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FOREWORD

The paper entitled : "On the entropy balance of the earth-
atmosphere system" will be published in The Quarterly Journal of the

Royal Meteorological Society, 106, 1980.

AVANT-PROPOS

L'article intitulé : "On the entropy balance of the earth-
atmosphere system® sera publie dans |he Quarterly Journal of the Roya!

Meteorological Society, 106, 1980.

VOORWOORD

Het artikel getiteld : "On the entropy balance Qf'the earth-
atmosphere system" zal verschijnen in het tijdschrift The Quarterly

Journal of the Royal Meteorological Society, 106, 1980.

VORWORT

Die Arbeit : "On the entropy balance of the earth-atmosphere
system" wird in The Quarterly Journal of the Royal Meteorological

Society, 106, 1980 herausgegeben werden.
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ON THE ENTROPY BALANCE OF THE EARTH-ATMOSPHERE SYSTEM

by

G. NICOLIS and C. NICOLIS

Abstract

The entropy balance associated with a Budyko-Sellers climatic
mode! is developed. It is shown that different regimes, associated with
decreasing, as well as increasing values of entropy production (which
measures the rate of dissipation in the system) in the course of time
are possible. An explicit criterion of climatic stability is also derived,
which is expressed in terms of thermodynamic gquantities related to
excess entropy production. The results are illustrated on simple cases
involving diffusive energy transport. A comparison with Paltridge's

minimum entropy exchange principle is also attempted.

Résumeé

Dans ce travail on étudie le bilan entropique associé a un
modele climatique du type Budyko-Sellers. On montre, qu'il est possible
d'avoir différents régimes climatiques = associés aussi bien a wune
augmentation qu'a une diminution de la production d'entropie au cours
du temps. Le probleme de la stabilité des états stationnaires du systéme‘
est dés lors posé. Ensuite on déduit la forme explicite du critere de
‘stabilité climatique en terme de variables thermodynamiques associées a
la production d'entropie d'exces, et on illustre le résultat général sur
des cas simples. On entreprend enfin une comparaison avec I'hypothese

de minimum d'échanges entropiques avancée récemment par Paltridge.



Samenvatting

De entropiebalans geassocieerd met een Budyko-Sellers
klimaatmodel wordt opgemaakt. Er wordt aangetoond dat verschillende
toestande, overeenstemmend zowel met dalende als met stijgende waarden
van de entropieproduktie (die een maat is voor dissipatiesnelheid in het
systeem), mogelijk zijn in de tijd : Een expliciet kriterium wvoor de -
stabiliteit van het klimaat wordt ook afgeleid, en wordt uitgedrukt in
functie van thermodynamische grootheden die in verband staan met een
overvioed in de entropie-produktie. De resultaten worden geillustreerd
in een eenvoudig geval van diffusie-energie-overdracht. Een ver-
gelijking met het princiepe van Paltridge voor minimale entropie-

uitwisseling wordt ook gemaakt.

- Zusammenfassung

Die Entropie-entgleichung in das Budyko-Seliers klimatisches
Modell ist entwickelt worden. Es wurde gezeigt dass verschiedene
Regime flr steigende sowie flir absteigende Entropie produktionen (die
ein’ Mass der Dissipation im einen System ist) mit der Zeit méglich sind.
Ein bestimmtes Criterium fur klimatische stabilitat is auch entworpen
worden. Thermodynamische Eigenschaften die von dem Ubermass der
Entropieproduktion abhangen, bestimmen  dieses  Criterium. Die
Resultaten sind flr -einfache Falle fur diffusives Energietransport
illustriert worder:. Ein Vergleich mit das Paltridge-minimum-Entropie

entgleichungsprinzip is auch versucht worden.



1. INTRODUCTION

The complexity of the dynamical processes determining long
term climatic trends is well known. Nevertheless, the need of an
approach involving only a few global variables is nowadays widely
recognized. Suffice it to quote the energy-balance models of the
Budyko-Sellers type (Budyko, 1969; Sellers, 1969), which have been
developed further by such investigators as North (1975a, b), Ghil
(1976) or Coakley (1979), and which led to a qualitative understanding

of a great many features of climate and its evolution.

Reduction of state space by suitably averaging the initial
dynamical variables is a well-known procedure in many areas of
physics. The most characteristic example is certainly Statistical
Mechanics, where different averages have led, successively, from the
Liouville equation to Boltzmann-like equations, to Markov chains, or to
macroscopic balance equations like those of hydrodynamics and chemical

Kinetics.

