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FOREWORD 

This article has been presented at the International Con-
ference "Sun and Climate". It will be published in the proceedings 
volume edited by the "Centre National d'Etudes Spatiales". 

AVANT-PROPOS 

Ce texte a été présenté au Colloque International "Sun and 
Climate". Il sera publié dans les comptes rendus de ce colleque pré-
parés par le "Centre National d'Etudes Spatiales". 

VOORWOORD 

Volgende tekst werd voorgedragen op de Internationale Con-
ferentie "Sun and Climate". Hij zal Verschijnen in de mededelingsbunden 
uitgegeven door de "Centre National d'Etudes Spatiales". 

VORWORT 

Dieser Text wurde vor der Internationale Konferenz "Sun and 
Climate" vorgetragen. Er wird in die Übertragung dieser Konferenz 
durch das "Centre National d'Etudes Spatiales" veröffentlicht. 



F L U C T U A T I O N S , S O L A R P E R I O D I C I T I E S , A N D C L I M A T I C 

T R A N S I T I O N S 

by 

C. N I C O L I S 

Abstract 

The time-dependent properties of a zero-dimensional climatic 

model, showing bistable behavior and subject both to internal fluctua-

tions and to an external periodic forcing are analyzed. Conditions under 

which the deterministic response of the system is amplified are found 

analytically. The results are illustrated by numerical simulations. 

Résumé 

On étudie le comportement d ' un modèle climatique global 

donnant lieu à deux états stationnaires stables, sous l 'influence des 

fluctuations internes ainsi que d 'une perturbation périodique systéma-

tique d 'origine externe. On détermine les conditions d'amplification de la 

réponse de ce système, à la fois analytiquement que par simulations 

numériques. 



Samenvatting 

De tijdsafhankelijke eigenschappen van een nul-dimensionaal 

klimatisch model met een bi-stabiel gedrag en onderworpen aan interne 

fluctuaties en een uitwendige periodieke storing worden geanalyseerd. 

De voorwaarden onder dewelke het deterministisch antwoord van het 

systeem wordt versterkt , wordt analytisch bepaald. De resultaten 

worden geï l lustreerd met behulp van numerieke simulaties. 

Zusammenfassung 

Die zeitliche Eigenschaften eines nulldimensioniertes kli-

matisches Model mit zweibeständigem Betragen und mit innerl ichen 

Schwankungen und aüsserl icher periodischer Kraft sind analysiert. So 

findet man analytische Bedingungen die zu einer Vergrössung der 

determi nistische Antwort des Systemen leiten. Die Ergebnisse werden 

durch numerische Simultationen erläuternt. 
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I . INTRODUCTION 

One of the most cha rac te r i s t i c fea tu res of the cl imat ic system 
is a v e r y p ronounced v a r i a b i l i t y , encoun te red at widely separa ted time 
scales. Thus at a scale smaller t han , or of the o r de r of a yea r , the 
almost i n t r a n s i t i v e cha rac te r of a tmospher ic processes may cause 
seemingly e r r a t i c va r i a t i ons of t empe ra tu re or mo is tu re pa t t e r n s . At the 
scale of the decade a co r r e l a t i on is o f t en sugges ted between c l ima t 'c 
va r i a t i ons and solar cyc les ( P i t t o c k , 1978) wh ich themselves d isp lay a 
cons iderab le amount of noise a round a mean pe r i o d i c i t y . F ina l l y , at 
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l onger t ime scales, of the o r de r of 10 to 10 yea rs , the i n te rac t i on 
between a tmosphere , h yd r o sphe r e and c r yosphe re toge the r w i t h the 
ea r t h ' s o rb i t a l va r i a t i ons appear to have g i ven r ise to the g lac ia t ion 
cyc les , wh ich are ce r t a i n l y the most dramat ic c l imat ic episodes of the 
Qua t e r na r y era (see fo r ins tance Imbr ie and Imbr ie , 1980). 

