 0) , (Ra ) 

g ( X , Y , 0) = 0 . ( R b ) 

From relation ( R b ) we may obtain Y as a function of X : 

Y = W(X ) , 



in wh ich case the equat ion f o r X takes the closed fo rm 

^ = f ( X , W ( X ) , 0) . . ' 

In sect ion 3 the above p r o c e d u r e is appl ied to i d e n t i f y an e f fec t i ve 

p l a n e t a r y a lbedo; the la t te r is s tud ied bo th numer ica l l y and ana ly t i ca l l y 

f o r small dev ia t ions f rom the p r e s e n t - d a y regime. Sect ion 4 is devo ted 

to the t ime-dependen t prob lem. We show t h a t the time dependences o f 

the spat ia l degrees of f reedom are re f lec ted by memory e f fec ts at the 

level of the 0 - D reduced balance equat ion f o r the p lane ta ry tem-

p e r a t u r e . A b r i e f d iscuss ion of the resu l t s is g i v e n in sect ion 5. 

2. THE MODEL 

The 1 - D model of N o r t h (1975) wi l l be used. The t ime-dependen t 

e n e r g y balance equat ion in t h i s model is of the fo rm : 

S ( x ) a ( x , x s ) - l ( x ) + j L ( 1 - x 2 ) D T ( x ) , ( 1 ) 

where 

- 2 
Q is the solar cons tan t d i v i d e d by 4, taken equal to 340 W m 

x , is the sine of l a t i tude and x g co r responds to the ice b o u n d a r y , 

l ( x ) is the o u t g o i n g i n f r a r e d rad ia t i on , 

a ( x , x ) is t he absorp t ion f u n c t i o n [= 1 - a l b e d o ] , 

D is t h e e d d y d i f f u s i o n coe f f i c i en t , 
8 ' - 2 

C is the thermal i ne r t i a c o e f f i c i e n t , taken equai to 3.138 x 1.0 J m , 

T is the t e m p e r a t u r e , 

t is t ime, 

and S ( x ) is the normal ized mean annual mer id ional d i s t r i b u t i o n of solar 

rad ia t ion determined f rom astronomical ca lcu la t ions . The fo l low ing 

approx imat ion wi l l be used (Coak ley 1979) : 



S ( x ) = 1.0 - 0.477 P 2 ( x ) , , 

where P 2 is the 2nd Legendre polynomial . T h e parameterization used for 

I ( x ) is the one developed by Cess (1976) for the Northern hemisphere. 

Assuming a constant 50% cloud cover : 

I ( x ) = A + B T ( x ) , 
with ( 3 ) 

- ? - 2 A = 211.5 Wm and B = 1.575 Wm 

The absorption function used, taking symmetric hemispheres, is : 

a ( x , x s ) 

where b = 0.38 is the absorption coefficient over ice or snow when 50% 
covered with clouds ( B u d y k o 1969), aQ = 0.697 and a 2 - - 0.0779' are 4 

the absorption coefficients over ice free areas obtained after analyz ing 
the albedo distr ibution by Four ier -Legendre ser ies. 

The ice boundary is determined using the prescr ipt ion of B u d y k o 

and Sel lers : 

T > - 10°C, no ice present , 
i 

T < - 10°C, ice present . 

Final ly eq. (1 ) is subject to the boundary conditions : 

a. no heat transport at the pole, nor across the equator, 
b. the temperature and its gradient must be continuous at the ice 

edge. 

bQ , x > x s , 
(4 ) 

a„ + a~ P ~ ( x ) , x < x , o c. d ' s 



To solve the balance equation Eq. (1), we expand T ( x ) in a series 

of Legendre polynomials : 

oo 
T = Z T n P n i x ) , ( 5 ) . 

n=o 

where Tq is the planetary temperature. We then deduce from Eq. (1) : 

9T 
C = Q H (x ) - (A + B T ) , (6a) 6t o s o 

9T 
C —-0. = Q H ( x ) - ( n ( n + 1) D + B ) T , n »2 , (6b) 91 n s n 

I T p P n ( x s ) = - 10 , (6c) 

with 
1 

H n ( x s ) = (2n + 1) f S ( x ) a ( x , x g ) P n ( x ) dx (n = 0, 2, . . . ) . 
o (6d) 

Eqs. (6) are coupled solely through the value of x g . On the other 
hand the higher the Legendre mode, the faster its relaxation to the 
steady-state value will be, owing to the factor n(n + 1) multiplying T n . 
We are, therefore, within the domain of validity of. the Tikhonov 
theorem referred to in the introduction. Hence, the f i rst non-trivial 
approximation to Eqs. (6) taking spatial effects into account, amounts 
to setting : 

9T 
^ 0 , n > 4 . 

at 

It follows that 

Q H (x ) n s . . . T ~ , n 4 . 
n n(n + 1) D + B 

- 7 -
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Thus-T is a decreasinq function of n both because the denominator is n a 

quadratic in n and because H n decreases with n. Hence, we may expect 
that the ice-edge position, Eq. (6c ) , will not be substantially affected 
by these higher modes. From now on therefore we illustrate the main 
idea on a two-mode truncation involving T q and T 2 alone, although the 
results could in principle be extended to h igher-T n ' s . 