A second line of approach to the study of compiex systems,
which is also suggested by the statistical mechanics "prototype", is the

development of a thermodynamic description. The primary objective is to

cast some basic features of the system in the properties of state
functionals-like entropy (or more generally, a Lyapounov functional; .see
Prigogine et al, 1977) or entropy production - which are largely
independent of the details of the individual degrees of freedom. Typical
exampies of such properties are the Clausius inequality, the theorem of
minimum entropy production in the linear range of irreversible processes
(Prigogine, 1947), or the stability criterion of steady states far from
equilibrium (Glansdorff and Prigogine, 1971). Surprisingly, this second
line of approach is much less common in climate modelling. It is only
very recently that Paltridge (1975, 1978), Golitsyn and Mokhov (1978)



and North et al (1979) examined the possible existence of a variational
principle governing climate. Paltridge's approach is specially significant
for our discussion : By assuming certain relationships between atmo-
spheric and oceanic dissipation rates, he showed that a maximization of
the steady-state overall dissipation rate of the earth-atmosphere system
yields uniquely defined spatial distributions of surface temperature,
cloud cover and meridional energy fluxes, which closely resemble the

observed zonally averaged mean-annual values.

The purpose of the present paper is to develop the entropy-
balance equation associated to an energy-balance equation of the
Budyko-Sellers type. From this equation'we identify, in Section 2, the
appropriate expressions for the entropy flux and entropy production
which are valid for stationary as well as for time-dependent states. In
Section 3, we evaluate the time-derivative of the entropy production
and show that, in general, it has no definite sign. As a resuit the
steady state solution of the system does not correspond to a minimum of
entropy production, even if linear relations between energy flux and
temperature gradient are considered. This provides an extension of
Prigogine's minimum entropy production theorem. It also shows that
entropy production can no longer serve as a Lyapounov functional,
whose variational properties guarantee the stability of the reference
state. This raises therefore the question of stability of the climatic
system. In the remaining of section 3 we show how this question can be

tackled by the methods of thermodynamics of irreversible processes.

Section 4 is devoted to the explicit evaluation of the time
course of entropy production for a simple climatic model involving,
successively, an ice-free earth (Section 4A) and a climate close to the
present-day one (Section 4B). In both cases we show that entropy
production may decrease or increase in time, depending on the initial
state. This corroborates the general results of the analysis of Section



3, according to which the steady state climate does nbt appear to
satisfy an obvious variational principle, at least at the level of a
Budyko-Sellers type of model. Nevertheless, some general trends appear
to recur continuously. For instance, entropy production tends to
increase whenever the equator-pole temperature difference becomes more

pronounced.

Section 5 is devoted to the solution of the energy balance
equation using Paltridge's maximum entropy production conjectur‘é. This
yields a meridional energy flux which is in fair agreement with present-

day data, but a somewhat less satisfactory temperature distribution.

In the final Section 6 we draw the main conclusions of the
analysis. We point out the intrinsic variability of the climatic system, as
itlustrated from the different behavior obtained for the entropy
production by different assumptions on the energy flux, (such as a
diffusive energy transport or a maximum entropy production). It
appears therefore that the basic problem one is faced with is to delimit
the principal factors responsible for the selection of a particular steady

state climatic regime.

2. THE MODEL. ENTROPY-BALANCE EQUATION

A one-dimensional model involving meridional energy transport
‘will be adopted (North 1975a, b; Coakley, 1979) as described in Fig. 1.

As frequently done in such models, the absorbed part of
solar influx, 'Fs‘ and the infrared cooling rate, FIR are described in
terms of an effective surface temperature T, which depends on latitude.
Thus, the fine structure of the atmosphere along the vertical direction

is ignored.
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A basic question arising in the analysis of evolution of a

physical system is to find the appropriate constitutive relation(s)

between the fluxes (in the present case, the meridional energy flux)
and the state variables (in the present case, the surface temperature T
and its gradient). The complexity of the earth-atmosphere system
preciudes any derivation of such laws starting from first principles. It
is therefore tempting to turn to thermodynamics of irreversible
processes, which provides a natural classification of physical systems
according to the type of constitutive relation prevailing. As it turns
out, one must first identify the proper quantities which have to be
related by the constitutive relations (also known as phenomenological
laws). This is done by constructing the entropy production, which
plavs a central roie in the theory of irreversible processes. To this
énd, we first write the energy-balance equation for our system. [t will
be convenient to switch to spherical coordinates and to incorporate the
square of the inverse of radius of the earth into the heat flux and the
various proportionality coefficients. The only component of ¥ surviving

in a one dimensional latitudinal model is then

- 2,1/2 9
sz(l-x) é—}-(- (1)

where x is the sine of latitude. The balance equation takes thus the

form

or, setting

F -F, . = (T, x)



= a-DHYy (2)

where c is the heat capacity (or thermal inertia) coefficient and e the

energy.

