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The paper ent i t l ed : "S tochas t i c aspects of c l imat ic t r a n s i -

t ions - Response to a pe r i od i c f o r c i n g " wi l l be pub l i s hed in Te l l u s , 34, 

1982. 
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we rden . 



STOCHAST IC A S P E C T S OF CL IMATIC TRANSIT IONS -

RESPONSE TO A PERIODIC FORCING 

by 

C . NICOLIS 

Abstract 

The time dependent properties of the Fokker-Planck equation 

corresponding Lo a zero-dimensional climate model, showing bistable 

behavior and subject to a weak external periodic forcing are analyzed. 

Conditions under which the response is amplified are found analyt ical ly . 

In this way the possibility of transit ions between climatic states is 

established. The results are i l lustrated by the 100,000 y r periodicity of 

the eccentricity of the earth's orbit , in connection with glaciation 

cycles . 

Résumé 

Dans ce travai l on étudie le comportement d'un modèle 

climatique global donnant lieu à deux états stationnaires stables. On 

montre qu'en présence des fluctuations internes , une faible perturbation 

périodique systématique du f lux solaire peut engendrer une transit ion 

entre les états climatiques. Ces résultats fournissent une interprétation 

plausible de la périodicité dominante des glaciations. 



Samenvat t ing 

De t i j d sa fhanke l i j ke e i genschappen van de F o k k e r - P l a n c k 

v e r ge l i j k i n g c o r r e sponde r end met een nu l -d imens ionna l kl imaatmodel met 

een b i s tab ie l ged rag en onde rwo rpen aan een zwakke u i twend ige 

pe r i od ieke k r a c h t , worden onde r zo ch t . Voorwaarden waarvoor het an t -

woord v e r s t e r k t i s , worden ana l y t i s ch opges te ld . A l d u s word t de 

moge l i jkhe id van ove rgangen tus sen k l imaattoestanden aangetoond. De 

resu l ta ten wórden ge ï l l u s t r ee rd door de 100.000 jaar pe r i od i c i t e i t van de 

eccen t r i c i t e i t van de baan van de Aa r de , in v e r b and met de i j s t i jd 

c y c l i . 

Zusammenfassung 

Die ze i t l i che E igenscha f ten de r F o k k e r - P l a n c k G l e i chung f ü r 

einem nu l l d imens ion ie r ten k l imat ischen Model mit zwe ibes tänd igen Be t r ag 

und e iner k le inen aüsse r l i chen pe r i od i s chen K r a f t s i nd ana l y s i e r t . So 

f i nde t man ana l y t i s che Bed i ngungen d ie zu e iner V e r g r ö s s u n g de r 

An two r t des Sys temen le i te t . Die Mög l i chke i t f ü r Ube rgängen zw i s chen 

k l imat i schen Zus tänden w i r d f e s tges te l l t . Die E rgebn i s se werden f ü r de r 

100000 Jah re Per iode länge de r Ex zen t r i z i t ä t de r E r dbahn in V e r b i n d u n g 

mit den E isze i ten e r l ä u t e r n t . 



1. INTRODUCT ION 

In a previous paper (Nicolis and Nicolis, 1981, hereafter 

referred to as I ) , a nonlinear theory of climatic fluctuations has been 

developed. The starting point was to incorporate in the climate 

dynamics the effect of random imbalances between the various transport 

and radiative mechanisms. The usual, deterministic rate equations (such 

as the equation of energy conservation) were thus replaced by 

stochastic differential equations. Under the assumption of a Gaussian 

white noise, the latter were equivalent to a Fokker-Planck equation for 

the underlying probability density. 

In I, the steady-state solutions of the Fokker-Planck equation 

have been analyzed in detail for a simple zero-dimensional model 

involving two stable climatic states separated by an unstable one. It 

was shown that the basic properties of the probability distribution are 

monitored by a quantity which was called the climatic potential, playing 

in the theory a role analogous to that of free energy in thermo-

dynamics. The minima of this potential give the positions of the stable 

climatic states. Under certain conditions on the parameter values the 

depth of the minima could become equal, and as a result the stable 

states be equally dominant. This situation was referred to as the climatic 

coexistence. 

