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I) 

FOREWORD 

The paper ent i t led : "Stochast ic aspects of climatic t rans i t ions-

Add i t i ve f luc tuat ions" wil l be pub l i shed in Te l l us , 33, 1981. 

A V A N T - P R O P O S 

L 'ar t ic le int i tu lé : "Stochast ic aspects of climatic t rans i t ions 

Add i t i ve f luc tuat ions" sera publ ié dans Te i l us , 33, 1981. 

VOORWOORD 

Het ar t ike l get i te ld : "Stochast ic aspects of climatic t rans i t i ons-

Add i t i ve f luc tuat ions" zal versch i jnen in het t i jdschr i f t Te l l us , 33, 1981. 

VORWORT 

Die A rbe i t : "Stochast ic aspects of climatic t r ans i t i ons -Add i t i ve 

f luc tuat ions" w i rd in Te l l us , 33, 1981 herausgegeben werden. 



S T O C H A S T I C A S P E C T S OF C L I M A T I C T R A N S I T I O N S -

A D D I T I V E F L U C T U A T I O N S 

by 

C . NI COL I S and G. N I C O L I S 

As t rac t 

The Fokker-P lanck equation corresponding to a zero-
dimensional climatic model showing bistable behavior is analyzed. A 
climatic potential funct ion is introduced, whose variat ional propert ies 
determine the most probable states of the stat ionary probabi l i ty 
d ist r ibut ion. A study of the time-dependent propert ies leads to the 
identif ication of the character is t ic time scales of evolution. 

Résumé 

Dans ce t ravai l on étudie les propr iétés des f luctuat ions d 'un 
modèle climatique global donnant lieu à deux états stat ionnaires stables. 
On montre que la distr ibut ion de probabil i té à l 'état stat ionnaire est 
déterminée par un potentiel climatique. Les propr iétés de ce dern ier 
permettent d ' ident i f ier l'état climatique le plus probable. Les échelles de 
temps caractér is t iques de l 'évolution sont également identif iées à l 'aide 
de la théorie asymptotique de Kramers. 



Samenvatting 

De F o k k e r - P l a n c k vergel i jk ing corresponderend met een n u l -

dimensionaal klimatisch model met een b i -stabie l g e d r a g , wordt ge-

analyseerd. Een klimatische potentiaalfunctie wordt ingevoerd. De 

variationele eigenschappen van deze functie bepalen de meest waar-

schi jn l i jke toestanden van de stationaire w a a r s c h i j n l i j k h e i d s v e r d e l i n g . 

Een studie van de t i jdsafhankel i jke eigenschappen leiden tot de iden-

tif icatie van de karakter ist ieke t i jdsschaal van de evolutie. 

Zusammenfassung 

Die F o k k e r - P l a n c k Gleichung für ein nulldimensioniertes k l i -

matisches Model mit zweibeständigem Betragen ist ana lys iert . Eine 

Kl imat ischespannungsfunkt ion, dessen die Var iat ionseigenschaften den 

wahrscheinl ichsten Zustand feststel len, wird eingeleitet. Eine Analyse 

der zeitl ichen Eigenschaften ergibt die Identif iz ierung der 

charakter ist ischen Zeitskalen der Evolution. 
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1. INTRODUCTION 

The variabil ity of the climatic system, associated both with 
the almost-i ntransit ive character of atmospheric and oceanic processes 
as well as with the variabil ity of solar output has recently been pointed 
out by several authors (Hasselmann, 1976; Lemke, 1977; Robock, 1978; 
Nicolis and Nicolis, 1979). It has been realized that in order to account 
properly for this phenomenon it is necessary to set up a stochastic 
study of climate, incorporating the effect of statistical fluctuations 
around the deterministic evolution. Within this framework, Hasselmann 
(1976) and Fraedrich (1978) analyzed some aspects of the linear 
response of the system associated with small excursions around the 
present-day climate and in particular they evaluated the Fourier 
transform of the autocorrelation function (power spectrum) of the 
pertinent state variables. 

Now, in addition to the short-term variabil ity associated with 
the day-to-day changes of the "weather" component of climate, the 
possibility of long-term changes associated with climatic transitions is 
nowadays fully realized ( e . g . North, 1975). If a linear response theory 
is clearly sufficient to investigate the variabil i ty of the f irst kind, it is 
equally clear that for long-term climatic transitions a nonlinear response 
analysis of fluctuations is needed. Indeed, in a potentially unstable 
system even relatively small random fluctuations will sooner or later 
dr ive the system to a new regime. In a deterministic description the 
same system would not evolve, unless a finite disturbance exceeding 
some threshold value is applied to the reference state. 