One of the s implest r ep resen ta t i ons of the i n te rna l dynamics 
of c l imate is g i ven by the zero-d imens iona l ( 0 - d ) and one-d imens iona l 
( 1 - d ) ene rgy balance models. As well known such models p red ic t 
c l imat ic t r ans i t i o ns remin iscent of g lac ia t ions ( N o r t h et a l , 1980). 
Howeve r , fo r usua l l y accepted parameter va lues , the time scale of 
evo lu t i on is f a r too sho r t (o f the o r de r of few yea r s ) and cannot 
poss ib l y exp la in long te rm e f fec ts associated to g lac ia t ions . Moreover 
the response of such models to an ex te rna l f o r c i ng such as that 
associated to the ea r t h ' s o rb i t a l va r i a t i ons has also been examined, but 
f ound , to be v e r y weak and hence incapable of t r i g g e r i n g a major 
c l imat ic change (No r t h and Coak ley , 1979). T r u e , if some of the 
phys i ca l mechanisms re la ted to c r yosphe r i c dynamics are i nco rpo ra ted m 
a more deta i led manner , one can s t r e t c h the time scale and ampl i fy the 
ampl i tude of the response (Po l l a r d , 1978). Aga in , howeve r , ve r y long 
time responses , spec i f i ca l l y w i t h a scale near 10^ years ( t he dominant 
pe r i od i c i t y in g lac ia t ion cyc les ) are not ob ta ined (Gh i l , 1980). 



Now, in all complex systems -and the ea r th -a tmosphere system 

is d e f i n i t e l y one- t he re are con t inuous imbalances between the rates of 

the va r i ous processes go ing on. Such imbalances are perce ived by the 

system as a s tochast ic f o r c i n g a round the de te rm in is t i c evo lu t i on , and 

are cal led f l u c t u a t i o n s . An i nd i v i dua l f l u c tua t i on is , t y p i c a l l y , a small 

ampl i tude even t . Yet in a po ten t ia l l y uns tab le system even small random 

d i s tu rbances associated w i t h f l uc tua t i ons wi l l sooner or later d r i v e the 

system to a new regime. 

The purpose of the p resent wo rk is to show that f l uc tua t i ons 

p r o v i d e the long time scale tha t is miss ing f rom the de termin is t i c 

equat ions of evo lu t i on , and should t he re fo re play an impor tan t role m 

the u n d e r s t a n d i n g of g lac ia t ion mechanisms. In sect ion 2 the stochast ic 

desc r i p t i on is set u p . In Sect ion 3 we i n t roduce a simple 0 - d model and 

rev iew the p rope r t i es of the de te rm in is t i c response to a per iod ic va r i a -

t ion of incoming solar e n e r g y . Sect ions 4 and 5 are devo ted , respec-

t i v e l y to the ana ly t ic and numer ica l s tudy of the stochast ic response to 

such a v a r i a t i o n . The main resu l t is tha t the response is cons iderab ly 

ampl i f ied when a match ing between a cha rac te r i s t i c time scale re la ted to 

f l u c tua t i ons and the p e r i o d i c i t y of the incoming solar energy occurs . 

The main conc lus ions are d rawn at the end of sect ion 5. 

2. STOCHASTIC FORMULATION 

Let x denote a cl imatic va r iab le obey ing to a closed equat ion 

of evo lu t i on . A t yp i ca l example is the sur face tempera tu re T averaged 

over space coord ina tes . In the absence of f l u c tua t i ons x is supposed to 

obey to the fo l low ing dynamics : 

= f ( x , X, t ) = f Q ( x , K) + e f j ( x , A, t ) (2 .1 ) 
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Here f is an appropriate nonlinear rate function, and A stands for a set 
of characteristic parameters such as albedo, emissivity and so forth. 
This function is decomposed into a part f corresponding to an auton-
omous evolution, and to a time-dependent part f̂  describing the effect 
of some external forcing proportional to e. Of special interest for our 
work are cases where the steady-state solutions of the system in the 
absence of the above time-dependent forcing, 

f 0 ( x s > = ° (2.2) 

are multiple and see their stability properties change as the parameters 
A take different values. 

