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FOREWORD

This article has been presented at the International Con-
ference "Sun and Climate". It will be published in the proceedings
volume edited by the "Centre National d'Etudes Spatiales".

"AVANT-PROPOS

Ce texte a été présenté au Colloque International "Sun and
Climate". Il sera publié dans les comptes rendus de ce colleque pré-
parés par le "Ccntre National d'Etudes Spatigles”.

VOORWOORD

Volgende tekst werd voorgedragen op de Internationale Con-
ferentie "Sun and Climate". Hij zal verschijnen in de mededelingsbunden
uitgegeven door de "Centre National d'Etudes Spatiales”.

VORWORT

Dieser Text wurde vor der Internationale Konferenz "Sun and
Climate" wvorgetragen. Er wird in die Ubertragung dieser Konferenz
durch das "Centre National d'Etudes Spatiales' verdffentlicht.



FLUCTUATIONS, SOLAR PERIODICITIES, AND CLIMATIC

i TRANSITIONS

by

C. NICOLIS

Abstract

The time-dependent properties of a zero-dimensional climatic
modef, showing bistable Sehavior and subject both to internal fluctua-
tions and to an external periodic forcing are analyzed. Conditions under
which the deterministic responée of the‘ system is amplified are found
analytically. The results are illustrated by numerical simulations.

Résumé

On étudie le comportement d'un modeéle climatique global
donnant lieu a deux états stationnaires stables, sous I'influence des
fluctuations internes ainsi que d'une perturbation périodique systéma-
tique d'origine externe. On détermine les conditions d'amplification de la
réponse de ce systeme, a la fois analytiquement que par simulations

numériques.



Samenvatting

De tijdsafhankelijke eigenschappen van een nul-dimensionaal
klimatisch model met een bi-stabiel gedrag en onderworpen aan interne
fluctuaties en een uitwendige periodieke storing worden geanalyseerd.
De voorwaarden onder dewelke het deterministisch antwoord van het
systeem wordt versterkt, wordt analytisch bepaald. De resultaten

worden geillustreerd met behulp van numerieke simulaties.

Zusammenfassung

Die zeitliche Eigenschaften eines nulldimensioniertes kli-
matisches Model mit zweibestandigem Betr‘agen' und mit innerlichen
Schwankungen und alsseriicher periodischer Kraft sind analysiert. So
findet man analytische Bedingungen die zu einer Vergrdssung der
deterministische Antwort des Systemen leiten. Die Ergebnisse werden

durch numerische Simultationen erl3uternt.



1. INTRODUCTION

.

One of the most characteristic features of the climatic system
is a very pronounced variability, encountered at widely separated time
scales. Thus at a scale smaller than, or of the order of a year., the
almost intransitive character of atmospheric processes may cause
seemingly erratic variations of temperature or moisture patterns. At the
scale of the decade a correlation is often 4suggested between ctimatic
variations and solar cycles (Pittock, 1978) which themselves display a
considerable amount of noise around a mean periodicity. Finally, at

§
3 to 10° years, the interaction

longer time scales, of the order of 10
between atmosphere, hydrosphere and cryosphere together with the
earth's orbital variatlons appeéar to have given rise to the glaciation
cycles, which are certainly the most dramatic climatic episodes of the

Quaternary era (see for instance Imbrie and Imbrie, 1980).

One of the simplest representations of the internal dynamics
of climate is given by the zero-dimensional (0-d) and one-dimensional
(1-d) energy balance models. As well known -such models predict
climatic transitions reminiscent of glaciations (North et al, 1980).
However, for wusually accepted paraméter values, the time scale of
evolution is far too short (of the order of few years) and cannot
possibly explain long term effects associated to glaciations. Moreover
the response of such models to an external forcing such as that
associated to the earth's orbital variations has also been examirned, but
found to be very weak and hence incapable of triggering a major
climatic change (North and Coakley, 1879). True, if some of the
physical mechanisms related to cryospheric dynamics are incorporated in
a more detailed manner, one can stretch the time scale and amplify the
amplitude of the response (Pollard, 1978). Again, however, very long
time responses, specifically with a scale near 105 years (the dominant
periodicity in glaciation cycles) are not obtained (Ghil, 1980).



Now, in all complex systems -and the earth-atmosphere system
is definitely one- there are continuous imbalances between the rates of
the various processes going on. Such imbalances are perceived by the
system as a stochastic forcing around the deterministic evolution, and
are called fiuctuations. An individual fluctuation is, typically, a smal
hamplitude event. Yet in a potentially unstable system even smail random
disturbances associated with fluctuations will sooner or later drive the

system to a new regime.