The purpose of the present paper is to develop such a 
nonlinear response analysis of climatic fluctuations. Preliminary results 
concerning the asymptotic behavior of a simple climate model under 

- 3 -



the e f fec t of mu l t i p l i ca t i ve f l u c t u a t i o n s such as those associated w i th the 

v a r i a b i l i t y of t h e . solar o u t p u t have been r e p o r t e d e lsewhere (Nico l is 

and Nicol is , 1979). Here we p e r f o r m a comprehens ive s t u d y of bo th the 

s tat ic and t ime-dependen t behav io r and focus o u r a t ten t ion on the 

s impler case of a d d i t i v e f l u c t u a t i o n s . The methods we use are i nsp i red 

f rom recent s tud ies of b i f u r c a t i o n and t r a n s i t i o n phenomena in phys ica l 

and chemical systems fa r f rom thermodynamic e q u i l i b r i u m , where the 

in f luence of f l u c t u a t i o n s was indeed shown to be dec is ive (Nico l is and 

P r i g o g i n e , 1977; Haken, 1977; Nicol is and T u r n e r , 1979). 

The paper is o rgan ized as fo l lows. In Sect ion 2 we ou t l i ne a 

general fo rmu la t ion of non l inear response to f l u c t u a t i o n s wh ich is 

independent of the deta i ls of the cl imat ic model, arid d e r i v e an exact 

s t e a d y - s t a t e so lut ion of the F o k k e r - P l a n c k equat ion f o r the p r o b a b i l i t y 

d i s t r i b u t i o n of the f l u c t u a t i o n s va l id f o r a r b i t r a r i l y la rge f l u c t u a t i o n s . 

In Sect ion 3 the p r o p e r t i e s of th is so lut ion are i l l u s t r a t e d on a simple 

zero-d imensional model i n v o l v i n g two stable cl imatic states separated by 

an uns tab le one. T h i s analys is leads us to i n t r o d u c e the not ion of 

c l imatic po ten t ia l , wh ich p lays here a role analogous to t ha t of f ree 

e n e r g y d e n s i t y in the rmodynamics . Sect ion 4 is devoted to the t ime-

dependen t p r o p e r t i e s of the f l u c t u a t i o n s . As the F o k k e r - P l a n c k equat ion 

cannot be solved exac t l y most of the analys is is based here on 

numer ical s imula t ions , fo l low ing some special methods developed in the 

c o n t e x t of plasma phys ics (Chang and Cooper , 1970). On the o t h e r 

hand f o r the late stages of evo lu t ion one can app ly a phenomenological 

t h e o r y due to Kramers , in which the dynamics of the f l u c t u a t i o n s is 

v iewed as a problem of d i f f u s i o n over a potent ia l b a r r i e r (see e . g . Wax, 

1954). Th is allows us to i d e n t i f y the c h a r a c t e r i s t i c t ime scales of evo lu -

t i o n . Some conclus ions and f u t u r e pe rspec t i ves are summarized in the 

f ina l Sect ion 5. 
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2. GENERAL FORMULATION 

Let x denote a climatic variable obeying an autonomous 
equation of evolution. A typical example is the surface temperature T 
averaged over space coordinates. In the absence of fluctuations x is 
supposed to obey to the following "zero-dimensional" equations : 

f t = f (*> (2-1) 

Here f is a nonlinear function describing the physics of the system, and 
A stands for a set of characteristic, prescribed parameters such as 
albedo, emissivity and so forth. Of special interest for our work are 
cases in which the steady-state solutions 

f ( x g , A) = 0 (2.2) 

are multiple, and in which their stability properties change as the 
parameters A take different values. 

As discussed in the Introduction, in order to analyze the 
mechanism of the spontaneous transition between these states it is 
necessary to consider the effect of fluctuations. In this paper we limit 
ourselves to additive fluctuations, associated with random imbalances 
between the various transport and radiative mechanisms involved in the 
rate function f ( x , A). We denote their effect by a random force F ( t ) 
which is assumed to be x-independent and define a white noise (Wax, 
1954) : 



< F ( t ) > = 0 

< F ( t ) F ( t ' ) > = q2 ô ( t - t ' ) (2 .3) 

Here < > denotes the expectation operator over the ensemble of possible 
realizations. 

Eq. ( 2 . 1 ) is now to be replaced by the stochastic differential 
equation 

= f ( x , A) i F ( t ) (2 ,4) 

Eqs. ( 2 . 3 ) - ( 2 . 4 ) are equivalent to the following Fokker -P lanck 
equation ( e . g . Arnold , 1973) with nonlinear fr ict ion coefficient and 
constant diffusion coefficient : 

= - j k f ( x , A) P ( x , t ) + 4 i ï & i l l (2 .5) 

P ( x , t ) is the probabi l i ty density for having the value x of the state 

variable at time t . 

It should be realized that eqs ( 2 . 3 ) defining the properties of 
the random force F are in principle rather restr ict ive . Nevertheless, we 
expect them to descr ibe sat isfactori ly the situation for roughly the same 
reason as in brownian motion and other problems in statistical 
mechanics : Namely, because of their local character , the f luctuations of 
var ious f luxes are expected to loose rapidly the memory of the state of 



the system wh ich p reva i l ed when t hey o c c u r r e d and , p a r t l y as a resu l t 

of t h i s , to occur i ndependen t l y of each o t h e r . F u r t h e r a rguments in 

essent ia l ly the same d i r ec t i on have been developed by Hasselmann 

(1976) . 