The time-dependent behavior of the fluctuations turned out to 

be much more involved. Still, some results were obtained in paper I 

using the ideas of Kramers' theory of passage over a potential barrier, 

and confirmed by numerical simulations. The most striking of these 

results concerns the characteristic passage time between the two stable 

climatic states, which turned out to be 



2 
T ~ exp ( ~2 AU ) 

q 
(l.i) 

2 
Here q is the var iance of the f luc tuat ions and AU the height of the 

bar r ie r -essent ia l l y the d i f fe rence of the values of the climatic potent ial 

between the unstable and one of the stable states. The point is tha t i f , 

as usua l ly , f luc tuat ions are small w i th respect to the magnitude of the 3 
b a r r i e r , t is a long time scale of the order of 10 years or more. Such 

scales are absent f rom the determinist ic energy balance equat ions, 

which t yp ica l l y p red ic t relaxat ion times of the order of the year . 

The purpose of the present paper is to examine the 

consequences of the existence of a long time scale, eq. ( 1 . 1 ) , in climate 

dynamics. I t is well known tha t the glaciat ion cycles, which are 

cer ta in ly the most dramatic episodes of the qua te rnary era, have a 

dominant per iod ic i ty of 100,000 y r s . Th is time scale coincides wi th the 

per iod of var ia t ion of the eccent r ic i ty of the ear th 's o rb i t ( B e r g e r , 

1978). Despite many e f f o r t s , however, the response of simple ene rgy -

balance models to a weak external signal having th is per iod ic i ty t u rned 

out to be ve ry weak and hence incapable of t r i g g e r i n g a major climatic 

change. I t is the purpose of our work to show that the s i tuat ion may 

be completely d i f f e ren t when the coupl ing between the external fo rc ing 

and the internal f luc tuat ions of the climatic system is considered 

exp l i c i t l y . 

In Section 2 we in t roduce a simple zero-dimensional climate 

model hav ing two stable states separated by an unstable one, and 

summarize the proper t ies of the determinist ic response to a per iodic 

var ia t ion of incoming solar energy . In Section 3 the stochastic descr ip -

t ion is set up . Section 4 and 5 are devoted respect ive ly , to the analyt ic 

and numerical resul ts of the response to the periodic var ia t ion . We show 

tha t the response is considerably amplif ied when a matching between the 

character is t ic time scale of f luc tuat ions (eq. ( 1 . 1 ) ) and the per iod ic i ty 
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of the incoming solar energy occurs. A preliminary account of this 

result has been given in a recent communication by the author (Nicolis, 

1980). 

2. A S I M P L E Z E R O - D I M E N S I O N A L MODEL S U B J E C T TO A P E R I O D I C 

F O R C I N G 

In much of this paper we shall be concerned with a set of 

climatic variables x which in the absence of fluctuations, obey to a 

closed equation of evolution of the form : 

= f (x, k, t) = f Q (x, X) + e fj (x, t) (2.1) 

Here f is an appropriate nonlinear rate function, and A. stands for a set 

of characteristic parameters such as albedo, emissivity and so forth. 

Th i s function is decomposed into a part fQ corresponding to an auto-

nomous evolution, and to a time-dependent part f^ descr ibing the effect 

of some external forcing proportional to e. A s in paper I, of special 

interest for our work are cases where the steady-state solutions of the 

system in the absence of the above time dependent forc ing, 

f 0 ( x s , A) = 0 (2.2) 

are multiple and see their stability properties change as the parameters 

X take different values. 

More specifically, suppose that x denotes the average surface 

temperature. The rate function f in eq. (2.1) is then the difference 
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between the solar in f lux Q(1 - a ( x ) ) [a being the albedo] and the 
-4 

i n f ra red cooling ra te , e^crx / [£g being the emissiv i ty and a the Stefan 

cons tan t ] . Eq. ( 2 . 1 ) becomes : 

g = £ [Q( l - a ( x ) ) - £ B o i 4 ] (2 .3) 

where C is the thermal iner t ia coef f ic ient . 

