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-FOREWORD

The paper entitled : "Derivation of zero-dimensional -from
one-dimensional climate models" will be published in Geophysical and

Astrophysical Fluid Dynamics.

AVANT-PROPOS

L'article intitulé : "Derivation of zero-dimensional from one-
3 - - M . - -
dimensional climate models" sera publié dans Geophysical and Astro-

physical Fluid Dynamics.

VOORWOORD

Het artikel getiteld : "Derivation of zero-dimensional from
one-dimensional climate models" zal verschijnen in het tijdschrift

Gedphysical and Astrophysical Fluid Dynamics.

VORWORT

Die Arbeit : '"Derivation of zero-dimensional from one-
dimensional -climate models" wird in ‘Geophysical and Astrophysical Fluid

Dynamics herausgegeben werden.



LSERIVATION:OF ZERO-DIMENSIONAL FROM ONE-DIMENSIONAL

e

CLIMATE MODELS

by

C. NICOLIS

Abstract

A one-dimensional energy-balance equation involving diffusive
energy transport and taking Into account the ice-albedo feedback is
considered. . A ststematic elimination of the spatial degrees of freedom is
performed. This gives rise to a zero-dimensional climate mode!
. displaying the explicit dependence of planetary albedo on planetary
temperature and on some model parameters. in the general case, th‘e‘
zero-dimensional model .involves r‘nerﬁory effects as well as two
characteristic relaxation rates. '

Résumé

Dans ce travail nous utilisons un modele du biian énergétique
unidimensionnel incluant les transports d'énergie suivant la latitude
ainsi que l'effet de rétroaction de ['albedo sur ia température. En
réduisant les degrés de libertés spatiales nous arrivons a un modelé
planétaire. Ce dernier montre explicitement |a maniere dont ['albedo -
planétaire dépend de la température planétaire ainsi que d'autres
paramétres intervenant dans le modéle unidimensionnel. L'étude du
comportement dépendant du temps montre que d'une maniere générale le
systéme donne lieu a des effets de mémoire caractérisés par l|'existence .-

de deux temps de relaxation.



Samenvatting

Een ééndimensionale energiebalansvergelijking waarbij rekening
gehouden wordt met het energietransport door diffusie en de ijs-albedo
terugkoppeling, wordt bestudeerd. De ruimte-vrijheidsgraden worden
systematisch geélimineerd, hetgeen een klimaat model geeft waarbij hét
planetaire dlbedo expliciete afhankelijk is van de planetaire temperatuur
en van enkele modelparameters: In het algemeen geval vertoont dit
nul-dimensionale model geheugen-effekten evenals twee Kkarakteristieke

reiaxatie tijden. '

Zusammenfassung

Ein unidimensionale Energie gleichung die diffusive Energie-
transporte und den Einfluss Eis-albedo einbegreift, is angenomen
worden. Die Elimination der Raumvariablen is ausgefiihrt worden. Diese
gibt ein zerodimensionales climatisches Modell vorin das planetare Albedo
die .Rolle eines parameter spielt. Der Einfluss dieses Parameter an die
Temperature sowice auf anderen variablen des Modelles is besprochen
worden. Das algemeine zero-dimensionalen Modell enthdlt zwei

charakteristrische relaxationsperioden und "memory" Effekte.

v



INTRODUCTION

One of the main tasks in the mathematical modeling of climate in
terms - of simple energy balance equations is to incorporate the most
important feedback mechanisms present in the earth-atmosphere system.
Previous studies (e.g. Budyko 1969, Sellers 1969) have shown the’
importance of a positive feedback due to surface albedo, in the frame-
work of a one-dimensional (1-D) latitudinal model. In view of the role of
this mechanism in determining climate sensitivity a number of authors
developed rather sophisticated albedo representations (Lian and Cess,
1977, Oerlemans and Van Den Dool, 1978) in terms of such factors as
' temperature, cloudiness and solar zenith angle. A common element in
most of these representationé is the occurrence of some discontinuity,

related o Lhe exislence ul an ice edye.

On the other hand, it has been shown recently that many of the
gualitative effects predicted by one-dimensional models, such as the
occurrence of transitions between different climatic r‘egimes,'ar‘e also
reproduced by globally Sver‘aged, zero-dimensional (0-D) models (Fraedrich,
1978 ; Crafoord and Kallén, 1978). In the latter, some very simple
continuous (linear or piecewise linear) dependences of albedo -on
planetary temperature have been postulated. The question therefore
arises whether such relationships can be justified from the experimental
data, which all refer to zonally averaged Iatitude-vdependent values.
This is not merely an academic problem, since certain linear aIbeéo-
temper‘atur"e feedbacks have been: shown to be unphysical when used in
the framework of a 1-D model (Schneider and Gal-Chen, 1973).