In order to deduce the entropy-balance equation we adopt
Gibb's entropy postulate (Glansdorff and Prigogine, 1971). Namely, we
assume that if the total entropy is written in the form (in the symmetric

hemisphere case considered hereafter) :
S =2 f dx s _ (3)

then the reduced entropy s depends on the same variables as in thermo-

dynamic equilibrium. For the system under consideration this means

dT - (4)

This assumption is eminently plausible. The most important climatic
phenomena are those due to the transport by the oceans and the lower
atmosphere. Both systems are well within the collisional regime of
kinetic theory, and hence their state is expected to be close to local

equilibrium.

We now combine eqs (3) - (4) with eq. (2). We obtain :



1ds f ds _ / [f(T,x)_1a 2,1/2 ]
2 dat T x| =7 Tox (17 % I
0 0
1 T .
_ £(T,x) 8 1 .. _ _2.1/2 ]
- / d [ T sxT (LX) Iy
0
! 1
L .2.1/2 91"
+ o/ dx Jx (1 - x%) 5%

Performing the x-integration in the first term and using the boundary

condition
J =0 at x =20, Xx=1%1 : (5)

as well as eq. (1), we arrive at the expression

1 1
1ds _ / £(T,x) / -1
2 dt dx T + dx JX . VX T (6)
0 0
Hence, we identify
- the entropy flux
1
deS _ f £(T,x) |
& =2 dx === (7)

- and the entropy production



(8)

Note that  this separation implies that the function f(T,x), that is the
absorbed and outgoing radiations Fs and FIR is entirely associated to
non-dissipative processes. In this view therefore, the main role of the

radiative flux is to create a |ateral temperature gradient (that is, a

non-equilibrium stadt%), whose maintainance is associated with the

entropy production —é—t , eq. (8).

We are now in position to identify the variables to be related
by the constitutive equations, namely Iy and v, T Let us discuss a
few representative situations (see also Glansdorff and Prigogine,

1971) :
(a) We first assume that the system operates in the linear range of
irreversible processes. This will be reflected by the linear relation

J =LV T 7 (9a)

where the phenomenological coefficient L(L 2 0) is constant. In this

relation, Vx T-1 is to be viewed as a generalized thermodynamic force

conjugate to the energy flux JX.

(b) The phenomenological coefficient, L is not constant. Rather, when

eq. (9a) is written in the Fickian or Fourier form :

= - = - L
J =-AV T:= Tzvx'r (9b)

-10-



the transport coefficient A = L/T2 is constant.

In both cases (a) and (b) we have a phenomenological law
reminiscent of a diffusive mechanism of energy transport. Naturally,
this does not mean that molecular diffusion and heat conduction are the
dominant transport mechanism. Rather, these laws must be viewed as a
phenomenological way of expressing turbulent transfer of latent heat
and sensible heat in a medium of variable temperature. Several authors
have discussed the properties of the phenomenological transfer
coefficient (Stone, 1973; Newell, 1974; Lin, 1977), and in particular its
possible dependence on both local temperature and temperature

gradients. This leads us to discuss a third type of situation :

(c) The system operates in the nonlinear range of irreversible
processes, in the sense that the flux-force relationship is nonlinear.
One way to express this is to take the coefficients L or A in eq. (9a)
or (Sb) to depend on both T and VxT :

1

o
H

L(T, |V.T]) VT

(9¢)
or

(&
"

- MT, |9 T]) VT

Contrary to the case of certain physico-chemical systems (Glansdorff
and Prigogine, 1971) it does not seem possible to specify the particular
form of nonlinearity involved in eq. (9c). Hence, onhe can envisage a
large number of different situations corresponding to different choices

of constitutive relations. All these choices may well be compatible with

-11-



\ present-day climatic data, if the coefficients involved in L or A are
adequately fitted. Already in the case of eq. (9b), North (1975) was
able to reproduce a reasonable present-day meridional temperature
distribution and flux by fitting a single parameter A. It is therefore
important to be able to remove somehow this high degeneracy in the
choice of Jx‘ One way to achieve this is Paltridge's maximum entropy
production Ansatz. We will have a detailed look at this possibility in
Section 5 in the following Section we adopt a different approach. We
intend to see how far one can go in the analysis of the climatic system
as represented by the energy balance equation, on the basis of the
properties of thermodynamic state functions like entropy and entropy

production.