In the major i ty of climate models Q is taken to be constant . 

On the other hand, i t is known that the solar ou tpu t d isplays ve ry 

pronounced va r iab i l i t y at d i f f e ren t time scales. One example ic the 

sunspot cycle which despite an inherent noise, shows an approximate 11 

year per iod ic i t y . Another example more s ign i f icant fo r our purposes is 

the s l igh t change in the mean annual in f lux ar is ing from the var ia t ion 

of the eccent r ic i ty of the ear th 's o r b i t . Hereafter we are interested in 

the ef fect of such time dependent f o r c ing , in the presence of f l uc tua -

t ions. To s impl i fy the analysis as much as possible we descr ibe the 

above mentioned near ly per iodic var ia t ion in the form 

Q = Q (i +
 e
 sin u)t) (2.4) 

The unper tu rbed solar constant d iv ided by 4 is taken to be Q q = 

340 Wm"2 . 

For temperature values T near the present -day cl imate, a ( x ) 

is usual ly taken to be a rough ly l inear func t ion of i ts argument (Cess, 

1976; Nicol is, 1980a). On the other hand, fo r ve ry low x a must tend 

to the albedo of ice, a. whereas fo r h igh x , a should also saturate to ice 
some value, a. . descr ip t ive of an ice- f ree ear th . The simplest 
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representation taking these features into account is the zero-dimensional 

( 0 - d ) piecewise linear model proposed by Crafoord and Kallen (1978). 

Analytically, we write : 

1 - aOO = 1 - a . c e = , 5 < T j ' 

1 - a(x) = 1 - a + px = + P* , Tj < x < T2 (2 .5) 

1 - a(x) = 1 - a h Q t = y2 , x > T2 

Using the explicit dependence of the albedo on T as given by 
eqs. ( 2 . 5 ) in eq. ( 2 . 3 ) we see that in the absence of periodic forcing 
and for appropriate values of the parameters v 0 ' V-J / Y2

 a n d 0 t h e 

system may admit three steady state solutions. One of them, denoted 
hereafter by T , corresponds to the present-day climate and is 
asymptotically stable, provided the parameters YQ and p are chosen in 
such a way that the planetary albedo is 0.30 and the emissivity is e B = 
0.61. The second solution, denoted by T_, corresponds to a deep-
freeze climate and is also asymptotically stable. A third solution TQ lies 
between T + and T_ and is unstable. 

Before we analyze the stochastic properties of the system 
defined by eqs. (2 .3 ) to (2 .5 ) we briefly review the main features of 
the deterministic response. We f irst write the energy balance equation 
in the form : 

g = £ [Qq (1 - a (x ) ) - e f i a x 4 ] + £ Qq e ( l - a (x ) ) sinuit 

= - U ' (x) + i e ( l - a (x ) ) sinuit (2 .6) 
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where IV denotes the derivative of the climatic potential introduced in 

paper I with respect to its argument : 

- - I U (x) = - f (x, A) dx (2.7) O J o 

As a rule, e is small. Hence, to a good approximation one may linearize 

the above equation around the stable states T + and T_. Setting 

= T+ + 6T+ (2.8) 

we obtain : 

dôT+ , 
- = - U" (T. ) ÔT. + £ Q £ ( 1 - a (T.) ) siniut (2.9) I O X X L O X dt 

In the limit of long times the response around the present-day climate 

predicted by eq. (2.9) is easily seen to be of the form : 

1 - a cUM (T+) 
ÔT ( t ) = £ — 1 r Q 2 — — s in (u)t + 6) (2.10a) 

L u, + (UM (T )) cos -o + 

where the signal-response phase shift is given by 

tg 6 = 
w 

U" (T ) 
(2.10b) 



From this expression we see that if e is small the amplitude of the 

response is negligible. For instance, for the model considered in this 

Section with the usually accepted values for C and p and for e = 0.001, 

which is the estimated change of solar influx arising from the eccen-

tricity variation of the earth's orbit (Imbrie and Imbrie, 1980) one finds 

an upper bound for 6T + of the order of 0.1°K. Moreover if u> « 

(that is, if the periodicity of the forcing is very long), the phase shift 

practically vanishes and the amplitude of the response is independent of 

the thermal inertia coefficient C. As we see later, these conclusions 

change radically when fluctuations are taken into account. 