At the level of the two-mode approximation, we will require that 
the model reproduces as closely as possible the present-day steady 
state values of T q and T 2 (T Q = 14.9°C, T 2 s - 28°C, cf. Coakley 
1979. From this it follows that the ice edge is at x„ = 0.96. To insure 
that, we adjusted the eddy diffusion coefficient D and the infrared 
cooling coefficient A. The values which fitted the model best are A = 
214.2 Wm"2 and D = 0.591 Wm~2. 

3. QUAS I-STAT IC EL IMINATION OF THE S P A T I A L DEGREES OF 

FREEDOM 

We want to see now whether the 1-D model summarized in Eqs. (6 ) 
may induce a closed equation for the planetary temperature; such an 
equation would constitute a 0-D model. Clearly this requires the elimina-
tion of all degrees of freedom but T . In the two-mode approximation 
the variables to be eliminated are therefore T 2 and x g . 

A necessary assumption to be made at this stage concerns again 
time scales. Comparing Eq. (6a) with Eq. (6b) for n = 2, we estimate 

C C the relaxation time = 6.4 y r for T q whereas -gpTg = 2 y r for T^. We 
may regard therefore the time of evolution of T q as being the rate 
determining step. Alternatively, we may set Eq. (6b) for T^ at a quasi-
steady state as suggested by the Tikhonov theorem : 

at 
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B y combining expressions (6b) and (6c) we get an algebraic equation of 
ninth degree in : 

Q H 2 ( x s ) + (6D + B ) (10 + T q ) j j j - ^ = 0 (8 ) 
2 s 

As x becomes now a function of T , Eq. (6a) takes a closed s o 
form. Setting 

Ho<xs> = H o ( x s ( T o ) } = 1 - V T o } ' ( 9 ) 

we can thus identify an explicit dependence of the "effective" planetary 
albedo AP in terms of the planetary temperature T q ; the derivative with 
respect to T q of this dependence is given by 

do: da dx 
s 

dT ' dx dT o s o 

(10) 

It should be realized that this refers to fixed cloud characteris-
tics.. Hence it is only a part of the total variation of albedo in terms of 
the planetary temperature. In actual fact albedo depends on T q also 
through other factors such as cloud amount, water vapor and soforth. 
Schematically, denoting these latter factors by Y , we have 

° p = V x s ( V ' Y ( V > 

and thus 

da da dx 9a dY 
_ _ R _ £ . __E (12) + 

dT 5x dT 3Y dT O S O o 
In what follows we shall focus on the f irst term of the right-hand 

side only. Our purpose is to display the dependence of a p on T o in a 
completely self-consistent way without using data other than the basic 
premises of the 1-D model. So far , it seems impossible to carry out a 
similar program for the second term. 



We f i r s t s tudy Eq. (8) and Eq. (9 ) numerical ly fo r d i f f e ren t values 

of T . The resul ts are g iven in Fig. 1 fo r - 10 < T < 1 6 . We see that o o 
the dependence of the ef fect ive p lanetary albedo is near ly l inear in that 

temperature range. Moreover, the der iva t i ve of the albedo in the v i c in -

i t y of the present day regime is : 

da 
— E = - 0.0032 . (13) 
dT 

This is less than the values deduced by Cess (1976), using satel l i te 

data of mid la t i tudes. However, as pointed out by Cess, such values 

are probably overest imations. In addi t ion, exp l ic i t considerat ion of 

atmospheric feedback mechanisms, which appear only impl ic i t ly in our 

calculat ion, is l ike ly to f u r t h e r inf luence resu l ts . 