The purpose of this note is to express, in a self-consistent way,
the dependence of the planetary albedo on planetary temperature,
starting from a 1D energy balance model. The main point we make is
that the 0-D model can be viewed as an exact consequence of a 1-D



" model when the spatial degrees of freedom are systerﬁatically eliminated.
This will enable us to deduce an explicit form of the albedo-temperature
feedback which is : (i) continuous in a certain temperature range and
(ii) dependent explicitly on such parameters as the eddy diffusivities

and the infrared cooling coefficients.

In section 2 we describe the 1-D model used. In section 3 we
perform an elimination of the space variables in the 1-D model, based
on the wide separation of the time scales occurring in the problem. The
procedure may be summarized as follows. Let X and Y be two groups of
variables whose evolution is governed by a set of coupled first-order,
autonomous differential equations. We assume that in the equation for Y =
there is a large parameter A describing a fast relaxation process. Under
certain conditions one may divide both members of the equation by A

and switch to suitable dimensionless variables. One then obtains :

dX _
Td‘f - f(xr Y/ 8) ’ (Fa)
€ -d-yf = g(X, Y, €) (Fb)

where ¢ = % << 1 and f, g are smooth functions of ¢ in the vicinity of
¢ = 0. We are interested in the behavior of the above system as ¢ » 0.
According to a theorem due to Tikhonov (Wasow, 1965, sec. 39), under
certain conditions, as ¢ » 0, the solutions of the full system (F) tend

to solutions of the reduced system:

dX _

dt f(X, Y, 0) ’ (Ra;

g(X, Y, 0)=0. (Rb)
From relation (Rb) we may obtain Y as a function of X :

Y = W(X) ,



in which case the equation for X takes the closed for‘m :

92 = #(x, W(X), 0) .

In section 3 the above procedure is applied to identify an effective
planetary albedo; the latter is studied both numerically and- analytically
for small deviations from the present-day regime. Section 4 is devoted
to the time-dependent problem. We show that the time dependenc‘es of
the spatial degrees of freedom are reflected by memory effects at the
level of the 0-D reduced balance equation for the planetary tem-

perature. A brief discussion of the results is given in section 5.

2. THE MODEL

The 1-D model of North (1975) will be used. The time-dependent
energy balance equation in this model is of the form :

C %%= Q s(x) alx, x_) - I(x) + g; (1 - x2) D g—x T(x), (1)

where

Q .is the solar constant divided by 4, taken equal to 340 W m-2

x,\‘ is the sine of latitude and X corresponds to the ice boundary,
I(x) is the outgoing infrared radiation,

a(x, xs) is the absorption function [= 1 - albedo],

D is the eddy diffusion coefficient,

C is the ther‘mél inertia coefficient, taken equai to 3.138 x 1_08 J m-z,
T is the temperature,

t is time, ‘\

and S(x) is the normalized mean annual meridional distribution of solar
radiation determined from astronomical calculations. The following

approximation will be used (Coakley 1979) :



S(x) = 1.0 - 0.477 P, (x) , ' | (2)

¢

where P2 is the 2nd Legendre polynomial.The par"ameterization used for

I(x) is the one developed by Cess (1976) for the Northern hemisphere.

Assuming a constant 50% cloud cover : ’ . \
(x) = A + BT(x) , , )

with o (3
A=211.5wWn2 and B = 1.575 Wm™2 |

The absorption function used, taking symmetric hemispheres, is :

]
°2
ped
\%
X

a(x, x.) , (4)
.a0+ 292(x),x<x

1t

S !

where bo = 0.38 is the absorption coefficient over ice or snow when 50%
covered with clouds (Budyko 1969), a, = 0.697 and a, = - 0.0779 are:
the absorption coefficients over ice free areas obtained after analyzing

the albedo distribution by Fourier-Legendre series.

The ice boundary is determined using the prescription of Budyko

and Sellers :

T > - 10°C, no ice present ,

T < - 10°C, ice present .

Finally eq. (1) is subject to the boundary conditions :
a. no heat transport at the pole, nor across the equétqr,

the temperature and its gradient must be continuous at the ice

edge.