As discussed in the Introduction, the deterministic description 
must often be extended to take into account the fluctuations, associated 
with random imbalances between the various transport and radiative 
mechanisms involved in the rate function f ( x , A, t ) . We denote their 
effect by a random force F ( t ) and assume the latter to be x-
independent and define a white noise (Wax, 1954) : 

< F ( t ) > = 0 

< F ( t ) F ( t ' ) > = q 2 6 ( t - f ) ( 2 . 3 ) 

Eq. (2 .1 ) is now to be replaced by the stochastic differential 
equation 



dx 
dt = f (x ,  k, t)  + F ( t ) (2.4) 

A s well known (see e.g. Arno ld, 1973) eqs. (2.3) - (2.4) are equiv-

alent to the following Fokker-Planck equation with nonlinear friction 

coefficient and constant diffusion coefficient : 

S S g - i l = - £ ( , , X, t) P U . t ) * (2.5, 
Ô X 

where P ( x , t ) is the probability density for having the value x of the 

state variable at time t. 

It should be realized that eqs (2.3) defining the properties of 

the random force are in principle rather restrictive. Nevertheless, we 

expect them to describe satisfactorily the situation for roughly the same 

reason as in brownian motion and other problems in statistical 

mechanics : Namely, because of their local character, the fluctuations of 

var ious fluxes are expected to loose rapidly the memory of the state of 

the system which prevailed when they occurred and, partly as a result 

of this, to occur independently of each other. Further arguments in 

essentially the same direction have been developed by Hasselmann 

(1976). 

For a nonlinear function f ( x , A, t), the full analysis of eq. 

(2 .5) constitutes an unsolved problem. Let us therefore first focus on 

the steady-state solution, 9P s/8t = 0, in the absence of the time-

dependent forcing terms e = 0. Integrating once the right hand side 

with respect to x we get : 



n2 d P s 
" J

P > S ( X ) E - f 0 (x , A) P s (x) + 2 3 F = c o n s t a n t (2.6) 

Now, in all physical ly reasonable situations we expect that when x will 

reach the boundaries of the process (e.g. O and » if x is the tem-

perature), P g will tend very rapidly to zero. We may therefore set the 

probabi l i ty f lux J p ( x ) zero at the steady state : 

J p (x) = 0 for a l l x (2.7) r , s 

Th is is known as generalized detailed balance condition (Haken, 1977) 

and leads to an exact solution for P g in the form : 

P g(x) = Z"1 exp [ - ^ V x ) ] ( 2 > 8 ) 

q 

where we defined the kinetic potential U (x) for the autonomous part of 

the evolution : 

Uo(x) = - J d£ f o (4 , k) (2.9) 

- 1 

The proportional ity constant Z is determined from the normalization of 

P s 

ƒ dx P s (x) = 1 
D 



where D is the domain of variation of x 

Z = J dx exp [— ~2 •UQ(x)1 (2.10) 
D q 

In Nicolis and Nicolis (1980) a detailed analysis of the stationary 
probability P g is reported. Therein we were concerned with the 
solution of the Fokker-Planck equation in the case of an autonomous 
evolution. Depending on the choice of the parameters describing the 
system, three different situations were considered : 

i) The probability distribution is peaked near the present climate, 
ii) The statistical weights of the present climate and of a deep freeze 

climate are approximately equal, 
iii) The probability distribution is peaked around a deep freeze 

climate. 

In each of these three typical situations, the evolution of the 
probability distribution has been followed for different values of the 

2 
variance of fluctuations q , and for different initial conditions. Special 
emphasis was put on the characteristic time of passage between present 
day and deep freeze climates. In this respect a set of parameters was 
found for which this characteristic time was of the order of a glaciation 
period. For technical reasons the analysis was limited to a 0-d energy 
balance model which is briefly outlined in the next section. 