For a r b i t r a r y non l inear f unc t i ons f ( x , A ) , the fu l l analys is of 

eq . ( 2 . 5 ) cons t i t u tes an unso lved prob lem. Let us t h e r e f o r e f i r s t focus 

on the s teady -s ta te so lu t ion , 8 P s / 3 t = 0. I n t e g r a t i n g once the r i g h t 

hand side w i t h respect to x we get : 

2 ap 
- j p s ( x ) = - f ( x , \ ) p g ( x ) + ^ a^ r = c o n s t a n t ( 2 - 6 ) 

In all phys i ca l l y reasonable s i tua t ions we expec t t ha t when x reaches 

the boundar ies of the process ( e . g . O and » jf x is the t e m p e r a t u r e ) , 

Pg wi l l t end v e r y r a p i d l y to ze ro , i . e . , bo th Pg = 0 and 9 P s / 8 x = 0 at 

the boundar ies . We set t h e r e f o r e the p r o b a b i l i t y f l u x J p ( x ) to zero at 

the s teady state : 

J p (x ) = 0 f o r a l l x ( 2 .7 ) r , s 

Eq. ( 2 . 7 ) is known as a genera l ized deta i led balance cond i t i on ( H a k e n , 

1977) and leads to an exact so lu t ion f o r P g in the form : 

P g ( x ) = Z" 1 exp [ - U ( x ) ] " ( 2 .8 ) 
q 

where we de f ined the potent ia l U ( x ) 



U(x) = - ƒ d4 f ( 4 , A) (2 .9) 

The proportionality constant Z 1 is determined from the normalization of 
P s 

ƒ dx P g ( x ) = 1 
D ' 

D being the domain of variation of x ; thus 

Z = ƒ dx [exp' - ^ u ( x ) l (2.10) 
D Q 

From eqs. ( 2 . 8 ) - (2 .10) a number of general properties of P g ( x ) can 
already be deduced. F i r s t , the extrema of P are those of the potential 
U ( x ) or , in terms of eq. ( 2 . 9 ) : 

In other words, P g has an extremum for those values of x for which 
the deterministic balance equation admits stationary solutions. T h i s is a 
consequence of the additive character of the fluctuations and of the 

I! 1 2 
constancy of the "diffusion coefficient" ^ q . Second, P g has a maximum 
around a stable steady-state solution of eq. ( 2 . 1 ) , and a minimum 
around an unstable one. To see this , we observe that from eq. ( 2 . 9 ) : 

i 
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d 2 U 

dx 

df 
dx (2.11) 

x 

df On the other hand, from eq. (2 .1 ) , ^ determines the linear 
stability of x . Combining with eq. (2.11) we conclude that : 

A 
2 

dx 

d^U 
2 

dx 

< 0 : P minimum, x unstable 
s s 

> 0 : P maximum, x stable 
s s 

(2.12) 

hi the next section we illustrate the significance of these 
results on a simple zero-dimensional energy balance model. 

3. A S IMPLE MODEL : CL IMATIC POTENTIAL AND COEX ISTENCE 

CURVE 

Suppose that x denotes the average surface temperature. The 
rate function f in eq. (2.1) is then the difference between the solar 
influx Q(1 - a ( x ) ) [Q being the solar constant div ided by 4, taken to 

_2 
be Q = 340 Wm , and a the albedo] and the infrared cooling rate, 
eax^, [e being the emissivity and o the Stefan constant]. Eq. (2.1) 
becomes : 

= I [Q(i - a (x)) - era 4] (3.1) 

where C is the thermal inertia coefficient. Hereafter we normalize the 
time scale so that the value of C is equal to unity. 
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For temperature values near the present-day climate, . a ( x ) is 
usual ly taken to be a roughly linear function of its argument ( C e s s , 
1976; Nicolis, 1980). On the other hand, for v e r y low x a must tend to 
the albedo of ice, a j c g whereas for high x , a should also saturate to 
some value, a h Q t descr ipt ive of an ice-free earth. The simplest 
representation taking these features into account is the zero-dimensional 
piecewise linear model proposed by Crafoord and Kallen (1978) and 
summarized in F i g . 1. Analyt ica l ly , we write : 

1 - a (x ) 

1 - a (x) 

1 - a (x ) 

In actual fact the albedo will always be a smooth function of tem-
perature in the v ic in i ty of the transit ion values T^ and T ^ ~ a property 
which is also a mathematical prerequis ite for the derivation of a Fokker -
Planck equation. Nevertheless because of the detailed balance condition, 
eq. ( 2 . 7 ) , the steady-state probabil ity P g ( > 0 can be evaluated using 
the piecewise d i f f e r e n t i a t e model ( 3 . 2 ) . 