The purpose of the present work is to show that fluctuations
provide the Ilong time scale that is missing from the deterministic
equations of evolution, and should therefore play an important role in
the understanding of glaciation mechanisms. In section 2 the stochastic
description is set up. In Section 3 we introduce a simple 0-d model and
review the properties of the deterministic response to a periodic varia-
tion of incoming solar energy. Sections 4 and 5 are devoted, respec-
tively to the analytic and numerical study of the stochastic response to
such a variation. The main result is that the response is considerably
amplified when a matching between a characteristic time scale related to
. fluctuations and the periodicity of the incoming solar energy occurs.

The main conclusions are drawn at the end of section 5.

2. STOCHASTIC FORMULATION

Let x denote a climatic variable obeying to a closed equation
of evolution. A typical example is the surface temperature T averaged
over space coordinates. In the absence of fluctuations X is supposed to

obey to the following dynamics

= = f(x, A, t) = fo(i, A) + g fl(;{, A, t) (2.1)



Here f is an appropriate nonlinear rate function, and A stands for a set
of characteristic parameters such as albedo, emissivity and so forth.
This function is decomposed into a part fo corresponding to an auton-
omous evolution, and to a time-dependent part f1 describing the effect
of some external forcing proportional to ¢. Of special interest for our
work are cases where the steady-state solutions of the system in the
absence of the above time-dependent forcing,

£ (X, A) =0 - (2.2)

are multiple and see their stability properties change as the parameters
A take different values.

As discussed in the Introduction, the deterministic description
must often be extended to take into account the fluctuations, associated
with random imbalances between the various transport and radiative
mechanisms involved in the rate function f(>2, A, t). We denote their
effect by a random force F(t) and assume the latter to be x-

independent and define a white noise (Wax, 1954) :

<F(t)>:0

CCF(t) F(t') > = g2 8(t - t') o (2.3)

Eq. (2.1) is now to be replaced by the stochastic differential

equation



3= f(x, A, B) + F(E) | (2.4)

As well known (see e.g. Arnold, 1973) eqgs. (2.3) - (2.4) are equiv-
alent to the following Fokker-Planck equation with nonlinear friction

coefficient and constant diffusion coefficient :

é()}tf ) - . 5% EGx, A, t) P(x,t) + % T%L.l (2.5)
0X

where P(x,t) is the probability density for having the value x of the
state variable at time t.

It should be realized that eqs (2.3) defining the properties of
the random force are in principle rather restrictive. Nevertheless, we
expect them to describe satiéfactorily the situation for roughly the same
reason as in brownian motion and other problems in étatistical

mechanics : Namely, because of their local character, the fluctuations of

various fluxes are expected to loose rapidly the memory of the state of
the system which prevailed when they occurred and, partly as a result
of this, to occur independently of each other. Further arguments in
essentially the same direction have been developed by Hasselmann
(1976). | |

For a nonlinear function f(x, A, t), the full analysis of eq..
(2.5) constitutes an unsolved problem. Let us therefore first focus oh
the steady-state solution, aPs/at = 0, in the absence of the time-
dependent forcing terms ¢ = 0. Integrating once the right hand side

‘with respect to x we get :



. . & 9P
- JP’S(X) = - fo(x, A) Ps(x) t 45 57 = constant (2.6)

Now, in all physically reasonable situations we expect that when x will
reach the boundaries of the process (e.g. O and « if x is the tem-

perature), Ps will tend very rapidly to zero. We may therefore set the

probability flux JP(x) zero at the stéa’dy state :
JP,s(x) =0 for all x 2.7

This is known ‘as generalized detailed balance condition (Haken, 1977)

' ahd leads to an exact solution for Ps in the form :

Ps(x) = Z-1 exp [ - 2—2 ' Ulo(x)] - (2.8)

Fal

where we defined the kinetic potential Uo(x) for the autonomous part of

the evolution :

X

Ué(x) = - f d€ £ (&, M) (2.9)

The proportionality constant Z‘1 is determined from the normalization of



where D is the domain of variation of x

Z = / dx exp [- 2—2- vUo(x)] (2.10)
D q

In  Nicolis and Nicolis (1980) a detailed anélysis of the stationary'
probability PS is reported. Therein we were concerned with the
solution of the Fokker-Planck equation in the case of an autonomous
evolution. Depending on the choice of the parameters describing the

system, three different situations were considered :

i) The probability distrihition is peaked near thc present climate.

ii) The statistical weights of the present climate and of a deep freeze
climate are approximately equal.

iii) The probability distribution is peaked around a deep freeze

climate.