As mentioned ear l ie r , cer ta in parameters have been adjusted to f i t 

the present -day regime. The resul ts obtained are there fore s ign i f icant 

fo r values of XG and T q not too remote from present condi t ions. As long 

as one is res t r ic ted to smpll deviat ions around some g iven values of 

var iab les, one can also per form an analyt ic s tudy of the albedo-

temperature re lat ionship. To th is end we se t . : 

x s = x s + n ' ( 1 4 ) 

-X- * 
where x is the location of the present -day ice boundary ( x = 0.96) s • s 
and n is a small pe r tu rba t ion . Inser t ing Eq. (14) in both Eq. (8) and 

Eq. ( 9 ) , expanding around x * and keeping only l inear terms we get a 

closed equation fo r TQ : 

6T r / o r * | 1 - a. 
c - Q 1 ~ a

p " J * * 
dt L " s a x 7 x s s 

- (A + B T ) , (15) 

- Q H ( x * ) - (6D + B) (10 + T ) ( 1 /P „ ( x * ) ) 2 s o 2 s , 
11 = ( 9 H 2 ( x S } N\ * 2 Q ( — — ) - (6D + B) (10 + T ) 3 x <1/P0(x ) ) \ / * o s 2 s 3 x x s s 

(16) 
- 1 0 -



Fig. 1 . - Dependence of planetary albedo a p on planetary temperature 

T q as determined by numerical evaluation of equat ions (8 ) and 

( 9 ) . Numerical values of the parameters are g i ven in the 

text. 



where 

and 

1 - a * = H ( x * ) p ov s 

da \ / 5 H (x ) o s 
* 

ax x ax x s s s s 
Eq. (16) d isplays the dependence of the ef fect ive albedo on the p lan-

e tary temperature and on the t r anspo r t and cooling coeff ic ients D and 

B. The lat ter coeff ic ients appear exp l i c i t l y ,as well as imp l ic i t l y , t h r o u g h * - V 
the values of x . D i f fe ren t ia t ing th is relat ion wi th respect to T , / s \ o 
mu l t ip ly ing J and set t ing T = T q = 14.9 in the resu l t , we 

f i nd a value rinse to the numerical one, Eq. (13) . 

It should be mentioned tha t Lian and Cess (1977) have actual ly 

expressed the temperature der iva t i ve of the p lanetary albedo in terms 

of zonal values in tegrated over all la t i tudes. They then evaluated the i r 

expression using exper imental ly determined values of the dependence of 

zonal albedo on temperature. Our work d i f f e rs in that we remain in the 

f ramework of the 1 -D energy balance model and we t r y to deduce all 

quant i t ies of in terest in a self consistent way wi thout any f u r t h e r use 

of experimental data. 

4. TIME-DEPENDENT PROBLEM - MEMORY EFFECTS 

So far we have studied the dependence of the p lanetary albedo on 

parameters character iz ing suitable averages of the 1 -D problem. To th is 

end we have assumed that the components T , n ^ 2, express ing the 

spatial dependence of the temperature, are in a quas i -s teady-s ta te . As 

mentioned in the previous sect ion, th is hypothesis is ra ther reasonable, 

in view of the d i f ference in the relaxat ion times of T q and of T N , 
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n ? 2, In this section we will nevertheless analyze the more general 

case of the time-dependent problem. For the sake of simplicity we shall 

limit ourselves again to the two-mode approximation, and furthermore to 

a linear analysis in the vicinity of the present value of the planetary 

temperature, or alternatively of the ice edge. 

Start ing from the full time-dependent equations (6 ) , we 

differentiate Eq. (6c) with respect to time. Combining the result ing 

equation with Eq. (6b) and Eq. (6c) and us ing Eq. (6a) we obtain : 

[Q H (x ) - (A + B T ) + P (x ) Q H ( x 
o s o 2 s 2 s 

(17) 

9x 

at 

P 2 ( x s ) | 

3 x 10 + T 

4- (6D + B) 

Eq. (17) together with Eq. (6a) constitute a system of two h ighly 

nonlinear, f i r s t -order coupled differential equations for x g and T . 

Within the framework of a linear analysis we let : 

x s = x s * + n ' n « x s * ' 
and 

* * 
T = T + 0 , 6 « T o o ' o , 

where r| and 6, are respectively small deviations of the ice boundary 

and of the planetary temperature. Linearizing with respect to both 

variables, we obtain after some algebraic manipulations : 

§£ = - a n(t) + 6 0(t) (18a) 

and 
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39 

at 

1 

c 

6a 

B e( t ) + Q { — E 

3x 
i) ( t ) 

(18b) 

with 

a = 
1 

•X- * 
C (10 + T ) 3x o s 

3oc 

3x x s s 

* 

* " P 2 

3H_ 

3x x s s 

+ (6D + B) " 

b = 
1 

C(10 + T ) 3x o s 

6D 

The solution of Eq. (18a) is 

n(t ) = e " S t [K + b dt e ( t ) e a x ] , (19) 

where K is the constant of integration depending on the initial condi-
tions. Assuming K = O, and substituting Eq. (19) into Eq. (18b) : 

t 
-a(T - T ) 

ae 

at 
B e(T) + Q 

3a 

dt e 0 ( t ) 
3x ' x s s o (20) 

We thus arr ive again at a closed equation for the deviation 8 of 
the planetary temperature from the reference value T q * . Contrary to 
the previous section, where we were dealing with ordinary differential 
equations, Eq. (20) is now an integro-differential equation displaying 
memory effects.The latter arise from the time-dependent elimination of 
spatial variables. 