3. S T O C H A S T I C DESCR IPT ION 

As discussed in the Introduction, the deterministic description 

must often be extended to take into account the fluctuations, associated 

with random imbalances between the various transport and radiative 

mechanisms involved in the rate function f (x , k, t ) . We denote their 

effect by a random force F(t) and assume the latter to be x-independent 

and define a white noise (Wax, 1954) : 

< F( t ) > = 0 
(3.1) 

< F( t ) F ( t ' ) > = q2 6(t - f ) 

Here < > denotes the expectation operator over the ensemble of possible 

realizations. 

Eq. (2.1) is now to be replaced by the stochastic differential 

equation 



g = f ( x , X, t ) + F ( t ) (3 .2) 

As well known (see e .g . Arnold, 1973) eqs. ( 3 . 1 ) and ( 3 . 2 ) are 
equivalent to the following Fokker-Planck equation with nonlinear 
friction coefficient and constant diffusion coefficient : 

= - f j f ( x , X, t ) P ( x , t ) • 4 ^ f ^ l (3 .3) 
dx 

where P ( x , t ) is the probability density for having the value x of the 
state variable at time t . 

As shown in paper I , in the absence of time-dependent 
forcing, 

f = fQ (x, X) 

eq. ( 3 . 3 ) has a stationary solution in the form of a two humped distribu-

tion (see Fig. 1) 

P ( x ) = Z"1 exp [ - \ U (x ) ] (3 .4) S O 4 o 
q 

ZQ being the normalization factor. In the presence of forcing the above 
procedure is no longer applicable. Nevertheless, if the external periodi-
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I 

Fig. 1.- A typical two-humped probability distribution in the case of coexisting 

climatic states. 



city is v e r y long with respect to the characterist ic relaxation time 
( I T + ) , one expects that a quasi-steady state regime will be 
established in which the system would adapt at each moment to the 
instantaneous state of the external environment. Specif ical ly , let us 
define a time-dependent potential 

U(x, t ) = - ƒ  f ( x , t ) dx (3.5) 
x 

and the associated probabil ity distr ibution 

P (x, t ) = Z _ 1 ( t ) exp [ - ^ U(x, t ) J (3.6) 
q2 

I 

T h i s function cancels identically the r ight hand side of eq. ( 3 . 3 ) , but 
in the left hand side it g ives terms proportional to 8U/8t or , according 
to eqs. ( 2 . 1 ) and ( 2 . 4 ) , terms of the order of the frequency UJ of the 
external forc ing. If UJ is small, it is sensible to assume that on the time 
scale of interest, the maxima of P will have relaxed to the values x + 

given by the deterministic description of Section 2, which are the 
minima of U. Moreover, because of the smallness of the deterministic 
response 6 T + (see eq. 2.10a), we may assume that these extrema remain 
f i xed, and are essentially identical to the values T + which correspond 
to the steady-state solution in the absence of the forcing (see F ig . 1) . 
In short , we expect that the exact probabil ity P will have properties 
similar to P g ( x , t ) as far as the location of the most probable states is 
concerned. 

On the other hand, as shown in paper I , in addition to the 
evolution of the extrema, there is a slow interpeak relaxation process 
associated with the adjustment of the probabil ity mass around the 
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extrema. As its rate may be comparable to the above estimated rate of 

change of P g ( x , t ) , it is essential to incorporate it into the description. 