Using the expl ic i t dependence of the albedo on T as g iven by 
eqs. ( 3 . 2 ) in eq. ( 3 . 1 ) we see that for appropriate values of the 
parameters Yq' Y-j / Yg a n d P t'",e s Y s t e m m a Y admit three steady state 
solutions. One of them, denoted hereafter by T , corresponds to the 
present-day climate and is asymptotically stable, provided the 
parameters Yq a n c J P a r e chosen in such a way that the planetary albedo 
is 0.30 and the emissivity is e = 0.61. The second solution, denoted by 
T _ , corresponds to a deep-freeze climate and is also asymptotically 
stable. A third solution TQ lies between T + and T_ and is unstable. 

1 " a. = Y, ice J1 

1 - a + px = Y0 + Px 

1 " ahot = 

x < T, 

T1 < x < T 2 (3 .2 ) 

x > T, 
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g . 1 . - Incoming and o u t g o i n g r a d i a t i v e e n e r g y c u r v e s as f u n c t i o n s of x ( g l o b a l 

a v e r a g e t e m p e r a t u r e ) . T h e i r i n t e r s e c t i o n s T + , T_ and T ^ a re the t h r e e 

s teady s t a t e s . 



Let us now turn to the stochastic aspects. We first limit 
ourselves to the steady-state, postponing until Section 4 the analysis of 
the time dependent behavior. According to Section 2, the principal 
quantity determining the behavior of fluctuations is the potential U ( x ) . 
Such a potential was introduced for a spatially one-dimensional climate 
model by Ghil (1976) and further analyzed by North et al (1979). As 
the deterministic equation has three steady-state solutions, the potential 
will have two minima at T+ separated by a maximum at TQ. We call this 
a bistable potential. From definition (2 .9 ) and from eqs. (3 .1 ) and 
(3 .2 ) we obtain the following explicit expression of U, after setting 
arbitrar i ly U (o ) = 0 : 

U(x) = QY x - x5 x < T ] 
1 

- U(x) = Q [ Y J T } + Y q (x - T j ) + f (xZ - T p ] - ^ x3 (3.3) 
T, < x < T„ 

- U(x) = Q f ^ T i + Y0 (T2 - T J ) + | (T* - T^) + Y2 ( X - y ] - ^ x5 

x > T2 

The properties of the stationary distribution P g ( x ) depend 
crucially on the normalization factor Z, eq. (2 .8 ) . For the function 
U ( x ) defined by eqs. (3 .3) the integral over x appearing in the 
expression of Z cannot be evaluated exactly for an arbi trary value of 

2 
q. However in the limit of small fluctuations, the maxima of exp [-
U ( x ) ] become very sharp and as a result the integral over x can be 
evaluated by steepest descent methods (see e .g . Matthews and Walker, 
1965). Remembering that these maxima are at the deterministic stable 
states T+ and T_ , and that there is also a minimum at the unstable 
state TQ, we obtain : 



To 
Z = ƒ exp[- U(x) ]dx + ƒ exp[- ^ U(*)]dx (3 .4) 

T o q 

A steepest descent calculation amounts to expanding U(x) in the two 

integrals around T_ and T + respectively, and to retaining only the 

quadratic terms in the expansion. We thus obtain : 

Z = q[ ( j j T T ^ ) exp ( - ^ U ( T J ) + ( ^ exp ( - ^ U(T+ ) ) 
q + q 

hence 

V-l 
P s ( x ) =(q n 1 / 2 ) [(4 e o T ^ ) ' 1 / 2 exp ( - ^ " ( T j ) 

+ (4 eoT^ - Q P ) " 1 / 2 exp ( - ^ U ( T + ) ) ] _ 1 exp ( - ^ U(x) ) 

q 1 (3 .5) 

The behavior of this function is conditioned by the deepest of the two 

minima U(T_) and U(T + ) . Suppose f i rst that U(T + ) < U(T_) . Because of 
•] 

the inverse of a smaller factor in the exponent, the difference 
q 

between these two quantities will be amplified enormously and the term 

containing U(T_) will give a vanishingly small contribution in eq. (3.5). 

Moreover, P g itself will be non-vanishing only in a small v ic inity around 

T+> and will therefore reduce to a Gaussian centered on this state : 

P s(x) = (n 1 / 2 q) _ 1 (4£otJ - Qp)1 / 2 exp[- ^ (U(x) " U(T+))] 

q 

= ( n 1 / 2 q ) _ 1 (4eoT^ - Q P ) 1 / 2 exp[ ( - 4eoT^ + Qp) (x - T + ) 2 ] 
q 

U(T+) < U(T_) (3 .6) 
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If on the other hand it tu rned out that U ( T _ ) < U ( T + ) , an exp re s s i on 

similar to ( 3 . 6 ) would obtain p rov ided one retains the contr ibut ions 

a round T_ as the dominant terms : 

P (x) S ( n 1 / 2 q ) - 1 ( 4 e o T 3 ) 1 / 2 exp[ ^ (U(x) - U(T ) ) ] s - q<j 

s ( n 1 / 2 q ) _ 1 ( 4 e o T ? ) 1 / 2 exp[ - \ (eoT? (x - T ) 2 ) ] (3 .7) 
q 

U(T_) < U(T ) 