In order to solve Eq. (20) we use the Laplace transform ( e . g . 
Matthews and Walker, 1965, sec. 4-3) : 

6(s) = e " s t 8(t ) dt . (21) 
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Inser t ing Eq. (21) into E q . (20) we obtain : 

e<o) 
6(s) = I r ' (22) 

s - * — + -
a+s C 

wi th 

Q b 
e = -

/ ^ 
\ J . 

6x x s s 

and 6(o) the in i t ia l value of 6. Performing the inverse Laplace 
t ransform we have : 

i st 1 r ds e 
0 ( t ) = — j : — e(o) . (23) 

- 2t; i c s - - — + — a+s c 
Thus , the timp dependence of 0 ( t ) wil l be determined by the 

singula 
r i t ies of the in tegrand, tha t is by the zeros of the denominator. 

These are g iven by the equation : 

s2 + (a + | ) s - (e - a | ) = O . (24) 

Its roots have the numerical values : 

s1 = - 0.038 y r " 1 , 
s 2 = - 0.334 y r 1 (25) 

fo r the parameters g iven above and for a thermal iner t ia coeff ic ient 

cor responding to a mixed layer of 75 m. 

Footnote 

I t should be pointed out tha t the evaluation of character is t ic times 

car r ied out in th is section depends cruc ia l ly on the choice of the heat 

capacity coeff ic ient C. If instead of choosing a mixed layer of 75 m, we 

took a whole ocean dep th , we would be led to much larger time scales. 

We believe that the choice of the appropr ia te value of C depends on the 

nature of the per tu rbat ions act ing on the system. 
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The values in Eqi (25) are to be compared to the unique relaxation rate 
characterizing the planetary model of the previous section (with memory 
effects neglected) which is : 

da 

dT 
+ B = 0.048 yr 

- 1 

We see that the effect of memory splits this unique, characteristic rate 
into a slightly slower one s^, and a much faster one s^. Among these 
only the first one will give a significant contribution to the evolution of 
T , while the other will die out very quickly. In any case the system 
remains stable and overdamped : it cannot display (damped) oscillatory 
behavior. 

As pointed out by Bhattacharya and Ghil (1978), oscillations may 
arise in the presence of time lags. Within the framework of our model 
such lags cannot arise, as the memory effect is fading away for all 
0 <t < t . Nevertheless, we considered the consequences of replacing the 
kernel of Eq. (20) by a delta function : 

t 

dt1 a e " ^ * ' 1 ' ) 0 ( f ) ^ 6(t - t ) (26) 

Eq. (20) becomes then : 

ae-(t) l 

at 
B e ( t ) + Q 

3a 

ax X 
r 0(t - T) 

tut 

(27) 

Seeking for solutions of the form 6 = 6q e and using the numerical 
values of the model coefficients, we find the characteristic equation for 
u) : 

u) = - (0.156 - 0.0971 e'
m

) (28) 

It admits one real negative solution for all x » 0. Therefore instabilities 
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and oscillations are ruled out. Additional conditions are necessary, such 

as those considered by Bhattacharya and Ghil (1978) in« connection with 

genuinely nonlinear ice-sheet dynamics (Kallén et al, 1978, 1979), in 

order to obtain such effects within the framework of a 1 -D energy bal-

ance model. 

5. D I S C U S S I O N 

We have seen that it is possible within the framework of energy-

balance models to express a number of features of a system of low 

dimensionality starting from a model corresponding to a higher 

dimensionality. The technique used was the systematic elimination of 

spatial degrees of freedom, either by a quasi-static < procedure 

(section 3) or in a time-dependent way (section 4). It led us to an 

explicit representation of the surface-albedo feedback in terms of small 

deviations of the planetary temperature from its present value. 

.The wide separation of characteristic times between the first two 

spatial modes (section 4) shows that memory effects, although quan-

titatively important, do not introduce a qualitative change in the time 

evolution of temperature. This provides an a posteriori justification of 

the quasi-static assumption used in section 3, as well as of the trunca-

tion to the second Legend re mode adopted throughout the present 

paper. 

A crucial factor limiting the generality of our conclusions is that 

we did not consider explicitly feedback mechanisms other than the 

dependence of surface-albedo on temperature. Such mechanisms, 

denoted collectively by Y ( T ). in Eq. (12), are likely to play a rather 

important role in the total value of the temperature derivative of the 

albedo (Lian and Cess, 1977). Unfortunately, it does not seem possible 

at this time to construct climate models taking these other effects into 

account in a self-consistent way. 
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