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FOREWORD

The paper entitled : "A free boundary value ‘problem arising

in climate dynamics" will be published in The International Journai of

Heat and Mass Transfer, 25, 1982.

AVANT-PROPOS

L'article intitulé : "A free boundary value problem arising :r
climate dynamics" sera publié dans The International Journal of Hea!

and Mass Transfer, 25, 1982.

VOORWOORD

Het artikel getiteld : "A free boundary value problem arising
in climate dynamics" zal verschijnen in het tijdschrift The Internationai

Journal of Heat and Mass Transfer, 25, 1982.

VORWORT

‘Die Arbeit : "A free boundary value problem arising in
climate dynamics" wird in The International Journal of Heat and Mass

Transfer, 25, 1982 herausgegeben werden.



A FREE BOUNDARY VALUE PROBLEM ARISING

IN CLIMATE DYNAMICS

by

C. NICOLIS

Abstract

A heat and mass transfer problem of geophysical interest
involving coexisting phases is studied. The dynamical system considered
is the atmosphere-hydrosphere-cryosphere, wherein the spatial degrees
of freedom along the vertical and longitudinal directions have been
lumped. The reduced one-dimensional system is modelled by a simple,
yearly averaged, energy balance model taking into account the coupling
between the two phases present : the ice sheets and the ocean. This is
done self-consistently by introducing a Stefan type of boundary
condition at the interface. The resulting balance equation is linearized
and solved analytically using mdde truncation and Galerkin's method. -
The analysis is centered on the stability of the present-day climatic
regime with respect to small excursions of the ice boundary. Special
emphasis is put on the thermodynamic aspects, as well as on the

characteristic time scales of evolution.



Résumé

On étudie le transfert de masse et de chaleur en présence de
phases coexistantes dans un probleme d'intérét géophysique. Le systéme
dynamique considéré est l'atmosphere-hydrosphére-cryosphére, olu l'on a
effectué des moyennes suivant les directions verticale et longitudinale
Le systeme réduit qui en résulte est stylisé par un modele de bilan
énergétique uni-dimensionel tenant compte du couplage entre les deux
phases en présence (les calottes glaciaires et les océans), par
I'intermédiaire d'une condition aux bords du type Stefan (probléme de
frontiere libre). L'équation de bilan est résolu analytiquement dans
I'approximation linéaire, par une procédure de troncature de modes,
ainsi que par la méthode de Galerkin. On obtient ainsi des informations
sur la stabilité du climat actuel par rapport a de petits déplacements de
la limite de la glace. On insiste également sur les aspects thermo-
dynamiques, ainsi que sur les échelles de temps caractéristiques de

{'évolution.



Samenvatting

Een voor de geofysica belangrijk probleem van warmte- en
massa-overdracht met coéxisterende fasen wordt bestudeerd. Het
- beschouwde dynamisch systeem is de atmsfeer-hydrosfeer-cryosfeer
waarbij de ruimtelijke vrijheidsgraden langs de vertikale en longitudinale
richtingen samengenomen werden. Het gereduceerde eendimensionale
systeem wordt beschreven door een eenvoudig ehergiebalans model
waarbij de Kkoppeling tussen de twee aanwezige fasen - de ijs-
opperviakken en de oceaan - in acht genomen wordt. Dit wordt op een
zelf-consistente wijze gedaan door het invoeren van een Stefan type
randvoorwaarde aan het scheidingsviak. De bekomen -balansvergelijking
wordt gelinearizeerd en analytisch opgelost met behulp van Galerkin's
methode. De analyse heeft vooral betrekking op de stabiliteit van het
huidige klimaat t.o.v. Kkleine afwijkingen wvan het ijsopperviak.
Bijzondere nadruk wordt gelegd op de thermodynamische effekten en de

karakteristieke tijdsschalen voor de evolutie.



Zusammenfassung

Wir untersuchen ein Warme- und Massentransportproblem in
Anwesenheit koexistierender Phase von geophysikalischem Interesse. Das
betrachtete System ist die Atmosphare-Hydrosphare-Kryosphare, in dem
die rdaumlichen Freiheitsgrade in vertikaler und horizontaler Richtung
zusammengefasst werden. Das reduzierte eindimensionale System wird
durch ein einfaches Modell der jahresgemittelten Energiebilanz
beschrieben unter Berlcksichtigung der 2zwei anwesenden Phasen
Eiskruste und Ozean. Das Problem wird selbstkonsistent mittels einer
Stefanschen Randbedingung an der Grenzflaiche behandelt. Die sich
ergebende Bilanzgleichung wird linearisiert und analytisch mittels Moden -
abschneidung und Galerkinmethode gelést. Die Analyse ist auf die
Stabilitdt des gegenwirtigen Klimas beziiglich kleiner Verschiebunben
der Eisgrenze ausgerichtet. Den thermodynamischen Gesichtspunkten
sowie den charakteristischen Zeitskalen der Entwicklung wird besondere

Aufmerksamkeit geschenkt.