A t the border l ine between these two eases, U ( T ) - U ( T _ ) , one shou ld 

keep the contr ibut ion from both T + and T_ in eq. ( 3 . 5 ) . The result is 

a two-hump d i s t r ibut ion with equal he ight maxima, which is v e r y well 

approximated by two Gaus s i ans peaked sha rp l y a round T + and T_ , and 

joined smoothly in a shallow minimum around TQ. Sett ing 

U(T_) = U(T + ) = Um , 

we obtain : 

P s Cx) = 

( n 1 / 2 q ) _ 1 [ ( 4 e a T ^ ) " 1 / 2 + (4eaT3 - Q P ) " 1 / 2 ] _ 1 exp . [ - \ (U(x) - U J ] 
q 

U(T +) ~ U(T_) (3 .8 ) 
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The interpretation of eq. ( 3 . 6 ) to ( 3 . 8 ) is fa ir ly obvious : If U ( T + ) < 
U ( T _ ) the influence of the deep-freeze state disappears in the limit of 
long times. T + is therefore dominant and attracts all initial conditions. 
If on the contrary U ( T _ ) < U ( T + ) , state T_ is dominant, and the present-
day climate will sooner or later be subjected to a runaway effect leading 
to the deep-freeze state. Note however that, as we will show in Section 
4, the character ist ic times associated with this transition may be 
exceedingly long. F inal ly , if U ( T + ) s U ( T _ ) states T + and T_ are 
equally dominant and will surv ive with equal probabil ity in the long time 
limit. T h i s means that, while the system will jump back and forth 
between them, the average residence times on both states will be equal 
(and, presumably, exceedingly long as pointed out ear l ier ) . F ig . 2 
g ives the shape of the steady-state probabil ity in the above three 
cases. 

We see that the situation is reminiscent of the d i f fus ive motion 
of a material point in a bistable well, or of the passage from vapor to 
l iquid phase in the region of coexist ing phases as described by the Van 
der Waals free energy (see e . g . Landau and L i f sh i t z , 1959). In order 
to impress on the reader these analogies we coin the term climatic 
potential for the quantity U ( x ) . When the amplitude of f luctuations q is 
no longer small the probabil ity distr ibution becomes broader and the 
distinction between dominant states is not as sharp as before, 
nevertheless the qualitative picture drawn above remains correct in its 
essential aspects. 

What are the elements which decide the dominance of a 
part icular climate? From eqs. ( 3 . 3 ) we see that the relation between 
U ( T ) and U ( T _ ) depends on the system's parameters. F ix ing a 
planetary albedo of 0.30 around the present-day climate we are left with 
two. free parameters, y-| ( i - e . , a ] c e ) and p, the albedo-temperature 
slope. The condition that U ( T + ) ~ U ( T _ ) , in other words that both 
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X 

F i g . 2 . - S t e a d y - s t a t e p robab i l i t y d i s t r i bu t i on P ( x ) for three r ep re sen t a t i v e s - 1 / 2 
ca se s : U + > U_, U + ~ U_ and U + < J_ and for q = 7 y r °K . Note 

that, in the second case , P ( x ) is a two -hump d i s t r i b u t i o n . 



stable states T + and T_ are equal ly dominant, c o r r e s p o n d s to a g i v e n 

re lat ionship between y and p. F i g . 3 depicts th is climatic coexistence 

c u r v e for the model d i s c u s s e d in the present Sect ion. A d i f ferent 

p i c ture of the s ituation is prov ided by F i g . 4, which g i v e s , t h r o u g h 

v a r i o u s ice- isoalbedo c u r v e s , the way the d i f ference U ( T ) - U ( T ) 

var ies with the a lbedo-temperature feedback slope p. We see that h i g h 

va lues of p f a v o r , for reasonable choices of a_ c e , the deep- f reeze state. 

C o n v e r s e l y , for moderate va lues of p, the p r e s e n t - d a y climate tends to 

dominate, in the sense that it const i tutes the most probable state of the 

s tat ionary probabi l i ty d i s t r i b u t i o n . 

4. T I M E - D E P E N D E N T P R O P E R T I E S 

In this Sect ion we ana lyze the t ime-dependent behavior of the 

f luctuat ions for the climatic model d i s c u s s e d in Sect ion 3. E s s e n t i a l l y , 

we must solve the in i t ia l -va lue problem for the F o k k e r - P l a n c k equation 

( 2 . 5 ) , in which the nonl inear f r i c t ion coeff ic ient f ( x , A) has the 

s t r u c t u r e d e s c r i b e d by eqs . ( 3 . 1 ) and ( 3 . 2 ) . T h i s type of problem was 

invest igated recent ly by a number of authors in the context of b i f u r c a -

tions in nonl inear phys ico-chemica l sys tems , for an f d i s p l a y i n g a cub ic 

nonl inear i ty ( S u z u k i , 1977; van Kampen, 1977; Carol i et a l , 1979). At 

present it appears d i f f i c u l t to extend these calculat ions for the type of 

nonl inear i ty c h a r a c t e r i z i n g our model. We therefore r e s o r t , for the most 

of th i s Section, to numerical s imulat ions. 