We do this by applying, as in paper I, Kramers' theory of diffusion 

over a potential barrier (Wax, 1954). Actually because of the time-

dependence of the friction coefficient in eq. (3.3) we need a genereliza-

tion of Kramers' theory, and this is most conveniently carried out using 

a recent reformulation of this theory due to Gardiner (Gardiner, 1980). 

Let M(x, t ) , denote the total probability mass from zero up to 

some value of x of the state variable : 

M(x, t) = ƒ P(x', t) dx' (3.7) 

Of particular interest are the values of this quantity associated with the 

domains of attraction of the two maxima of P : 

N _ ( t ) = M ( T
q >
 t) 

N
+
(t) = 1 - N_(t) = 1 - M ( T

o
, t) (3.8) 

We also introduce the corresponding expressions for the quasi-

stationary distribution P g ( x , t) : 

T
Q 

n_(t) = 1 - n
+
(t) = ƒ P

s
(x', t) dx' (3.9) 

o 
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We now formulate the main 

Assumption : In the whole range of values of x , the x- dependence of 
P(x , t ) is taken to be proportional to P g ( x , t ) . To ensure proper 
normalization this implies that : 

P(x , t) s N_ (t ) n * t ) P g ( x , t) x < Tq 

P(x , t) S N o ( t ) n J t ) P s ( x , t) = 0 x = Tq ( 3 . 10 ) 

P (x , t) 3 N + ( t ) P s ( x , t) x > T q 

The problem of solving the Fokker-Planck equation amounts 
now to finding an equation for either of the two weight functions N_(t ) 
or N + ( t ) , which reflect the relative importance of the two stable states. 
To this end we differentiate eq. ( 3 . 7 ) with respect to time and sub-
stitute the time derivative of P from the Fokker-Planck equation : 

M dx 

= u - ( x , t ) PCX, t ) § P £ | ^ t ) (3 .11 ) 

where we assumed that the probability flux is zero at the boundary 
x =0 (see paper I for a discussion of this point). Taking into account 
the explicit form of Pg (X/ t ) , eq. ( 3 . 6 ) , we write eq. (3 .11) in the 
equivalent form 
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from which we get 

According to eq. (3.6) and Fig. 1, the function P (x, t) is sharply 

peaked on the two minima T_ and T+ of the potential U and is 
-1 

practically vanishing at T q . Conversely, P g (x, t) presents a very 

sharp maximum at x = T . Thus, for all practical purposes only the 

value of M(T q / t) matters in eq. (3.13). Now, from definition (3.7) and 

our main Assumption, 

Consequently, eq. (3.13) becomes, after utilizing once again our main 

Assumption : 

T 

M(To> = D O " / P (x', t) dx' = N_(t) (3.14) 

o 

N (t) N (t) 

n (t) n (t) 

o 
] (3.15) 

o 

A similar procedure leads to an equation relating N + , NQ and N 

Summarizing : 
+ " 

N (t) = A (t) N (t) - \ N (t) — n o — — (3.16a) 

N + ( t ) = a ; N o ( t ) - A + N + ( t ) + (3.16b) 
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where  we  have  set 

( / T vv> d *') _ 1 
o  T 

X 

T 1 4 r ( ƒ%>•)-»•) 
T 

X 

o 4 ^ ( f+v*'> )"' 
O T 

T„ 

(3.17) 

From  now  on  the  time  dependence  of  n and  P g  will  not  be  indicated 

expl ic i t ly . 

Summing  the  two  relations  (3.16)  and  taking  into  account  that 

N+  + N_  = 1, we  obtain 

X + X' 
p o 

Subst i tut ing  back  into  eq.  (3.16a)  we  obtain  a closed  equation  for  the 

weight  N_(t)  of  the  probabi l i ty  function  around  x = T_ : 

N = r + (r_  + r+)  N (3.19) 
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with 

X* X o 

X + X' o o 

X X 
0 + ( 3 . 2 0 ) 

X + X' o o 

Both r_ and r + can easily be evaluated asymptotical ly, by expanding 
P~1 in eq. ( 3 . 1 7 ) around its unique maximum at T q and by computing 
the integral us ing the steepest descent method (see also paper I ) . One 
f inds in this way : 