3. VARIATIONAL PROPERTIES OF ENTROPY PRODUCTION. LYAPOUNOV

FUNCTIONALS

One of the most important results of the thermodynamic
theory of irreversible processes is Prigogine's theorem of minimum
entropy production (Prigogine, 1947). It asserts that in purely
dissipative systems in which the fluxes and forces are related by linear
laws of the form (Sa), entropy production at the steady state settles to
a minimum value compatible with the constraints acting on the system.
It follows that these steady states are stable toward all possible disturb-
ances, provided that thermodynamic equilibrium itself is stable. In other
words, entropy production acts like a Lyapounov functional (see e.g.

Cesari, 1962) ensuring global stability.

Let us now see w\hether‘ this result can be extended to our
climatic model, eq. (2). To this end we examine the behavior of entropy
production as a function of time. To remain as long as possible within
the hypotheses of Prigogine's theorem we first consider the linear
flux-force relation (9a), where the phenomenological coefficient L is

constant.

-']2-



The balance equation (2) takes the form

o1~ !
ox

3T _ 3 2
¢3¢ = £f(T,x) 5% (1 X

) L (10)

and P, eq. (8) becomes :

1 1V '
P =2 / dx (1 - x2) L <3gx > 20 (11).
0

Taking the time derivative and remembering that L is constant, we

obtain :
dP : 2. 97! & 1 oT /
az=‘“fdx“‘x)ax 5% _2 3t
0 T

Substituting 3T/3t from eq. (10), performing a partial integration and
taking into account the boundary conditions (6) we obtain : )

dp s (11 T 2. o1 ! -
-k (L a-h g | (12)
0 T
4L [1 1 | 9 2 aT'Iﬁi
x4 L | Y -
* c dx 2 £(T,x) ! Ix ( x") 9x
0 T
BRI,
= @t at
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The first term of this relation, diP/dt describes the time-variation of P
arising solely from internal dissipative processes. If only this term were
present relation (12) would be equivalent to the theorem of minimum
entropy production, dP/dt £ 0. In eq. (12) however we have a second
term deP/dt which depends on the radiative flux f(T,x) and which has
no definite sign. Its presence offers new possibilities like, for instance,

the inversion of the sign of dP/dt under certain conditions.

The reason for this lack of universality, as opposed to the

universality of Prigogine's theorem, is in the boundary conditions. In

Prigogine's theorem, the latter (fixed or zero-fiux conditions) rule out
all spatial configurations that could lead to a value of P smaller than
the steady-state one. In the present case however the lateral (zero flux)
boundary conditions, eq. (5), are not sufficiently stringent to eliminate
such possibilities. As a matter of fact, the only exchanges between
system and surroundings are along the vertical direction which has
been Ilumped, owing to the one-dimensional character of the model
described by Fig. 1 and eq. (2). As a result, the radiative flux f(T,6x)
which is at the origin of the term deP/dt in eq. (12), acts like a
constraint of a new type as it is incorporated into the structure of the

energy balance equation. Interestingly, this constraint does not act
directly as the driving force for a dissipative flux. Rather (see also
comments following eq. (8)),it is associated to a process of storage of
energy. In this respect, the behavior of dP/dt as deduced from eq.
(12) is somewhat reminiscent of that of electrical. circuits comprising

" resistors and inductances. Aé pointed out by Landauer (1975), in such

systems involving inertial elements in addition to dissipative ones, the
entropy production may indeed increase in time, even if the circuit

characteristics are completely linear.

So far we discussed strictly linear phenomenological laws, eq.
(9a). The results can however be extended straightforwardly to case
(9b) of a Fourier type of law. The balance equation (2) and the
entropy production P, eq. (8) take the form :

-14-
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Fig. 2.~

Possible time evolutions of entropy production compat-
ible with eq. (12) and (15). Curve (a) : same
behavior as in Prigogine's minimum entropy production
theorem. (b) : Entropy production is increasing, but
reference state remains stable. (c), (d) : Reference

state is unstable, and system evolves to new steady
states. o

-16-



theorem. Different possibilities can be envisaged, like for instance
curve (b) of Fig. 2. We discuss their climatic significance in Section 4.
For the purpose of our present qualitative discussion however, both
situations (a) and (b) are indicative of the stability of the stationary
climatic regime. Of more interest are therefore situations corresponding
to curves (c) or (d), which are perfectly compatible with eq. (12) or
(15) and which indicate, nevertheless, that the system may evolve away

from a certain reference state and tend to a new climatic configuration.