1. INTRODUCTION"

It is well known that most situations involving energy
transfer between two coexisting phases separated by an interface, give
rise to free boundary value problems [1]. Typical problems of this kind
refer to rather simple geometries with a high degree of symmetry :
Solidification of a semi-infinite body, of a plate, a sphere, a cylinder,

and so forth.

Large scale geophysical phenomena provide beautiful examples
of heat and mass transfer in a somewhat less traditional context. The
present paper is devoted to one such problem, namely, the interaction
between an ice cap and the earth-atmosphere system. Interactions of
this sort are known to play an important role in climate dynamics,

especially in connection with the onset of glaciation cycles.

The mathematical modelling of the climate system rec;.-ived
considerable attention recently [2]. One of the most powerful tools has
been the systematic use of simple energy balance models where an
average over the longitudinal and vertical coordinates is taken, and the
only energy exchanges considered explicitly are along the meridional
direction. Such models are reasonably tractable, and predict a variety
of bifurcation phenomena associated with transitions between present
day and less favorable climatic conditions [3]. They all involve a
discontinuous element that marks the beginning of an ice sheet. Aside
from this discontinuity, the dynamical aspects of the interaction between
the ice sheet and the ice free part of the earth are discarded. It is
only when the explicit ice sheef dynamics, and hence the coupling
between energy balance and mass balance of the glaciers is considered
that one takes such interactions into account [4, 5]. On the other
hand, the explicit form of the coupling requires a number of additional

parameterizations of .such quantities as the ablation rate of the ice sheet,
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the snow fall etc. Although plausible, such parameterizations certainly

go beyond the basic assumptions underlying the balance equations.

The main thesis of the present paper is that the interaction
between an ice sheet and the ice free pért of the earth-atmosphere
system can be viewed as a free boundary value problem. In Section 2 a
one-dimensional energy balance model is introduced, and some problems
related to the time scales of the evolution predicted by this model are
raised. In Section 3 we construct the augmented model in which the
position of the ice edge is related, self-consistently, to the energy
balance equation through a Stefan type of boundary condition. In
Section 4 and 5 a linearized analysis around the present-day conditions
using, respectively, mode truncation and Galerkin's method is outlined.
Section 6 is devoted to the thermodynamic aspects, particularly the
entropy and excess entropy balance equations as well as to the presenta-

tion of the main conclusions.

2. THE MODEL

We begin with the yearly averaged energy balance equation of
a column of unit surface extending from the top of the atmosphere until
a certain ocean depth (mixed layer) within which most of the transport

processes are assumed to take place. Quite generally, one can write
oF . Sources - Sinks - div J (1)
ot

where E is the internal energy and J the energy flux. In principle, Eq.
(1) is coupled to the momentum and mass transfer equations. However,

because of the wide separation of the characteristic times associated



with the vertical and longitudinal directions on the one side, and the
meridional direction on the other side, it has been suggested [6. 7|
that Eq. (1) can be averaged over the first two ones. In the
resulting one-dimensional model (see Fig. 1), North [8] was able to
obtain a reasonably satisfactory representation of the present-day
meridional temperature distribution by modelling J as a (turbulent:

diffusive heat transfer :

J =-D (VT)x

)1/2 ot (2)

x2
ox

or J=-g—(1-

Here D' is the eddy diffusivity, R the radius of the earth. T (ne
surface temperature and x the sine of the latitude, x .= sin ¢.
Within the same approximation the remaining terms in (1! are

treated as follows. dE is replaced by dT through the thermodynamc

relation
dE = ¢ dT ' (3a)

where c is a heat capacity (or thermal inertia coefficient). - The source

term is written as

Source = @ S(x) a(x, xs) (3b)
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where Q is the solar constant divided by 4, giving the value of the
incoming‘ solar radiative flux averaged over a year and over the surface
of the earth (the factor 1/4 results from the earth's sphericity) 5S(x)
is the normalized distribution of solar radiation determined by astronom-
ical calculations, and a(x, xs) is the absorption function, written as
1 - a(x, xs), o being the albedo. In climate modelling it is common to
represent a(x, xs) as a function which changes in a step-like fashion
in the vicinity of the ice edge, xs, due to the marked difference
between the reflectivities of ice and ocean or land. In particular, 1t s

customary to consider symmetric hemispheres and write :

g(x, xs) = (3c¢)

where Bo is the absorption coefficient over ice or snow when 50%
covered with clouds, and aj, d, are the absorption coefficients over ice
free areas obtained after analyzing the albedo distribution by Legendre
series. Finally, the sink term expresses the effect of the infrared

cooling and is approximated by
Sink = I(x) = A + B T(x) (3d)

provided that the range of variation of T around a reference value is

not very high.