[ - U"(T ) U"(T ) ] 1 / 2 exp [ - ^ ^Uj 
q 2 

( 3 . 2 1 ) 

[ - U"(T ) U " ( T + ) ] 1 / 2 exp [ - \ AU+] 
° q 

where 

AU+ = U(T , t ) - U ( T ± ) t ) ( 3 . 2 2 ) 

is the instantaneous value of the potential barr ier separating the stable 

states from the unstable one. 

r = 271 

r
+

 = 271 
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4. STOCHASTIC RESPONSE TO A WEAK PERIODIC FORCING 

We now evaluate the solution N_(t) of eq. (3.19) - which will 
automatically give to us the N + ( t ) as well - in the case in which the 
system is submitted to the weak periodic forcing described in Section 2. 
This means that the potential l ) (x , t ) is to be split in a way similar to 
eq. (2 .1 ) 

U(x, t) = U Q ( X ) + e Uj ( X , t) (4.1) 

If s is a small quantity, the coefficients r_ and r + appearing in eq. 
(3.18) could be linearized around their values corresponding to the 
absence of forcing : 

r+ = r + + e p+ sinu>t (4.2) 

This allows us to seek for solutions of the form : 

N_(t) = N_ s in (u)t + < ( > ) + N Q _ (4.3) 

where N is the stationary solution in the absence of the forcing 

N 
o+ 

r + o- of 
(4.4) 
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Substituting eqs. ( 4 . 2 ) - ( 4 .4 ) into eq. (3 .19) and keeping only linear 
terms we find straightforwardly the amplitude of the response : 

1 o - N (p f p ) 
M _ r + o- + -N - , : j ~ Y / 2 E 

1 V Of O- ' J 
+ r o+ o -

(4.5) 

and its phase shift : 

<)» = - arctg - (4 .6 ) 
r + r 
o+ o-

Thus, the characteristics of the stochastic response are monitored by 
the quantity u)/(rQ + + r Q _) , which is the ratio of the two characteristic 
times of interest in this problem : The period of the external forcing, 
and the characteristic time of interpeak relaxation in the absence of 
forcing (cf . eq. ( 3 . 1 9 ) ) . This is in agreement with the qualitative 
arguments advanced at the beginning of Section 3. 

Let us now evaluate more explicitly expressions ( 4 . 5 ) and 
2 

( 4 . 6 ) . In the limit where the variance q is small compared to the 
magnitude of the barrier AU+, the coefficients p+ are given by 

P± = uoo u o ± ) 1 / 2 AU1± e x p h A U0± ] ( 4 - 7 a > 
nq 

where 
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U" = U"(T ) oo o o 

U" = U"(T.) o± o ± 

with (see eq. 4 . 1 ) ) : 

AUo± = W - W 

AU1± = U a (T ± ) - U ^ ) (4.7b) 

On the other hand from eqs. (3 .21) 

V " k <- "oo U o - ) 1 / 2 I" % 4 Uo±' ( 4 - 8 ) 
q 

and from eq. ( 4 . 4 ) 

1/2 r 2 
0+ 

N 

< D V e X P 2 A U J 
q 

" ( U " o _ ) 1 / 2 exp f - % A U q J + ( U " ^ ) 1 7 2 exp [ - \ A U j 

q q 
(4 .9) 

Using these relations it is easy to see that if the values of the time-
independent part of the climatic potential U, at the two stable states T + 

and T are not equal, the amplitude N_ of the response behaves as 
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N_ ^ exp [ - \ |Uo + - Uo_ I ] (4 .10) 
q 

2 
and is therefore negligibly small if the variance q is small, as it is 

expected to be. Therefore the only case where we may have a 

significant response is when 

U ~ U (4 .11) 
o+ o-

In paper I we referred to this situation as the climatic coexistence case. 