We would now like to obtain a criterion which would show
when such instabilities are possible. In irreversible thermodynamics, it
turns out that one cannot derive such a criterion using the variatibnal
properties of entropy production. Following Glansdorff and Prigogine

(1971) we introduce a new functional related to the excess entropy

around the reference state. Let us first outline the formulation in the

general case where no particular constitutive relation is postulated.

Let T be a reference temperature, for instance that
corresponding to the present-day climate. We consider a slight perturba-

tion, 86T, form this state, and set

T=T+6T, | <1 (16)

|3

Using eq. (4) one can easily construct the excess entropy function

€. (s1)2 (17)

-

Note that

-17-



1
6%s = f dx 6%s £ 0 (18)
-1

Because of this, we regard 625 as a Lyapounov functional (Cesari,
1962) and we evaluate its time derivative along the motion described by
the balance equation (2). Keeping in mind that T is time-dependent, we

obtain :
d 1 2 : 1 d6T
EEi(‘SS)E'ZCf dx = 8T = (19a)
0 T
with (cf. eq. (2))
38T _ %) .2 20172 L
C 5 = <8T 7 6T 5% (1 x7) GJX (19b)
More explicitly :
d 1 2 ! 1 of 2
EE'Z—(GS)—'Z/ dxi (ﬁ) (GT)
T
0
1
+2[dx6J.5v Tl | (20)
X X

The first term of this expression reflects the effect of radiative flux.
The second term has the same structure as the entropy production, eq.

(9), except that we now deal with the excess flux & Jx’~ and the excess

1

force 6 Vx T™'. We shall refer to this combination as the excess entropy

production (Glansdorff and Prigogine, 1971).

-18-
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By Lyapounov's stability theorem (Cesar‘i,' 1962), we conclude

that T will be asymptotically stable as long as gt % (625), has a sign

opposite to 625, or

1 f |\ amn2 -1
1 (_BT )T (612 + 63 67 T ] 20
(21)

along all solutions of eq. (19b).
we must

To give a more explicit form to this expression,
1 Choosing as an example, the non

specify how Jx is related to Vx T
linear relation (Stone, 1973) :

aT
S IA) F A (2, 0]V T (22)

J =
X

we obtain the explicit form of the stability condition

Joon () e

fld MotN 1 - (2 1
x <2 3% 2 \ 3T
T T
o .
20 M . 36T
- —_— —_— 2
ra- o @ (%) 2 0 (23)

with respect to its argument

where }\1' denotes the derivative of A1

9T /ax.
In this inequality, all terms but the first one have no definite

sign. Hence, under certain conditions their sign can become negative

-’]9-



and their absolute value can exceed that of of the first- term. In this
case one would have d/dt (625) < 0, and since (GZS) remains always

negative, by Lyapounov's theorem T would be unstable. We may refer

to this situation as a climatic _catastrophe. We see that it is reflected by
a clearcut change in the thermodynamic properties of the system. In a

sense, climatic change becomes a problem of thermodynamic stability .

Note that the terms threatening stability in eq. (23) are related either
to the storage term f, or to the nonlinearity in the Jx - Vx T relation-
ship. This is in agreement with the fact that the source of nonlinearity
making bifurcations possible in the energy balance equation (cf. eq. (2)

or (19b)) is, precisely, in these two terms.

Finally, it is easy to verify that the left hand side of relation
(21) or (23) is closely related to the second variation of the functional
recently proposed by North et al (1979) in their variational formulation

of Budyko-Sellers climate models.

4. ILLUSTRATIONS

In this section we illustrate the structure of the general

expressions derived so far on simple examples.

a. An ice-free earth

We first consider eq. (2) in the case of an ice-free earth. it
is believed (Budyko, 1977) that this was indeed the case in the
mesozoic and early cenozoic eras up to the beginning of the quaternary

glaciations.