On substituting Eq. (2) as well as Egs. (3a) to (3d) into the

energy balance equation (1), and setting D = D'/R2 we obtain



¢ T - g sx) alx, x ) - (A+BT(x)) + % 1-x50D

AT (x) ]
ot 9x

ox

(4)

In order to have a closed form equation we still have to relate
the position of the ice edge, X1 to the temperature T. Foliowing
Budyko [6] we require that :

T(x) > - 10°C no ice present
(5)

T(x) < - 10°C permaneht ice present

Equations (4) and (5) constitute a well posed problem if, in addition,
appropriate boundary conditions are given at x = 0 and x = £ 1. In the
symmetric hemisphere case here considered the appropriate conditions
are zero energy flux at the pole and across the équator. Finally, in all
studies performed so far a physically motivated condition has been
added, namely that the temperature and its gradient, giving the heat

flux, must be continuous at the ice edge.

As mentioned in the Introduction, the analysis of Eqgs. (4) -
(5) gives rise to an amazing variety of bifurcation phenomena
corresponding to climatic transitions. Rather than dwell on these results
however, we prefer to insist on the limitations arising from some of the
assumptions adopted in this formalism, which in our opinion are particu-

larly stringent.

As well known, one of the ubiquitous features of the climatic
system is the coexistence of processes characterized by widely
separated time scales. Thus, our wusual perception of climate s

associated with variations of temperature, humidity etc. on a scale of a

-’]0-



few years; the atmosphere-hydrosphere-cryosphere system brings about
new features with characteristic scales of 103 - 104 years, the onset of
a glaciation time; finally, in a longer time scale the interaction w:h
external variations (orbital parameters, solar output or geological envir-

onment) begin to play a non negligible role [9].

Now, in the modelling based on Eqgs. (4) - (5) these various
processes have been completely decoupled. Move specifically, the
assumption of continuous temperature gradient across the ice edge
implies equality of the heat fluxes on both sides. As a result, the ice
edge follows passively the temperature variations even if the latter
occur with the characteristic relaxation time é/B of Eq. (4) whict. is
typically of the order of a few years. This is clearly wrong, as the
enormous inertia of the ice sheets should imply a variation of the ice

edge of the order of hundreds of years at least.

As mentioned in the Introduction, the most satisfactory way
to account correctly for the atmosphere-hydrosphere-cryosphere
coupling would be to appeal both to the energy balance equation and to
the mass balance of the ice sheets. However, in view of the complexity
of this project and the concomitant uncertainties involved in the
parameterization of the various quantities involved in the theory, we
adopt hereafter an alternative point of view. We show that indepen-
dently of explicit ice sheet dynamics, there exists a completely selt-
consistent coupling mechanism between atmosphere, hydrosphere and
cryosphere which is based solely on the energy balance equation, and
which is sufficient to generate the long time scale missing in Egs. (4) -

(5).

3. AN AUGMENTED ENERGY-BALANCE MODEL

The starting point is to realize that the continuity of the flux

across the ice edge may still be a satisfactory assumption for steady
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states, but should break down completely for time-dependent ones. As
well known from free boundary value problems, the excess between
"right" and "left" fluxes around a boundary separating two ph‘ases can
serve for the advance of one of them at the expense of the other [1].
Let L denote the heat of melting of i1ce per unit mass, p its mass
density, and V the section of the ice sheet along the meridionai
direction. Then, remembering that the origin of the coordinate system

in the energy balance equation is at the equator,
- ) - + = - —_—
J (xS €) Jq (xS £) Lp (6)

where g(e¢ > 0) denotes a small distance from the ice boundary -

We proceed to the evaluation of % . If present day configura-
tions of ice sheets are to be modelled, two different cases can be
envisaged : i) a full ice cap centered at the pole (southern hemi-
sphere), and ii) a circumpolar ring of ice delimited by the presence of

sea (northern hemisphere).

According to Weertman [10], the ice sheet flows as a
perfectly plastic substance and the flow is only in the meridional direc-
tion. It follows that the ice sheet profile remains always paraboiic
around its center of symmetry. Choosing the latter as the origin of a

local coordinate system

1/2

heuw) = AY2 (g - 1D (7)

where h is the elevation above sea level, £ is the width of the sheet

and A a parameter depending on the yield stress of ice.