T h e problem is h i g h l y n o n - t r i v i a l because of the s t i f f n e s s 

propert ies of the F o k k e r - P l a n c k equation. Numerical solut ions u s i n g 

s t r a i g h t f o r w a r d d i scret i zat ions of the v a r i o u s d e r i v a t i v e s of x can lead 

r a p i d l y to negat ive solut ions for the probabi l i ty de ns i ty P ( x , t ) , and to 

f u r t h e r incons is tenc ies . A s it t u r n s out , similar problems ar i se in 

plasma p h y s i c s . We have therefore followed a proposal by C h a n g and 

Cooper (1970) , accord ing to which the d iscret i zat ion must be performed 
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F ig . 3 . - Cl imatic coex i s tence c u r v e : Va lues of temperature feedback parameter 

p v e r s u s albedo of ice , a. for which U ^ I) . - ' i c e + 



F ig . 4- Dependence of (U - U_) on parameter p for d i f fe rent values of a - c e . 
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with a variable mesh size. The latter is chosen to reproduce as closely 
as possible, the exact steady-state probabil ity distr ibut ion. The results 
are v e r y satisfactory : in addition to pos i t iv i ty , normalization is 
secured provided that appropriate boundary conditions are imposed. 
The convergence is excellent and is maintained even if the time step is 
relatively large. 

Throughout our simulations, the boundaries were chosen to be 
at x = 0° K and x = 360° K . Three different types of situation were 
considered (see also F ig . 5) : 

i ) Present climate at T + is dominant, that is to say U ( T ) < U ( T _ ) . 
For a value of the albedo of ice a. = 0.80 and a value of tem-ice 
pera lure feedback cuefficitiiil p - 0.0065, the minimum of the 
climatic potential U at T + is quite deep. In order to evolve to the 
deep-freeze state at T_ start ing from T + ( th is will show up by the 
appearance of a second peak of Increas ing size at T _ ) the system 
must diffuse through the potential barr ier constituted by the 
maximum of U at the unstable state TQ. For the parameter values 
chosen, the jump of U between TQ and T + turns out to be equal to 
U 0 - U + = AU = 713 y r " 1 ° K 2 . 

i i ) T , and T are equally dominant. For a. also near 0.80 and for + - ' ice 
- - 1 2 p = 0.0075, the potential barr ier turns out to be AU = 213 y r °K . 

i i i ) T is dominant. For a. = 0.80 and 6 = 0.0085 the barr ier one - ice y 

has now to overcome to jump from T to T is much lower, AU = 
- 1 2 33 y r ' ° K . 

In each of these three typical s ituations, the evolution of the 
probabil ity distr ibution was followed for different values of the variance 

p 
of the f luctuations, q . The initial condition was taken to be a Gaussian 
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X 

F i g . 5- Cl imatic potential U ( x ) for three r ep resen ta t i ve c a s e s . T h e d i f f e rence 

between the va lue U ( T ) and the maximum va lue of U g i ves in each 

case , the magnitude of the b a r r i e r tnat the sys tem must overcome 

before evo lv ing to the low temperature state T _ , s t a r t i n g from T . 



centered on T + ( see eq. ( 3 . 6 ) ) , or a delta funct ion also centered on 

V 

A general p r o p e r t y that emerges from all s imulations is that 
2 

the time evolution is e x c e e d i n g l y slow if the v a r i a n c e q is small. For 

instance, tak ing q = 0 . 5 y r ~ 1 / / 2 ° K (or q 2 = 0.25 y r ~ 1 ° K 2 , to be 

compared with the va lues of incoming and outgoing radiat ion, normalized 

by the thermal inert ia coeff ic ient , of the order of 200 y r and an 

initial probabi l i ty d i s t r i b u t i o n as in eq. ( 3 . 6 ) , one f i n d s that P ( x , t ) 

h a r d l y moves for times up to 10,000 y e a r s , both in the case where T + 

is dominant, and T , T_ are equal ly dominant. It is only in case ( i i i ) 

mentioned above, where T dominates, that one f inds a modest tendency 

to evolve s lowly . What is happening here is that because of the 

reldt ivbly biiidll l ie iyht of the b a r r i e r AU, d i f fus ion over it is poss ib le . 

T h e states near T + are therefore p r o g r e s s i v e l y depleted even if the 

init ial condit ion f a v o r s T . A convenient way to e x p r e s s this is to 

introduce the probabi l i ty d i f fus ion f lux at the b a r r i e r position TQ : 

j (x = T t ) = - a i d p ( x , t ) : ( 4 j p u 0 ' t } 2 3x ' x = T 
0 

A t t = 0 and t » this f l u x p r a c t i c a l l y v a n i s h e s owing r e s p e c t i v e l y , to 

the init ial condit ion chosen and to detailed balance at the s t e a d y - s t a t e 
-1/2 

(see eq. ( 2 . 7 ) ) . For intermediate times and q = 0 . 5 y r ° K t h e system 

is unable to bui ld up an apprec iable f lux as long as T_ is not dominant. 