We adopt relation (9b) for the energy flux, and the following
expressions for the radiative flux terms f(T,x) : :

J =-AV T
X X

-20-



f(T,x) = Q(1 - a) S(x) - (A + BT) o (24)

where the albedo a is taken to be constant (a rather legitimate
approximation for an ice-free earth). Q is the solar constant, A and B
are the infrared-cooling coefficients, and the insolation S(x) s
approximated by (Coackley, 1979) :

S(x) =1 +8

2 P2 (82 < 0) | (25)

P2 being the second Legendre polynomial. Eq. (2) takes thus the
explicit form

c ﬁ=Q(1-a) (1+S?_P2)- (A + BT)
d 2, oT
+ A a—X (1 - X ) 5}—( (26)

The solution is easily found to be

T(x,t) = To(t) + Tz(t) PZ(X) '(27a)
where the planetary temperature T0 obeys to

dTo ' :
c zx =Q1-0a)-(A+BTy .. (27b)

-21-



and the amplitude T2 to

de .
C aT— = Q(l - d) S2 - (B + 6)\) T2 (27¢)

Both T T

0’ o are to be expressed in degrees centigrade. The entropy
production, eq. (14), becomes :

dp,_ 2
Xz) 1 ( 2 .
[(273 + TO) + T.2 P2(x)]2 Sdx

i

l .
P=2}\T§/dx(1-
0

One can easily see (Nicolis, 1979) using the appropriate numerical

values for Q, «a, 52, A, B, A that 273 + TO >> T2. Thus, the above
.expression can be approximated by

2
. 1@ Tz'(t) . (28)
5 TG+ T (0] _

We proceed to the evaluation of dP/dt. To simplify the picture as much
as possible we consider only those evolutions that keep the plahetary
temperature TO invariant. This is legitimate, sinée the equations for TO
and T‘2 are uncoupled. The time dependence of T2 is easily found to be

- -Ht -1
T,(t) = Ty * @ Ty = Tho) (29)

with

-22-



Q(1 - a) S

2
sz = ‘ < 0
B + 6A
T20 = jnitial condition
_ 1
H=g (B+6A) >0
It follows that
dP _ 24
& T HEEE T Ty (Tyo = Too (30)

Fig. 3 depicts the evolution of T2 and P. Wevsee that P can decrease or
increase in time, according as the initial value T20 is smaller or larger
than the steady-state level T2m. As T2°° is negative, in actual fact this
implies that for fixed values of the coefficients, P decreases if the
initial thermal gradient, measured by [T2|, is large and it increases if
the initial [T2| is small. This is quite reasonable, since the steeper the

gradient, the larger the rate of dissipation will have to be.

We see in an explicit way the possibility of having maximum
entropy production at the steady state for all families of initial
conditions (or equivalently, for all ‘"virtual displacements") with
T20 7> Tow
for different types of initial conditions. Note that all these new
possibilities do not compromise the stability of the steady-state regime,
T ow- As a matter of fact, (P - Pm) turns out to be a Lyapounov
function ensuring stability both in the case of increasing and of

The same system however can give rise to a decrease in P,

‘decreasing P's (see also Fig. 2, curves (a) and (b)).
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Fig. 3.- Time evolution of the amplitude T2 of the second
' Legendre mode (lower part) and of entropy production

(upper part) associated with model eq. (26).
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in the context of climatic history of the last 250 myr or so,
one might question the assumption adopted implicitly so far that the
coefficients A, B, A do not evolve in time. Recently one of the authors
(Nicolis, 1979) devéloped plausible scenarios of evolution of these
coefficients and analyzed the consequences of such variations on the

values of T0 and T using the constraint (suggested by paleoclimatic

'
data), that the efquator‘ial temperature, Teq remained practically
invariant (Teqz 25°C). We have verified that this simultaneous
evolution of both T and the parameters does not affect the qualitative
trends shown in Fig. 3. Namely, a more pronounced pole-equator
thermal gradient leads to a relaxation accompanied by a decreasing
éntr‘opy production, whereas the opposite is true if the pole-equator

initial gradient is smaller that the steady state value.

b. The influence of ice caps

We now extend the model of the previous subsection to
account for the existence of ice caps characterizing the present climate.
Eq. (26) keeps then the same general form, except that the albedo a is
substituted by an exbr‘ession taking into account the existence of ice
edge. Specifically (North, 1975a), denoting by X the position of the

latter and assuming symmetric hemispheres :

l-aza(x,xs) 0

1}
=2
o
\%
]

a (x), x <xS (31)

ot a Pk,

where bO is the absorption coefficient over ice or snow 50% covered with
clouds, and ag, a, are the absorption coefficients over ice-free areas
obtained after analyzing the albedo distribution by Legendre series. As

usual, it is assumed that at X the temperature is of - 10°C.
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An appropriate solution of eq. (26) and (31) can be found by
expanding T in series of Legendre polynomials. Truncation to the
second mode gives (North, 1975a) : '

- ] S
(o] F = Q HO (XS) (A + B TO)
dT2
C dT = Q H2 (XS) - (B + 6}\) T2
TO + T2 P2 (xs) = - 10 (32)

where TO-and T2 are again expressed in degrees centigr‘éde, and

1 )
H (x) = (20 +1) f dx S(x) a(x, x ) P_(x) (33)
0
m= 0,2

Note that, contrary to the preceding subsection, these equations are
coupled through the variable X

The entropy production, eq. (14), takes the same form as
eq. (28) :

17 (o)
5 273 + T, 12

(34)
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provided we again adopt the assumption 273 + T0 >> ]Tz}. As it turns

out, the solution of eq. (32) completely justifies this assumption.