Expression ( 4 . 5 ) now becomes 

(U" U" ) 1 / 2 (Au - An ) O - Q+ I j f 1 -

[ (u" ) 1 / 2 + (U" ) 1 / 2 ] 2 
o - o+ 

N = — 

l I + ( ^ - ) 2 ] L v cH- o- J 

2 I 1/2 

(4 .12) 

One can easily check that ( U ^ 1 ^ 2 are typically of order unity and 

from eqs. ( 4 . 7 b ) , the quantity inside the curly brakets turns out to be 

about 2 x 103 y r " 1 ° K 2 . F o r a forcing amplitude of 0.001 corresponding 

to the eccentricity variation of the earth's orbit ( Imbrie and Imbrie, 

1980) we find therefore that the stochastic response N_ is crucially 

dependent on the magnitude of the q - dependent factors 

u ,2 -,- 1/2 

7 I'M — )] 
of O-

Notice the highly singular dependence of this part on q. As a matter of 

fact , we have two competing factors : 2 /q which increases if q is 
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becoming small, and the inverse square root which, in view of eq. 
( 4 . 8 ) , decreases for a fixed u> if q becomes small. 

? 
For usual values of q and Al l . , ( r . + r ) is a very small i o+ o-

quantity. Therefore, if u) is of the order of 1 (such as the frequency 
associated with the 11 or 22-yr solar cycle), the inverse square root 
factor would be exceedingly small and the stochastic response to this 
type of forcing would be negligible. 

The situation is completely different if UJ and ( r Q + + ) / in 
other words, the two inverse characteristic times of the problem, are of 
the same order of magnitude. With the value of q for which this 
equality is achieved one finds that the amplitude N_ is of the order of 
0 .1 , which is quite appreciable compared to the steady-state value 
N ^ 0.5 one would obtain in the absence of forcing when the two o-
states T + and T_ are equally dominant. Everything happens as if the 
barrier that has to be overcome for a transition between T + and T_ say 
(reminiscent of. a glaciation), becomes significantly smaller for certain 
time intervals. The situation is represented in curve (a ) of Figs. 2 and 
3. It can be easily shown that the quasi-steady state of the probability 
distribution P g ( x , t ) is hardly affected by the forcing. The behavior of 
P(x , t ) is therefore entirely dominated by the two weight factors N_ 
and N + (see eqs. ( 3 . 1 0 ) ) . 

Similar conclusions have been reached by Benzi et al (1980) 
on the basis of computer simulations. They refer to this phenomenon as 
stochastic resonance. As we see however from eq. (4 .12) the system 
does not exhibit a resonance in the usual sense of the term, but rather 
the ability to amplify the response to a low frequency forcing under 
certain conditions. 
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5. NUMERICAL RESULTS - CONCLUDING REMARKS 

For the model described by eqs. ( 2 . 3 ) to ( 2 . 5 ) , the time-
dependent Fokker-Planck equation, eq. ( 3 . 3 ) , was integrated 
numerically using a method developped by Chang and Cooper (1970). 
First, the steady-state probability distribution in the absence of forcing 
was obtained. And next, the forcing was added and the long time 
behavior of the probability was determined. The following parameter 
values have been adopted : a j c e = 0.82, a h Q t = 0.25, p = 0.0075. These 
values correspond to the coexistence case U Q + ~ UQ_. In the absence of 
forcing the height of the potential barrier separating the unstable state 

- 1 2 
from either of the two stable states is found to be AUq+ ~ 213 yr °k . 

Curve ( b ) of Fig. 2 gives the main result, in the case of a 
long periodicity simulating the 100,000 yr variation of eccentricity. We 
start with a steady-state solution in the absence of forcing such that 

? 
P ( T ) ~ P ( T _ ) , and choose the variance q such that u) = r Q + + 

S + S o 

rQ_(see eq. 4 . 5 ) . This yields q / (2AU q + ) ~ 0.12. The presence of 
forcing introduces then a rather dramatic variation of P ( T + / t ) of the 
order of 20%. This reflects the fact that the passage over the barrier 
becomes easier during certain time intervals. Note also that there is a 
considerable time lag between forcing (curve ( a ) ) and response (curve 
( b ) ) , in quantitative agreement with eq. ( 4 .6 ) : 

. <t> - 45° 

That is, the maximum of the response at T + lags behind the forcing by 

about 12,500 yrs. 
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TIME (years x 105) 

F ig . 2 . - C u r v e ( a ) : Time dependence of the periodic fo rc ing with f requency 
5 - i 

uj - 271/10 y r and an amplitude e = 0.001 simulating the var iat ion of 

the eccentricity of the ear th ' s orb i t . 