B u t when this latter state becomes dominant one o b s e r v e s , after an 

init ial overshoot , a plateau va lue which remains essent ia l ly constant up 

to 10,000 y r s . T h e value of the f l u x in this plateau is v e r y d i f ferent 

from the numerical ly determined s t e a d y - s t a t e one and ref lects therefore 

the nonequi l ibr ium behavior of the system. It is st i l l however h a r d l y 

detectable. 
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When q increases the diffusion over the barrier is in many 
-1 /? 

cases accelerated. Take for instance q = 3 yr ° K . When T+ is 
dominant the probability flux still remains practically zero up to t ^ 
10,000 y rs . However, when T+ and T_ are equally dominant one 
observes a plateau value which is different from the steady-state one 
and subsists up to t ^ 10,000 yrs as shown in curve ( a ) of Fig. 6. On 
the other hand th§ time to reach the plateau is rather short, t ~ -1/2 

50 y rs . For q = 3 yr ° K and T_dominant the evolution becomes still 
faster. No plateau is reached, and there is a continuous decrease of J P 
to the steady-state value of zero. After an initial transient the 
regression of J is practically linear in time, see curve ( b ) of Fig. 6. 

For larger values of q the evolution is further accelerated. 
-1/2 

Thus, for q = 10 yr °K the steady-state is reached rapidly for all 
three characteristic cases ( i ) to ( i i i ) . Table 1 gives a recapitulative 
picture of the various forms of time-dependencies. 

In addition to the probability flux, a useful index of the 
qualitative aspects of evolution is the variance of the fluctuations 
around the mean, 

ƒ dx (x - < x > ) 2 P(x) 
D 

Fig. 7 represents the time evolution of the variance in two cases. One 
of them, curve ( a ) , corresponds to the situation of curve ( b ) of Fig. 
6. We see that during the approach to the steady-state the variance 
increases almost linearly by one order of magnitude in a couple of 
thousands of years. This reflects the depletion of the states around T + 

and the progressive appearance of a second probability peak around 
T_ , giving rise to a broad two-hump distribution. The second case, 
curve ( b ) , refers to a fast evolution for large fluctuations, q = 
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logt 

F i g . 6 . - Time evo lut ion of the p robab i l i t y f lux J at the minimum TQ of P, for 

q = 3 y r T h e initial cond i t ion is a G a u s s i a n d i s t r i b u t i o n 

cente red on T . 

c u r v e ( a ) : P robab i l i t y f lux when T + a nd T_ are equa l l y dominant , 

c u r v e ( b ) : P robab i l i t y f lux when T is dominant . 



TABLE 1 . -

q = 0.5 q = 3 q = 10 

T dominant + no evolution visible 
up to t - 10,000 yrs 

no evolution visible 
up to t ~ 10,000 yrs 

steady-state 
rapidly reached 
t < 100 yrs 

T , T equally .+ . -
dominant 

no evolution visible 
up to t ~ 10,000 yrs 

nonequi1ibrium 
plateau with 
J p - 0.5 x 10"22 

steady-state 
rapidly reached 
t ^ 5000 yrs 

T dominant nonequi1ibrium plateau 
with very small flux 
is reached 

regression of J to 
steady-state value 
J = 0 P,s 

steady-state 
rapidly reached 
t ^ 1000 yrs 



F i g . 7 . - Time evo lut ion of the va r i ance of the p robab i l i t y d i s t r i b u t i o n . 
- 1 / 2 

c u r v e ( a ) : State T_ is dominant and q = 3 y r °K . 
c u r v e ( b ) : S ta te s T + a nd T_ are equa l l y dominant and q = 

10 y r " 1 / 2 ° K . 



-1/2 

10 yr ;0K, under conditions of equal dominance of states T + and T_. 

Again, as a result of the bui lding of a second probabi l i ty peak, the 

variance increases dramatically in a few thousands of years. 

The results reported so far in this Section are reminiscent of 

the basic ideas under ly ing Kramers' phenomenological theory of chemical 

kinetics (see e .g . Wax, 1954) : A chemical reaction . is viewed as a 

dif fusion problem over a potential barr ier , corresponding to the activa-

tion energy that must be overcome before an initial chemical bond is 

broken and a new one is formed. After an initial lapse of time, and well 

before the reaction is completed, a weak dif fusion f lux over the barr ier 

is postulated and assumed to remain practical ly constant for all x near 

the barr ier position, and slowly depending on time provided q is small 

enough. Using the Fokker-Planck equation (2.5) one obtains, from eq. 