3. A SIMPLE ZERO-DIMENSIONAL MODEL. CASE OF PERIODIC FORCING 

Suppose that x denotes the average surface temperature. The 
rate function f in eq. (2.1) is then the difference between the solar 
influx Q(1 - a ( x ) ) [a being the albedo] and the infrared cooling rate, 



4 
eBCTX ' ^eB b e i n 9 t h e emissivity and a the Stefan constant]. Eq. (2.1) 
becomes : 

f f = £ [Q( l - a (x ) ) - 1 (3.1) 

where C is the thermal inertia coefficient. 

In the majority of climate models Q is taken to be constant. 
On the other hand, it is known that the solar output displays very 
pronounced variabil ity at different time scales. One example is the 
sunspot cycle which despite an inherent noise, shows an approximate 11 
year periodicity. Another example is the slight change in the mean 
annual influx arising from the variation of the eccentricity of the 
earth's orbit whose periodicity is about 105 years ( Be rge r , 1978). 
Hereafter we are interested in the effect of such time dependent 
forcing, in the presence of fluctuations. To simplify the analysis as 
much as possible we describe the above mentioned nearly periodic 
variation in the form 

Q = Q q ( 1 + e sin lot) (3.2) 

_ p 
The unperturbed solar constant is taken to be Q q = 340 Wm . 

For temperature values near the present-day climate, a (x ) is 
usually taken to be a roughly linear function of its argument (Cess, 
1976; Nicolis, 1980). On the other hand, for very low x a must tend to 
the albedo of ice, a . c e whereas for high x, a should also saturate to 
some value, a h Q t descriptive of an ice-free earth. The simplest 
representation taking these features into account is the zero-dimensional 



piecewise l inear model p roposed by C ra foo rd and Kallen (1978) and 

summarized in F ig . 1. A n a l y t i c a l l y , we w r i t e : 

x < T 1 

1 - a (x ) = 1 - a + px = y . + px 0 T. < x < T 
2 (3 .3 ) 

1 - a (x ) = 1 - a h Q t = v2 x > T 2 

Using the exp l i c i t dependence of the albedo on T as g i ven by 

eqs. ( 3 . 3 ) in eq . ( 3 . 1 ) we see t ha t in the absence of per iod ic f o r c i n g 

and f o r a p p r o p r i a t e values of the parameters Yq, y^ , y^ and (3 the 

system may admit t h ree steady state so lu t ions . One of them, denoted 

he rea f te r by T co r responds to the p r e s e n t - d a y cl imate and is 

asympto t i ca l l y s tab le , p r o v i d e d the parameters y^ and 0 are chosen in 

such a way tha t the p lane ta ry albedo is 0.30 and the emiss iv i t y is &B = 

0 .61. The second so lu t i on , denoted by T _ , co r responds to a deep-

f reeze cl imate and is also asympto t i ca l l y s tab le . A t h i r d so lu t ion T Q lies 

between T + and T_ and is uns tab le . 

de f ined by eqs. ( 3 . 1 ) to ( 3 . 3 ) we b r i e f l y rev iew the main fea tu res of 

the de te rm in is t i c response. Us ing the re la t ions ( 3 . 3 ) we f i r s t w r i t e the 

e n e r g y balance equat ion in the form ( c f . also eq. ( 2 . 9 ) ) : 

Before we analyze the s tochast ic p rope r t i es of the system 

dx 
d t J [Q (1 - a ( x ) ) - e_ a x 4 ] + ^ <) e ( l - a ( x ) ) sinuut L 0 J5 L/ O 

- U' (x) + ^ Q e ( l - a ( x ) ) sinuit 

- 1 0 -



g . 1 . - I ncoming and o u t g o i n g r a d i a t i v e e n e r g y c u r v e s as f u n c t i o n s o f 

( g l o b a l a v e r a g e t e m p e r a t u r e ) . T h e i r i n t e r s e c t i o n s T + , T_ and T ^ a 

t h e t h r e e s teady s t a t e s . 



where U' denotes the derivative of the potential introduced in section 2 
with respect to its argument. As a rule, e is small. Hence, to a good 
approximation one may linearize the above equation around the stable 
states T + and T_. Setting 