In each of these three typical situations, the evolution of the
probability distribution has been followed for different values of the
variance of fluctuations q2, and for different initial conditions. Special
emphasis was put on the characteristic time of péssage between present
day and deep freeze climates. In this respect a set of parameters was
found for which this characteristié time was of the order of a glaciation
period. For technical reasons the analysis was limited to a 0-d energy

balance mode! which is briefly outlined in the next section.

3. A SIMPLE ZERO-DIMENSIONAL MODEL. CASE OF PERIODIC FORCING

Suppose that x denotes the average surface temperature. The
rate function f in eq. (2.1) is then the difference between the solar

influx Q(1 - a(x)) [a being the albedo] and the infrared cooling rate,



eBcrx4, [eB being the emissivity and o the Stefan constant]. Eq. (2.1)

becomes :

o=z le0 - a) - eyoxt ] (3.1)

where C is the thermal inertia c'oefficient.

In the majority of climate models Q is taken to be constant.
On the other hand, it is known that the solar output displays very
pronounced variability at different time scales. One example is the
sunspot cycle which despite an inherent noise, shows an approximate 11
year periodicity. Another example is the slight change in the mean
annual influx arising from the wvariation of the eccentricity of the
earth's orbit whose periodicity is about 105 years (Berger, 1978).
Hereafter we are interested in the effect of such time dependent
forcing, in the presence of fluctuations. To simplify the analysis as
much aé possible we describe the above mentioned nearly periodic
variation in the form

Q = Qo(l + € sin wt) (3.2)

The unperturbed solar constant is taken to be Qo = 340 Wm-z.

For temperature values near the present-day climate, a(x) is
usually taken to be a roughly linear function of its argument (Cess,
1976; Nicolis, 1980). On the other hand, for very low X a must tend to

the albedo of ice, a. whereas for high >2, a should also saturate to

Ice

some value, descriptive of an ice-free earth. The simplest

a
hot
representation taking these features into account is the zero-dimensional



piecewise linear model proposed by Crafoord and Kiallén (1978) and
summarized in Fig. 1. Apalytically, we write :

1 -a(x)=1 - a6 = Yl s x < Tl
1-a(x) =1-a+pBx= Y, * Bx , T, < x < T, (3.3)
1-a(x)=1-a = x> T

hot ~ Y2 g 2

Using the explicit dependence of the albedo on T as given by
eqs. (3.3) in eq. (3.1) we see that in the absence of periodic forcing
and for appropriate values of the parameters yo,r Yir Yo and B the
system may admit three steady state solutions. One of them, denoted
hereafter by T,. corresponds to the present-day c!imate' and is
asymptotically stable, provided the parameters Yo and B are chosen in
such a way that the planetary albedo is 0.30 and the emissivity is £g =
0.61. The second solution, denoted by T _, corresponds to a deep-
freeze climate and is also asymptotically stable. A third solution TO lies

between T _ and T_ and is unstable.

Before we analyze the stochastic properties of the system
defined by eqs. (3.1) to (3.3) we briefly review the main features of
the deterministic response. Using the relations (3.3) we first write the

energy balance equation in the form (cf. also eq. (2.9)) :

“]

a
o
Oy

+ 1 Q, (1 - a(x)) sinut

[Q, (1 - a(x)) - ey O X 5

= U‘o(;() + % Q0 e(1 - a(x)) sinwt

-10-
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(global average temperature). Their intersections T, T_ and T0 are

the three steady states.



where U'o denotes the derivative of the potential introduced in section 2
with respect to its argument. As a rule, ¢ is small. Hence, to a good
approximation one may linearize the abov‘e equation around the stable
states T_ and T_. Setting |

x, =T, + 8T, (3.4)
we obtain :
d(ST+ \ :
_Hf; = - U"O(Tz) ﬁTi + c QO e{l = 3(Ti)) oinwt
=- UM, 6T, + 2 0Q e(l - a,) simut (3.5)

in the limit of long times the response around the present-day climate
predicted by eq. (3.5) is of the form '

1 1 - a, ey . ‘
8T (t) = = Q % sin (wt + €) (3.6a)
+ c " o )
w o+ (U ) cos &

where the sighal#esponse phase shift is given by

w

tg 6 = - (3.6b)

u"
o+

From this expression we see that if w << U”°+ (that is, if t_he periodi~
city of the forcing is very lbng), the phase shift practically vanishes
and the amplitude of the response is independent of the thermal inertia

-12-



coefficient C. As we see. later this conclusion changes radically when
fluctuations are taken into account.