In order to analyze the time dependence of P(t) we solved
numerically the initial value problem for eqs. (32) using the Hamin
method. We first explored (Fig. 4) the vicinity of the steady-state
solution of these equations corresponding to the present-day climate.
For the numerical values given in the caption of Fig. 4, this state
corresponds to T0= 14.9°C, T2= - 28.2°C, Xg = 0.96 and is
asymptotically stable. Fig. 4 depicts the evolution of P(t) induced by a
perturbed pole-equator gradient, Kkeeping the planetary temperature
invariant. We see that if T20 = - 30°C P decreases in time, whereas for

T
20
arrive therefore at the same qualitative behavior as in the preceding

= - 26°C P increases until the present-day climate is recovered. We

susbsection. We thus feel that there is no support for the claim
(Golitsyn and Mokhov, 1978) that the stability properties of the climate
should be linked to the extremal properties of entropy production. In
Fig. 5 we report the evolution of entropy production using the same
parameter values as in Fig. 4, but starting from initial conditions
simulating the last major glaciation (18.000 years B.C.). We know that
in this case the ice caps went as far down as 57° in the Northern
Hemisphere, and that the planetary temperature was less by about 5°C.
The ice boundary condition (third relation (32)) allows then us to
compute T2. Taking Xxg = sin 57° = 0.84, T0 = 10°C, we find T2 =
- 35.8°C. As seen from Fig. 5, the entropy production decreases then

monotonously until the present-day climate is reached.

5. COMPARISON WITH PALTRIDGE'S IDEAS

The main focus of this paper was on the time-dependent

properties of entropy production in the vicinity of a steady-state
climatic regime. As is usually done in the analysis of irreversible
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Time evolution of entropy production associated with ‘model eq. (32),

- using two different initial conditions for T2 and To = 14.9° C. In both

cases the present climatic regime is recovered asymptotically. Numerical

values used : Q = % (1360) wm ™2, b_= 0.38, a_ = 0.697, a. = - 0.0779,
g %2 0 °© 2 . -2
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Fig. 5.-

Time evolution of entropy production associated with model eq: (32)
using an initial condition (xS = 0.84, T0 = 10° C, T2 = - 35.8°C)
simulating the last major glaciation. Numerical values used are as in

Fig. 2.



phenomena, both the equations of evolution of the state-variables and
the entropy function were evaluated by introducing suitable constitutive
relations linking fluxes and forces. Thanks to these relations, the
energy-balance equation became closed, and allowed for an explicit

evaluation of the temperature profile across the system.

An altogether different approach was adopted in the work by

Paltridge (1975, 1978). His main idea is to use an unconstrained energy

balance equation, whereby the energy flux is not linked to the tem-
perature gradient. At the steady state and in the framework of the

one-dimensional mode! adopted in the present work, this vyields :

L= x2)1/2 J,=Q(1 - a(x)) S(x) - (A + BT)
. (35)

where-v" is the adjoint gradient operator. As noted in sec. 2, the
inverse of the radius of the earth has been absorbed into Jx. From this

relation one may express T as a function of Jx :

Q(1 - a(x)) S(x) - A - V" 5
T = . (36)
B

In this way the entr‘bpy production, eq. (8), can be written entirely in

terms of the flux Jx :

P =- 2B / dx X (37)
0 273B + Q(1 - a(x)) S(x) - A - ¥ I
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Following Paltridge, we may now seek for the function d?( extremizing

P. We obtain in this way the folloWing variational equation, 6P/6Jx =0

2.1/2 .0 * *
a =AY 00 = | g0 et [ 2m e Ge)
0 0
where
g(x) = Q(1 - a(x)) S(x) - A+ 273B (39a)

and the constant K is adjusted to give zero flux at the poles :

1
f gl/2 (x) dx
0

K = * (39b)

1
[ g(x) dx
0

Fig. 6 depicts the energy flux obtained by applying this procedure and
by using the parameter values adopted earlier in the present work. The
results are reasonable, both as far as the position of the maximum and
the behavior near the poles is concerned. On the other hand, one can
show that the corresponding temperature profile gives excessively high
values at the equator and low values at the poles, as already pointed
out by Golitsyn and Mokhov (1978).