(2.6) and the definition of the potential U : 

J p ( x , t ) = . ( g p c , , ^ 

? 
= - a i e x p U) [p e x p ( u } j ( 4 2 ) 

For Jp (x ) independent of x one can integrate both sides over 

x to obtain, in the notation of our model : 

2 P(T ,t) exp U(T )1 - P(T , t ) exp U(T ) 1 

q + 2 -r - I 
J ( t ) = — T 

2 ƒ exp C ] u d x (4.3) 

T + 

To fix ideas, consider the case depicted on curve (b) of Fig. 6 of a 

climate dominated by T_. Stil l, if we start from a sharply peaked distr ibu-
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tion around T+ the state T_ will remain unoccupied for a very long 
period of time as long as the variance of fluctuations q is small (this is 
entirely confirmed by the numerical simulations). Hence, to a good 
approximation eq. (4 .3 ) will become : 

| j ( t ) | S (- 4£CTTQ + Qp)1 / 2 exp (- ^ AU) P(T+ , O (4.4) 
2 n q 

where a steepest descent evaluation of the denominator was performed 
and, as before, AU = U ( T 0 ) - U (T + ) . 

As regards the time dependence of J , we see from eq. (4 .4) 
that it is identical to that of P (T ) . In the Kramers regime, the latter 
will be simply given by 

dP(T t) 

= - \ P(T+ , t ) (4.5a) 

since the only process going on is the depletion of the states in the 
potential well around T . Thus : 

P(T+ , t ) = P(T+ , 0) exp (- | ) (4.5b) 

Within the range of Kramer's theory the characteristic time turns out to 
be (Wax, 1954, Caroli et al, 1979) 

X * 7i (- 4COTQ + Qp) " 1 / 2 (4ear J - Qp ) ' 1 / 2 exp ( A l J ) 
q 
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2 For values of the var iance q s igni f icant ly smaller than the height of 
the barr ier AU, t will be v e r y long and, concomitantly, J ( t ) will be 
v e r y small. For instance, for q = 3 and T_ dominant we obtain a time 

" 4 
scale of the order of glaciation onset, r ~ 10 y r s , and values of J ( t ) 
in agreement with c u r v e ( b ) of F ig . 6. On the other hand, for the 

23 
same value of q the time scale is much longer, x ~ 10 y r s , if the 
states T + and T_ are equally dominant. T h i s again agrees with curve 
( a ) of F ig . 6. 

The possibi l i ty of reproducing, for suitable values of q and 
AU, characterist ic time scales reminiscent of glaciations is a s ignif icant 
feature, of our work. At present however, it remains diff icult to draw 
definite conclusions because of the uncertainties of values of the model 
parameters. 

5. D I S C U S S I O N 

In this paper we performed a stochastic analysis of a zero-
dimensional cljmatic model showing bistable behavior, which is the 
simplest nontrivial form of climatic transit ion. We showed that both the 
static and the time-dependent properties of the fluctuations are 
monitored by two basic quantities : The climatic. potential, U, and the 

2 
variance of the noise, q . A sensit iv i ty analys is of U with respect to the 
system's parameters-part icular ly the temperature feedback coefficient 
P - led us to d ist inguish between a regime where present climate 
dominates, and a regime where a deep-freeze climate dominates. We also 
determined conditions of "coexistence" of these two regimes in terms of 
the character ist ic parameters. 

At a more quantitative level, we found that for a small 
variance the stationary probabil ity distr ibution is very sharply peaked 
around the dominant state, and that the time scale of evolution becomes 
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exceedingly slow. Moreover, an increase of the temperature feedback 
coefficient tends to favor the deep-freeze climate and to accelerate the 
evolution toward it, by diminishing the height of the potential barr ier 
between the present climate, T + , and the unstable state, T Q . 

We believe that the evaluation of the probabil ity of climatic 
f luctuations, initiated in the present paper, is a prerequis ite in the 
understanding of climatic change. The earth is a noisy environment. A 
local infcalance between incoming and outgoing energy-provok ing for 
instance a sudden cooling- can occur anywhere any time, with a certain 
probabi l i ty . Depending on the time scale of evolution t r iggered by such 
a f luctuation, one will have a qualitatively new behavior or an effect 
which will be masked by other factors acting on the system. In the 
f i r s t class one has the rather fast evolution depicted in curve ( b ) of 
F ig . 6 whose characterist ic scale is about 10 y r s , comparable to the 
onset time of a glaciation. In the second class one has the exceedingly 
slow evolution of curve ( a ) of F ig . 6, with a time scale larger than the 
age of the earth itself! As we saw in Section 4, a convenient criterion 
of evolution is the way the variance of the fluctuations behaves in the 
course of time. T h i s is an interesting and workable criterion since the 
variance is a measurable quant i ty . 

Our results can also De interpreted in an alternative way : 
Namely, in a climatic system involving more than one simultaneously 
stable states, f luctuations provide a mechanism of selection between 
these states. T h i s joins a proposal recently formulated by Paltr idge 
(1979) in the context of his maximum entropy production conjecture. 

The work we reported can be extended in at least two 
direct ions. F i r s t , relax the hypothesis of addit ive noise and analyze the 
effect of f luctuations of such parameters as Q or e, which couple to the 
system in a multiplicative way. A preliminary study of this aspect was 
recently carr ied out (Nicolis and Nicolis, 1979). And second, use more 
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sophisticated energy-balance models like the one-dimensionaJ model 

studied by North (1975). This latter extension is especially crucial, in 

view of the local character of f luctuations. Work in both directions is in 

progress. 
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