= T+ • 6Tj (3.4) 

we obtain : 

dôT 

i f =
 • l , " o ( T ±)

 6T±+ è Q
0

 £(1 • 3(T±}) Dinu,t 

E " u"o± 6 T ± + è Q o e ( 1 " s i m u t ( 3 - 5 ) 

In the limit of long times the response around the present-day climate 
predicted by eq. (3 .5 ) is of the form 

i 1 ' £ U" 
ÔT ( t ) = i — ± q — sin (cot + P) (3.6a) 

L 2 _L / TT H >2 O w + (U ; cos d o+ 

where the signal-response phase shift is given by 

tg 0 = - - 7T - (3.6b) 
U o+ 

From this expression we see that if u) << (that is, if the periodi-
city of the forcing is very long), the phase shift practically vanishes 
and the amplitude of the response is independent of the thermal inertia 



coefficient C . A s we see later this conclusion changes radically when 

fluctuations are taken into account. 

4. S T O C H A S T I C R E S P O N S E 

In order to evaluate the stochastic response to the periodic 

forc ing introduced in the preceeding Section, it is necessary to analyze 

the time-dependent solutions of the Fokker -P lanck equation (2 .5 ) . 

Actual ly , what one is interested in is the long term (t ime-dependent) 

regime induced by the forc ing, rather than the transient behavior 

associated with the deterministic time scale ( U " o + ) ~ 1 featured by eq. 

( 3 .5 ) . A detailed descr ipt ion of this analys i s is g iven by Gardiner 

(1980) drid Nicolls (1980). Let us briefly summarize the main results. 

F i r s t l y , in the vic inity of the stable deterministic solutions 

x + ( t ) (which are themselves near the present climate T + and the deep 

freeze climate T_ ) it t u rn s out that the distr ibut ion function can be 

represented by two Gauss ians peaked on these states, prov ided that the 
2 

variance q is suff iciently small. Th i s yields (see Fig. 2) : 

P ( x , t ) £ N ( t ) 
1 

2 y j - e x P 
(nq a ( t ) ) 1 ^ 

( x - X ( t ) ) ' 

q o ( t) 

+ N (t ) 
1 

2 e x p 

U q o ( t ) ) + 

( x - x ( t ) ) ' 

~2 ~ ~ 
q 0', ( t ) 

(4.1) 

where a + are the mean square widths. 
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X 

Fig. 2.- Steady-state probabil ity distr ibution P s ( x ) for three representat ive 
cases : N < N , N ^ N and N > N and for q = 7. Note o+ o- o+ o- o+ o-
that, in the second case, p s ( x ) ' s a two-hump distr ibut ion. The 
following parameter values have been used in this latter case : (3 = 
0.0075, a. - 0.82, a^ , = 0.25. ice hot 



The factors N_ and N + = 1 - N_ ensure the normalization of 

P ( x , t ) fo r ail t ' s in the whole domain of x and describe the relat ive 

importance of the present day and the deep-freeze climate. If these two 

climates are equal ly dominant (see remarks at the end of Section 2) , 

then the steady-state values of N N in the absence of tirne-o+ o-
dependent fo rc ing wil l be approximately equal, 

N * N ^ 0 . 5 (4.2) 

It can be shown (Nicol is and Nicol is, 1980) that th is corresponds to the 

equal i ty of the par t of UQ of the potential that is independent of the 

t ime-dependent fo rc ing , evaluated in states T + and T_ : 

U . * U (4.3) o+ o -

Star t ing from a given ini t ia l condit ion of the probab i l i t y 

d i s t r i bu t i on , the main problem of in terest is to f i nd the time evolut ion 

of the weight ing factors N_ and N+ under the effect of both internal 

f luctuat ions and the external fo rc ing term. To s impl i fy matters we wil l 

focus at tent ion on the response to a fo rc ing e which is so small that the 

determinist ic e f fec t , eq. ( 3 . 6 ) , is negl ig ib le. This allows us to 

consider that the maxima of the probab i l i t y d i s t r i bu t ion remain f ixed at 