To solve the balance equation Eq. (1), we expand T(x) in a series
of Legendre polynomials : '

T=2 TP (x)
n=0 N N '

(5)

where T is the planetary temperature. We then deduce from Eq. (1) :

oT :
C a—t—‘i = Q H,(x) - (A +BT), (6a)
T '
C a—t—“ =QH (x)-(n(n+1)D+B)T , n>»2 , (6b)
?21 Tn Pn(xs) =-10, (6¢c)
with
1 .
Hn(xs)' = (2n + 1) f S(x) a(x, x.) P (x) dx (f1 =0, 2, ...).
S (6d)

Egs. (6) are coupled solely through the value of X, On the other
hand the higher the Legendre mode, the faster its relaxation to the
steady-state value will be, owing to the factor n(n + 1) multiplying Tn.
We are, therefore, within the domain of validity of the Tikhonov
theorem referred to in the introduction. Hence, the first non-trivial
approximation to Egs. (6) taking spatial effects into account, -amounts

to setting :

at
It follows that
Q Hn(xs)-

.Tn:' -, h
n(n + 1) D+ B

A\
~



Thu‘s~Tn is a decreasing function of n both because the denominator is
quadratic in nh and because Hn decreases with n. Hence, we may expect
. that the ice-edge position, Eq. (6c), will not be substantially affected
by these higher modes. From now on therefore we illustrate the main
idea on a two-mode truncation involving To and T, alone, although the

2
results could in principle be extended to higher‘«Tn's.

At the level of the two-mode approximation, we will require that
the model reproduces as closely as possible the present-day steady
2 (T = 14.9°C, TZE - 28°C, cf. Coakley
-~ 1979. From this it follows that the ice edge is at X x> 0.96. To insure

state values of T and T
that, we adjusted the eddy diffusion coefficient D and the infrared
cooling coefficient A. The values which fltted the model best are A =

214.2 wm™2 and D = 0.591 Wm™?

3. QUASI-STATIC ELIMINATION OF THE SPATIAL DEGREES OF

FREEDOM

We want to see now whether the 1-D model summarized in Egs. (6)
may induce a closed equation for the planetary temperature; such an
equation would constitute a 0-D model. Clearly this requires the elimina-
tion of all degrees of freedom but TO. in the two-mode approximation

the variables to be eliminated are therefore T2 and xs.

- A necessary assumption to be made at this stage concerns again

time scales. Comparing Eq. (6a) with Eq. (6b) for n = 2, we esttmate
. . C
the relaxation time B = ~ 6.4 yr for T whereas 6D+B = 2 yr for T2 We
may regard therefore the time of evolutaon of To as being the rate.
determining step. Alternatively, we may set Eq. (6b) for T2 at a quasi-
steady state as suggested by the Tikhonov theorem :
oT

2 ~ 0 . » (7)
ot



By combining expressions (6b) and (6c) we get an algebraic equation of
ninth degree in X ! '

Q Halx;) + (6D +8) (10 + T)) gy =0 (8)

As X becdmes now a function of T, Eaq. (6a) takes a closed

¢

form. Setting
H(x ) = H(x (T )) =1 - ap(To) , (9)

we can thus identify an explicit dependence of the "effective" planetary.
albedo ap in terms of the plahetary temperature TO; the derivative with

respect to To of this dependence is given by

dat B dx_ R
B = -2 = , (10)
dT ox dT

o s o

it should be realized that this refers to fixed cloud characteris-
tics.. Hence it is only a part of the total variation of albedo in terms of
the planetary temperature. In actual- fact albedo depends on To'also
through other factors such as cloud amount, water vapor and soforth.

Schematically, denoting these latter factors by Y, we have

ay = ag(xg (T, Y(T))

and thus
da oo dx o dy
B . _p _s , _p o (12)
dT 9x daT dY dT :
[o] S (o] [¢] .

in what follows we shall focus on the first term of the right-hand
side only. Our purpose is to display the dependence of ap. on T0 in a
completely self-consistent way without using data other than the basic
premises of the 1-D model. So far, it seems impossible to carry out a

similar program for the second term.



We first study Eq. (8) and Eq. (9) numerically for different values
of To' The results are given in Fig. 1 for - 10 < To < 16. We see that
the dependence of the effective planetary albedo is nearly linear in that
temperature range. Moreover, the derivative of the albedo in the vicin-
ity of the present day regime is :

da
— = _0.0032 . ‘ (13)
dT :

This is less than' the values deduced by Cess (1976), using satellite
data of mid latitudes. However, as pointed out by Cess:, such values
are probably overestimations. In addition, explicit consideration of
atmospheric feedback mechanisms, which appear only implicitly in our

calculation, is likely to further influence results.