4. STOCHASTIC RESPONSE

In order to evaluate the stochastic response to the periodic
forcing introduced in the preceeding Section, it is necessary to analyze
the time-dependent solutions of the Fokker-Planck equation (2.5).
Actually, what one is interested in is the long term (time-dependent)
regime induced by the forcing, rather than the transient behavior
associated with the deterministic time scale (U"o+)-1 featured by eq.
(3.5). A detailed description of this analysis is given by Gardiner
(1980) and Nicolls (1980). Let us briefly summarize the main resuits.

Firstly, in the vicinity of the stable deterministic solutions
x,(t) (which are themselves near the present climate T, and the deep
freeze climate T_) it turns out that the distribution function can be
represented by two Gaussians peaked on these states, provided that the

variance q2 is sufficiently small. This yields (see Fig. 2) :

] (x - % (en?

P(x,t) = N_(t) exp [ - I
- (nq%0 (£ !/ % (0
1 (x - x (t))2

— |

exp [ -
(nq c'Jr(t))l/2 qzo‘*(t)

+ N (t)
+

(4.1)

where g, are the mean square widths.

-13-
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Fig. 2.- Steady-state probability distribution Ps(x) for three representative

. < =
cases : N, N,/ N0+ v NG and N_ > N__ and for q 7. Note

that," in the second case, Ps(x) is a two-hump distribution. The

following parameter values have been used in this latter case : B =

0.0075, a. = 0.82, a = 0.25.
ice hot



. The factors N_ and N, =1 - N_ ensure the normalization of
P(x,t) for all t's in the whole domain of x and describe the relative
importance of the present day and the deep-freeze climate. If these two
climates are equally dominant (see remarks at the end of Section 2),

+/
dependent forcing will be approximately equal,

then the steady-state values of No No- in the absence of time-

N ~N ~O0.5 (4.2)

It can be shown (Nicolis and Nicolis, 1980) that this corresponds to the
equality of the part of U0 of the potential that is independent of the
time-dependent forcing, evaluated in states T_and T_

U, ~ U (4.3)

Starting from a given initial cohdition of the probability
distribution, the main problem of interest is to find the time evolution
of the weighting factors N_ and N_ under the effect of both internal
fluctuations and the external forcing term. To simplify matters we will
focus attention on the response to a forcing & which is so small that the
deterministic effect, 'eq. (3.6), is negligible. This ailows us to
consider that the maxima of the probability distribution remain fixed at
T, and T

+

(4.4)

E
1+
]
-3
14

In other words only interpeak relaxation of the probability distribution
will be considered.

-15-



Using a method similar to Kramers' theory of chemical reaction
rates we find :

Qe = r(e) - s() N_ (4.5)
with
(1) = 1 (= U(x ) U x )P exp (- & au) (4.62)
q
s(t) = ;—n (- U"(x,) U"(x+))1/2 exp (- —2—5 AUL) + r(t) (4.6b)
q
where
AUi = U(xo) - U(Xt) >0 . (4.7)

This quantity represents the potential barrier that has to be overcome

by the system in order to perform a transition from T, to T_ or vice

versa.

From eq. (4.5) one can immediately see that the coefficient of
N_defines the inverse of the characteristic time associated with a
transition.of the system. For q2 << AU, (i.e. for small fluctuations) this
time will be very long. We have ther‘e—for‘e succeeded in identifying the

missing long time scale pointed out in the Introduction.

A Now, owing to the smallness of the periodic forcing it is
legitimate to linearize expressions (4.6) around the autonomous evolution

-16-



r(t)

r, + p sinwt , (4.8a)

s(t) = s, + 0 sinwt (4.8b)

This allows us to seek for time dependent solutions of the form

-~

N_ =N_ sin(wt + ¢) + N.. (4.9)

After some long but straightforward calculations we find the following

expressions for the amplitude and the phase shift

1 p - N o
— ] (4.10)

ﬁ = E[ -

( 1 + A So

? = - arctg g— : (4.11)

We have analyzed eq. (4.10) for the three representative cases
mentioned in Section 2. We found that for case (i) and case (iii), its
numerical value is exponentially small. However, the situation changes if
the present climate and a deep-freeze climate are equally probable
(case(ii)). In that case, for typical values of tHe variance of fluctua-
tions, the factor in square brackets is of the order of 102. For a
forcing amplitude of 0.001 corresponding to the eccentricity variation of
the earth's orbit (see e.g. Imbrie and Imbrie, 1980), N_ would
therefore be conditioned by the inverse of the square root. The latter

depends on the ratio of the two inverse characteristic time scales w and

-17-



s _. For wusual values of q2 and AU,, s_ is a very small quantity.

o} o)
Therefore, if w is of the order of 1 (such as the frequency associated
with the 11 or 22-year solar cycle), the first factor in eq. (4.10) would
be exceedingly small and the stochastic response to this type of forcing

would be negligble.