T + and T_ 

x+ = T+ (4.4) 

In other words only interpeak relaxat ion of the probab i l i t y d i s t r i bu t ion 

wil l be considered. 
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Using a method similar to Kramers' theory of chemical reaction 
rates we find : 

dN ^ = r ( t ) - s ( t ) N_ (4.5) 

with 

AU_) (4.6a) 

AU+) + r ( t ) (4.6b) 

where 

AU± = U(xo) - U(x±) > 0 (4.7) 

This quantity represents the potential barrier that has to be overcome 
by the system in order to perform a transition from T + to T_ or vice 
versa. 

From eq. (4 .5) one can immediately see that the coefficient of 
N_defines the inverse of the characteristic time associated with a 

2 
transition of the system. For q << AU+ ( i .e . for small fluctuations) this 
time will be very long. We have therefore succeeded in identifying the 
missing long time scale pointed out in the Introduction. 

Now, owing to the smallness of the periodic forcing it is 
legitimate to linearize expressions (4 .6) around the autonomous evolution 

r ( t ) = ^ ( - U"(xo) U " ( x _ ) ) 1 / 2 exp ( - ^ 
q 

s ( t ) = ^ ( - U"(xo) U " ( x + ) ) 1 / 2 exp ( - ^ 
q 

- 1 6 -



r ( t ) = r + p sinuut o 

s ( t ) = s + 0 siniut o 

( 4 . 8 a ) 

(4 .8b) 

This allows us to seek for time dependent solutions of the form 

N = N sin(u)t + <p) + N - o- ( 4 . 9 ) 

After some long but straightforward calculations we find the following 
expressions for the amplitude and the phase shift 

N = 
1 + w 2 , 1/2 

p - N 0' o-
(4 .10 ) 

m - 111 

<P = - arete — s . 
(4 .11 ) 

We have analyzed eq. (4.10) for the three representative cases 
mentioned in Section 2. We found that for case ( i ) and case ( i i i ) , its 
numerical value is exponentially small. However, the situation changes if 
the present climate and a deep-freeze climate are equally probable 
( case( i i ) ) . In that case, for typical values of the variance of fluctua-

2 
tions, the factor in square brackets is of the order of 10' . For a 
forcing amplitude of 0.001 corresponding to the eccentricity variation of 
the earth's orbit (see e . g . Imbrie and Imbrie, 1980), N_ would 
therefore be conditioned by the inverse of the square root. The latter 
depends on the ratio of the two inverse characteristic time scales m and 

-17-



2 s Q . For usual values of q and AU+ / Sq is a v e r y small quantity. 
Therefore, if w is of the order of 1 ( such as the frequency associated 
with the 11 or 22-year solar c y c l e ) , the f i r s t factor in eq. (4 .10) would 
be exceedingly small and the stochastic response to this type of forcing 
would be negl igble. 

The situation is completely different if u> and s q are of the 
same order of magnitude. One then obtains an amplitude of N_ of the 
order of 0 .1 , which is quite appreciable compared to the steady-state 
value NQ_ ^ 0.5 one would obtain in the absence of forcing when the 
two states T + and T_ are equally dominant. Everyth ing happens as if 
the barr ier that has to be overcome for a transit ion between T + and T_ 
say , (reminiscent of a glaciation) becomes s igni f icant ly smaller for 
certain time intervals . The situation is represented in curve ( a ) of F ig . 
3 and F ig . 4. 

Similar conclusions have been reached by Benzi et al (1980) 
on the basis of computer simulations. T h e y refer to this phenomenon as 
stochastic resonance. As we see however from eq. (4 .10) the system 
does not exhibit a resonance in the usual sense of the term, but rather 
the abil ity to amplify the response to a low frequency forcing under 
certain conditions. 