As mentioned earlier, certain parameters have been adjusted to fit
the- present-day regime. The results obtained are therefore signifiéant
for values- of X and To not too remote from pr;esent conditions. As long
as- one - is restricted to small deviations around some given values of
variables, one can also per‘form.an analytic study of the albedo-

temperature relationship. To this end we set _:
X_=X_+n, : : (14)

where x: is the location of the present-day ice boundary (x: = 0.96)
and n is a small perturbation. Inserting Eq. (14) in both Eq. (8) and
Eq. (9), expanding around x: and keeping only linear terms we get a
closed equation for To ‘

C (l-a < > n -(A+BT0), (15)

ot

¥ *
- Q Hz(x S) - (6D + B) (10 "+ To) (1/P2(xs))

3 H, (x)
Q<——-S—>* ~ (6D + B) (101-T)3x (1/P(x))

J X X
s S

. (16)
-10-
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1.

Dependence of planetary albedo up on planetary temperature

T, as determined by numerical evaluation of equations (8) and

(9). " Numerical values of the parameters are .given in the

text.



where

* *
1 - orp = Ho(xs)

and
da < 3 H (x) > '
_P ) - o s
AN ¥* - * =
ox X ox X .
S S S S

Eq. (16) displays the dependence of the effective albedo on the plan'-
etary temperature and on the transport and cooling coefficients D and
B. The latter coefficients appear explicitly,as well as implicitly, through
the wvalues of/x:. Differentiating this relation with respect to T;,
multiplying by\g-%fsl> and setting T = To = 14.9 in the result, we
find a value close fo the numerical one, Eq. (13).

It shoﬁld be mentioned that Lian and Cess (1977) have actually
expressed the temperature derivative of the planetary albedo in terms
of zonal values integrated over all latitudes. They then evaluated their
expression using experimentally determined values of the dependence of’
zona! albedo on temperature. Our work differs in that we remain in the
framework of the 1-D energy balance model and we try to deduce all
quantities of interest in a self consistent way without any further use

of experimental data.

4. TIME-DEPENDENT PROBLEM - MEMORY EFFECTS

So far we have studied the dependence of the planetary albedo on
parameters characterizing suitable averages of the 1-D problem. To this
end we have assumed that the components Tn, n 2 2, expressing the
spatial dependence of the temperature, are in a quasi-steady-state. As
mentioned in the previous section, this h;}pothesis is ratherreasonable,
in view of the difference in the relaxation times of TO and of Tn’

-12-



n 2 2. In this section we will nevertheless analyze the more general
case of the time-dependent pf'oblem. For the sake of simplicity we shall
limit ourselves again to the two-mode approximation, and furthermore to
a linear analysis in the vicinity of the present value of the planetary.
temperature, or alternatively of the ice edge.

Starting from the full tinie-dependent equations (6), -we
differentiate Eq. (6¢c) with respect to time. Combining the resulting
equation with Eq. (6b) and Eq. (6¢) and using Eq. (6a) we obtain

ax PZ(XS) r 1 .
C S = - ‘{ — {Q Ho(xs) —(A+BT)+P2'(X)QH2(X')‘
at 3 x 10 + T ° ° )
o s o
+ (6D + B) JL o (17)

Eq. (17) together with Eq. (6a) constitute a system of two highly
nonlinear, first-order coupled differential equations for X and To.
Within the framework of a linear analysis we let :

*

X, =X +n, n<<x

s s s /!

and
b 3

*
T0=TO+6, 6<<To

7

where n and 6, are respectively small deviations of the ice boundary
and of the planetary temperature. Lihearizing with respect to both

variables, we obtain after some algebraic manipulations :
g% = - 3 n(t) + b 6ty (18a)

and

-13-~



‘ T
—_ = - [ B 6(t) + Q ( —E L (e },,
C ) ox X

at . (18b)
with
. .
o1 1 P, Ao dH, °
B ()L g () ]
| 2 *
C (10 +T) 3x T 3x X X X : '
(o] S S S S S
1 P
- 2
b = " ~ 6D
c(lo + T) 3x
(o] S
The solution of Eq. (18a) is :
t
nt) = e [K +b Jf dr o(1) % , (19)
o . ‘

where K is the constant of integration depending on the initial condi-
tions. Assuming K = O, and substituting Eq. (19) into Eq. (18b) :

.t

o6 1 da R

-——=-—{BG(t)+Q<——P->*1bf'd1:e-a(t-1:)9('r)]

ot C = 0x X -
S ] o]

(20) .