The situation is completely different if w and s, are of the
same order of magnitude. One then obtains an amplitude of N_ of the
order of 0.1, which is quite appreciable compared to the steady-state
value No. 0.5 one would obtain in the absence of forcing when the
two states T, and T_ are equally dominant. Everything happens as if
the barrier that has to be overcome for a transition between T, and T_
say, (reminiscent of a glaciation) becomes significantly smaller for
certain time intervals. The situation is represented in curve (a) of Fig.
3 and Fig. 4.

Similar conclusions have been reached by Benzi et al (1980)
on the basis of computer simulations. They refer to this phenomenon as

stochastic resonance. As we see however from eq. (4.10) the system

does not exhibit a resonance in the usual sense of the term, but rather
the ability to amplify the response to a low frequency forcing under

certain conditions.

5. NUMERICAL RESULTS - CONCLUDING REMARKS

For the model described by eqs. (3.1) to (3.3) and by Fig. 1
the time dependent Fokker-Planck equation, eq. (2.5), was integrated
numerically using a method develloped by Chang and Cooper (1970).
First, the steady state probability distribution in the absence of forcing
was obtained. And next, the forcing was added and the long time
behavior of the probability was determined.

-’]8- .
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Fig. 3.- Curve (a) : Time dependence of the climatic potential difference
— 2n
105
and an amplitude ¢ = 0.001 simulating the variation of the eccentricity

of the earth's orbit.

u(t) = U(x+,t) - U(xo,t), subject to a periodic forcing with w =

Curve (b) : Time evolution of the differerice of the pr‘bbabilities of the
two stable states T, and T_, divided by the steady state probability
PS ~ PS(T+) ~ PS(T_), in the presence of the forcing repr‘esen:ted in
curve (a).i Here and in. Fig. 4 the time <cale is normalized in such a

way that C = 1. The values of the other parameters are as in Fig. 2.
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Curve (a) : Time dependence of the climetic potential difference U(t) =

Fig. 4.-

U(x,,t) - U(xo,t), subject to a periodic forcing with frequency w = %n

and an amplitude € = 0.001.

Curve (b) : Time evolution of the difference of the probabilities of the
two stable states T, and T_, divided by the steady state probability
Ps ~ Ps(T+) ~ PS(T_), in the presence of the forcing represented in

curve (a).
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Curve (b) of Fig. 3 gives the main result in the case of a
long periodicity simulating the 100,000 year variation of eccentricity. We
start with a steady-state solution in the absence of forcing such that

P.(T,) ~ P(T.), and choose the variance q°

such that w = So (see eq.
4.10). The presence of forcing introduces then a rather dramatic varia-
tion of (P(T+)-P(T_)), of the order of 20% compared to the steady state
value. This reflects the fact that the passage over the barrier becomes
easier during certain time intervals. Note that there is a considerable
time lag between forcing (curve (a)) and response (curve (b)), in

quantitative agreement with eq. (4.11).

Curve (b) of Fig. 4 gives the stochastic response to the
11-year cycle. We see that P(T ) - P(T_ ) is now practically negligible
in agreement with the analytical expression, eqg. (4.10).

In summary, in this paper we performed a stochastic analysis
of a simple 0-d energy balance model showing bistable behavior, in the
presence of a periodic forcing. The amplitude of the forcing was so
small that the deterministic response was negligible. Yet in the presence
of fluctuations, the amplitude of the response could change dramat-
ically, depending on two basic quantities : i) the properties of the
climatic potential and ii) a characteristic time scale related to the
variance of fluctuations. Under certain conditions the passage over the
potential barrier is facilitated and the shape of the probability distribu-
tion changes periodically, favoring one of the stable states during
certain time intervals. An attempt was made to relate these results to
the 100,000 yr periodicity in glaciation cycles.

The work we reported can be extended in many directions. It
would be interesting for instance to consider the effect of fluctuations
which couple to the system in a multiplicative way through such
parameters as Q and €g- Similarly, we can relax the hypothesis of
purely periodic variation of the solar ‘influx and analyze the effect of a

-2']-



random forcing around some mean periodicity. Finally, we could use
more sophisticated climate models taking spatial effects into account.
This latter extention is particularly interesting in view of the local

character of the fluctuations.
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