5. NUMERICAL R E S U L T S - C O N C L U D I N G R E M A R K S 

For the model described by eqs. ( 3 . 1 ) to ( 3 . 3 ) and by F ig . 1 
the time dependent Fokker -P lanck equation, eq. ( 2 . 5 ) , was integrated 
numerically using a method develloped by Chang and Cooper (1970). 
F i r s t , the steady state probabil ity distr ibution in the absence of forcing 
was obtained. And next , the forcing was added and the long time 
behavior of the probabil ity was determined. 



I 
1 

TIME (years x 105 ) 
2 

. 3 . - C u r v e (a ) : Time dependence of the cl imat ic potent ia l d i f f e r e n c e 

U ( t ) = U ( x + , t ) - U ( x o , t ) , sub ject to a per iod ic f o r c i ng w i t h w = 

and an ampl i tude e = 0.001 s imulat ing the va r ia t i on of the e c c e n t r i c i t y 

of the ea r th ' s o r b i t . 

C u r v e ( b ) : Time evo lu t ion of the d i f f e rence of the p robab i l i t i es of the 

two stable states T + and T_ , d i v i ded by the s teady state p r o b a b i l i t y 

P g ^ P § ( T + ) ^ P ( T _ ) , in the presence of the f o r c i n g rep resen ted in 

c u r v e ( a ) . Here and in F ig . 4 the t ime scale is normal ized in such a 

way tha t C = 1. The values of the o ther parameters are as in F ig . 2. 



0 . 2 -

0.1 -

TIME ( y e a r s ) 

F ig . 4 . - C u r v e ( a ) : Time dependence of the climatic potential difference U ( t ) = 
U ( x + , t ) - U ( x o / t ) , subject to a periodic forcing with frequency w = 
and an amplitude e = 0.001. 

C u r v e ( b ) : Time evolution of the difference of the probabil it ies of the 
two stable states T + and T _ , divided by the steady state probabil ity 
P s ~ P S ( T + ) ~ P g ( T _ ) , in the presence 3f the forcing represented in 
curve ( a ) . 



Curve (b ) of Fig. 3 gives the main result in the case of a 
long periodicity simulating the 100,000 year variation of eccentricity. We 
start with a steady-state solution in the absence of forcing such that 

p 
P S ( T + ) ^ P g ( T _ ) , and choose the variance q such that W = Sq (see eq. 
4.10). The presence of forcing introduces then a rather dramatic varia-
tion of ( P ( T + ) - P ( T j ) , of the order of 20% compared to the steady state 
value. This reflects the fact that the passage over the barrier becomes 
easier during certain time intervals. Note that there is a considerable 
time lag between forcing (curve ( a ) ) and response (curve ( b ) ) , in 
quantitative agreement with eq. (4.11). 

Curve (b ) of Fig. 4 gives the stochastic response to the 
11-year cycle. We see that P ( T ( ) - P(T ) is now practically negligible 
in agreement with the analytical expression, eq. (4.10). 

In summary, in this paper we performed a stochastic analysis 
of a simple 0-d energy balance model showing bistable behavior, in the 
presence of a periodic forcing. The amplitude of the forcing was so 
small that the deterministic response was negligible. Yet in the presence 
of fluctuations, the amplitude of the response could change dramat-
ically, depending on two basic quantities : i) the properties of the 
climatic potential and ii) a characteristic time scale related to the 
variance of fluctuations. Under certain conditions the passage over the 
potential barrier is facilitated and the shape of the probability distribu-
tion changes, periodically, favoring one of the stable states during 
certain time intervals. An attempt was made to relate these results to 
the 100,000 yr periodicity in glaciation cycles. 

The work we reported can be extended in many directions. It 
would be interesting for instance to consider the effect of fluctuations 
which couple to the system in a multiplicative way through such 
parameters as Q and e^. Similarly, we can relax the hypothesis of 
purely periodic variation of the solar influx and analyze the effect of a 



random forcing around some mean periodicity. Final ly, we could use 
more sophisticated climate models taking spatial effects into account. 
Th is latter extention is part icularly interesting in view of the local 
character of the fluctuations. 
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