C u r v e ( b ) : Time evolution of the probabi l i ty of the stable state 

P ( T + , t ) d iv ided by its value in the absence of forc ing P ^ ( T + ) ~ 

P s ( T _ ) , in the presence of the forc ing represented in cu r ve ( a ) . Here 

and in F ig . 2 the time scale is normalized in such a way that C = 1. 



According to the analytic treatment, a measure of the import-
ance of the response is also the total probability for remaining at tem-
peratures higher than the unstable value T , denoted by N + ( t ) , (see 
eq. ( 3 . 7 ) and ( 3 . 8 ) ) . It is thus of interest to consider the numerically 
computed 

I (P(T, t ) ) 
T >, T ^ o 

reduced by its value in the absence of the forcing, as a function of 
time. One finds that the amplitude of the response is also of about 20%, 
in agreement with Fig. 2 and with the analytic prediction, eq. (4 .12 ) . 

Curve ( b ) of Fig. 3 gives the stochastic response to an 11 yr 
periodicity simulating a possible variation of the solar influx with the 
sunspot cycle. We see that the variation is now practically negligible, 
as expected from the analysis of the preceding Section. In addition, if 
one considers as before, the total probability I P (T , t ) the amplitude 
of the response is so small that its value is certainly within the 
numerical error . This is again in complete agreement with the analytical 
expression (4 .12 ) . 

The pronounced difference between the two responses can be 
understood as follows : In the presence of a long periodicity the system 
is given enough time to perceive the lowering of the potential barrier 
that occurs periodically, and perform more easily a transition between 
the two climatic states. In contrast, for a short periodicity the system 
is unable to adjust to the instantaneous external conditions in view of 
the large value of the characteristic passage time, eq. ( 1 . 1 ) . 

In summary, in this paper we performed a stochastic analysis 

of a simple 0-d energy balance model showing bistable behavior, in the 
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I ro O) i 

TIME (years) 

Fig. 3 . - Curve (a ) : Time dependence of the periodic forcing with frequency 
_i 

10 = 2ti/11 yr and an amplitude e = 0.001, simulating a possible varia-

tion of the solar influx with the sunspot cycle. 

Curve ( b ) : Time evolution of the probability of the stable state 

P ( T + , t ) divided by its value in the absence of forcing P g ( T + ) ~ 

P s ( T _ ) , in the presence of the forcing represented in curve ( a ) . 



presence of a periodic forcing. The amplitude of the forcing was so 

small that the deterministic response was negligible. Yet in the presence 

of fluctuations, the amplitude of the response could change dramat-

ically, depending on two basic quantities : i) the properties of the 

climatic potential and ii) a characteristic time scale related to the 

variance of fluctuations. Under certain conditions the passage over the 

potential barrier is facilitated and the shape of the probability distribu-

tion changes periodically, favoring one of the stable states during 

certain time intervals. An attempt was made to relate these results to 

the 100,000 yr periodicity in glaciation cycles. We have been able to 

work out a comprehensive analytical theory of these phenomena, which 

is in complete agreement with the numerical simulations. 

The work we reported can be extended in many directions. It 

would be interesting to consider the effect of fluctuations which couple 

to the system in a multiplicative way through such parameters as Q and 

e D . Similarly, we can relax the hypothesis of purely periodic variation 

of the solar influx and analyze the effect of a random forcing around 

some mean periodicity. Finally, we could use more sophisticated climate 

models taking spatial effects into account. This latter extension is 

particularly interesting in view of the local character of the fluctua-

tions. 
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