Independently of these technical aspects however, the main
point to be retained is that entropy extremization dispenses us from
using a constitutive relation expressing Jx in terms of 8T/3dx and from
fitting such coefficients as A in order to obtain the steady state format
of present climate. Thus, among all possible steady states that may be
realized by ‘the earth-atmosphere system under a given energy input,
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Fig. 6.- Latitude dependence of the energy flux divided by the earth's radius,

obtained by the entropy production extremization (eq. (38)). The

parameter values used are the same as in Fig. 4.



there is one (cf. eq. (38) and Fig. 6) which extremizes the entropy
production. Other steady states, such as those evaluated in section 4,
are possible. They have, however, a smaller dissipation rate than the

state J?( eq. (38). The situation is described in Fig. 7.

6. CONCLUDING REMARKS

Our principal goal in this paper was to cast some basic
features related to climate and its evolution into the properties of
entropy and entropy production. We have found that the behavior of
these quantities is far from being simple and universal, just like climate
itself is far from showing simple and universal trcmf'”"R'ather, it
appears that the direction of change of entropy production is
conditioned by the initial strength of the equator-pole temperature
gradient as compared to that of the final steady state. Now, a more
pronounced thermal gradient is characteristic of glacial periods (Newell,
1974). We may therefore summarize the results of Section 4 by stating
that the evolution to a glacia:cion is_accompanied by an enhanced rate

of dissipation, as measured by the entropy production. An additional

illustration of this conclusion is provided by a direct comparison of eq.
(28) and (34). Using paleoclimatic data from the mesozoic era (Nicolis
(1979)) we deduce that for an equatorial temperature of 25° and a polar

one of 15°,

‘ 2
12 0, ., D

1}

P
t
pas 5 (273 + 22)2

whereas for the present interglacial climate :
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Fig. 7.-

Entropy production surface, Z as a function of the energy flux, Jx and
of an average temperature gradient, lATI. % : line of unconstrained
steady states. An example of such states is (b), the state of maximum
dissipation. (a), (c) : steady states obtained after using é constitutive
relation. In particular state (a) is taken to be the present-day climate
as given by North's model discussed in section 4. Possible time-
dependent behaviors of entropy production are described in the vicinity
of points (a'), (c') of the surface . In particular, as shown in sec.
4B, (a') is a saddle point : for high initial |AT| P tends to decrease,
whereas the opposite is true for small initial | AT|'s. This behavior is

not to be confused with the fact that, among all possible steady states,

(b) is the one with maximum dissipation. In other words, Paltridge's
variational principle pertains to steady-state behavior and not to the

evolution in the vicinity of a steady state.
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2,
~ 12 KPresent (- 28.2)

P ~
present 2
5 (273 + 14.9)

We see that the change in T, induces about a 16fold increase of P.

2
Certainly, A cannot have varied in the opposite direction by a
comparable amount. Thus, the present interglacial climate appears to be

more dissipative than the climate associated with an ice-free earth.

Although the results of section 2 and 3 are quite general, the
illustrations developed in section 4B are limited by several simplifica-
tions. Perhaps the most serious one-which is in fact a limitation of all
diffusive models used so far in the literature - is the assumption that
Xes adjusts instantaneously to the wvalue of T(x). This introduces an
unreaslistically fast time scale into the problem. Obviously, a natural
boundary condition on the ice edge must be introduced in order to allow
for the ice melting or advance in a seif-consistent way (see also
Pollard, 1978; Nicolis, 1980). A second limitation is the two-mode
truncation adopted. This does not enable us to analyze the behavior of
dissipation under the effect of localized disturbances from some
reference state. Such local disturbances are certainly more realistic.
The time scale of evolution is also likely to be lengthened Qnder these

conditions.

The discussion of Fig. 7 in connection with the thermodynamic
properties of steady states illustrates the considerable degeneracy
associated with the modeling of the meridional flux. A basic problem
which remains open at this time is therefore to come up with criteria

determing the selection mechanisms of a particular steady state climatic

regime. Paltridge (1979) suggests that the role of fluctuations is likely
to be instrumental. He believes that fluctuations are capable of
introducing a drift in state space, driving eventually the system to the
state of maximum dissipation. A general answer to this major question is
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however still Iaéking. It may be expected that the systematic use of

thermodynamics could prove useful in tackling this problem.
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