~

We thus arrive again at a closed equation for the deviation 6 of
the planetary temperature from the reference value To*. Contrary to
the previous section, where we were dealing with ordinary differential
equations, Eq. (20) is now an integro-differential equation displaying
memory effects.The latter arise from the time-dependent elimination of
spatial variables.

In order to solve Eq. -(20) we use the Laplace transform (e.g.
Matthews and Walker, 1965, sec. 4-3) :

o0

B(s) = f e 3t (1) dt . ' (21)

[o}

-i4=



Inserting Eq. (21) into Eq. (20) we obtain : : :

- 6(o)
a(s) = . B : : o (22)
T ats c
with
Q oo ‘\
£E=- (\ AR
C ox X
S S

and 6(o) the initial value of 6. Performing the inverse Laplace
transform we have :
1 r ds e . B

o) = — | — 0(o) (23)

. Aoy
< 211 ¢ s -

a+s C

Thus, the ftime dependence of 8(t) will be dcterminced by the
singularities of the integrand, that is by‘ the zeros of the denominator.
These are given by the equation :

~

.52+( )s-(e-a%)=0. (24)

()IUJ

Its roots have the numerical values :

- 0.038 yr |,
- 0.334 yr‘1

[y
]

[
N —
1]

(25)

for‘ the parameters given above and for a thermal inertia coefficient*‘
correspondlng to a mixed layer of 75 m.
*Footnote '

It should be pointed out that the evaluation of characteristic times
carried out in this section depends crucially on the choice of the heat
capacity coefficient C. If instead of choosing a mixed layer of 75 m, M-/e .
took a whole ocean depth, we would be led to much larger time scales.
We believe that the choice of the appropriate value of C depends on the
nature of the per‘tur‘bé_tions acting on the system.

-15-
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The values in- Eq. (25) are to be compared to the unique relaxation rate
characterizing the planetary model of the previous section (with memory
effects neglected) which is :

1 da 1
—[Q —R‘+BJ=O.048yr
c ar

'

We see that the effect of memory Eplits this unique, characteristic rate
into a slightly slower,‘one Sqs and a much faster one Sy Among these
only the first one will give a significant contribution to the evolution of
To, while the other will die out very quickly. In any case the _system
remains stable and overdamped : it cannot display (damped) osciliatory
behavior. il

As pointed out by Bhattacharya and Ghil (1978), oscillations may
arise in the presence of time lags. Within the framework of our model
such lags cannot arise, as the memory effect is fading away for all
0 <t < t. Nevertheless, we considered the consequences of replacing the
kernel of Eq. (20) by a'delta function :

t _ . . ‘ ’
d/\ dt' 5 e 3t ) gty n Bt - 1) . (26)
(o]

Eq. (20) becomes then :

26(t) 1 , da b
=-— [B e(t) + Q —P-> s = 6t - 1) J . (27)
ot C axs xs a

Seeking for solutions of the form 6 = eo ewt and using the numerical

values of the model coefficients, we find the characteristic equation for
w

w= - (0.156 - 0.0971 e™%) » (28)

It admits one real negative solution for all T > 0. Therefore instabilities

-16-
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. and oscillati;)ns are ruled out. Additional conditions are necessary, such
as those considered by Bhattacharya and Ghil (1978) in. connection with
genuinely nonlinear ice-sheet dynamics (Kallén et al, 1978, 1979), in
order to obtain such 'effect-s within the framework of a 1-D energy bal-
ance model.

5. DISCUSSION

We have seen that it is possible within the framework of energy-
balance models to express a number of features of a system of low
" dimensionality starting from & model corresponding to a higher
dimensionality. The technique used was the systématic elimination of
spatial degrees of freedom, either by a quasi-static - procedure
(section 3) or in a time-dependent way (section 4). ‘ltiled us to an
explicit representation of the surface-albedo feedback in terms of small
deviations of the planetary temperature from its present value.

.The wide separation of characteristic times between the first two
spatial modes (section 4) shows that memory effects, although quan-
titatively important, do not infroduce a qualitative change in the time
evolution of temperature. This provides an a posteriori justification of
the quasi-static assumption used in section 3, as well as of the trunca-
tion to the second Legendre mode adopted throughout the present
paper. '

A crucial factor limiting the generality of our conclusions is that
we did not consider explicitly feedback mechanisms other than the
dependence of surfac;e-albedo on temperature. Such mechanisms,
denoted collecti.vely by Y(TO)A in Eq. (12), are likely to play a rather
important role in the total value of the temperature derivative of the
albedo (Lian and Cess, 1977). Unfortunately, it does not seem possible
at this time to construct climate models taking these other effects into

account in a self-consistent way.
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