-12-



Consider first the case of a full ice cap. The cross section V
is then

2
v = al/2 / du(e - w)l/Z = £)1/2 g3/ (8)
o
Hence
dV _,,,\1/2 d2 |
at ~M T g t9a)

Now, %% can be related straightforwardly to the motion of the

ice boundary Xg, as described in the original coordinate system,
through (see Fig. 2a)
dt
(1 - x2)1/2 dt
S
= n._
=R (5-0)

¢S being the latitude in radians (¢s = arcsin xs).

We next consider the case of a circumpolar ring of ice.

Equation (7) remains unaltered provided that £ is now interpreted as
the half width. Thus,

dv _ 1/2 dg
a - 2T g (op)

-13-



-pi-

EQUATOR . EQUATOR
(a) (b)

Fig. 2.- Schematic representation of hemispherical ice sheet models
(a) full ice cap

(b) a circumpolar ring of ice.



The connection between this expression and X becomes now

more involved. From Fig. 2b we have

- s (10b)

=1 - - R -
2= 2 (Q’M Qs) 2 (¢M ¢s)

Where ¢M is the latitude of the poleward tip of the sheet. Using EQgs.
(6) to (10) we may finally write the energy balance equation taking ice

melting or advance into account in the form

¢ =g sx) alx, x) - (A+ BT + 3 (1 - &) p T

dx

s .
eff dt 6(x = xs) (11

- Lph

Where we introduced an ‘“effective hight" heff‘ Comparing with Egs
(9a) to (10b) |

1
=2
|

off = [ AR ( g - (I)S)]l/2 for a full ice cap (12a)

1/2 for a ring of ice (12b)

j=a
|

. R ;
eff - [ A E (¢M = ¢S)]

On integrating both sides of Eq. (11) over a small slice

around X and on assuming continuity of T one finds the free boundary

condition, Eq. (6).

-15-



From the point of view of thermodynamics Eq. (11) can also
be interpreted as follows. In a two phase system the internal energy E
depends on both temperature T and relative composition. Measuring the
latter by the length p’s of a meridian between the equator and the ice
boundary we have (at constant pressure)

E = E(T, !ls)

or dE=cdT+ (o) dg_ 6(2-8) (13)
where from now on £ will denote the length along a meridian measured

from the equator.

According to thermodynamics

oE ) oV
= =-P ( S - (14)
( 9% /1P ( dLg )TP ‘TP

where - rop is the heat of melting

- rTP=Lp (15)

Neglecting the variation of volume with respect of ’Qs and substituting
aE/azs from the above expressions we obtain the extra term of Eq. (1)

associated with the phase transition.

The problem we now face is to solve Eq. (11) subject to the

additional boundary conditions mentioned in Section 2, namely

-16-



Jq(O) = Jq(l) =0 (153)’

(16b)

i
-3

T(xS -€) = T(xS + g) ice

4. LINEARIZATION AND MODE TRUNCATION

In view of the complexity of the full problem we carry out a

linear analysis around the present day temperatuFe distribution T
E3 *

T (x) and position of the ice-sheets, Xg = %o To this end we set

T(x, t) = T (x) + 6(x, t) (17a)

x (L) = x; + E(t) - | (17b)

Keeping dominant terms in 6 and £ one finds from Eqgs. (11) and (16) :

a6 _ _ - ® - 3_ L 2 9
C P Q S(x) [a(x, xs) a(x, xs)] B6 + D . (1 - x )Bx
dé -
-Lp heff It O(x xs) : (18a)

() &)+ 66 =0 (18b)
. |

Let 6n denote the n'th Legendre moment of 6 :

6(x) = (19)

[¢l=]
<N M3
o]

-17-



1

n
(o}

The following equations for Bn

after a complete linearization in § and 6 is made :

6 = f (2n + 1) 6(x) Pn(x) dx

are easily obtained from Egs.

(18).

cE =-[B+n(n+1)D] 6 - (2n+ 1) | A(*)§+L h P ) 4
dt n n n Q n'¥s p n(xs) dt
(20a)
* -1
g - ( g%— l{& G(X )
ar” ! = *
(T e
s e
n=o
even
where
1
- d
An— 'd_§ / S(x) a(x, xs) Pn dx ]x.
0 S

From these relations one can obtain the characteristic equation
for the problem which, as well-known, deter‘mmes the temporal evolutaon
in the vicinity of the reference state (T , X )

-18-
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we find :

*loo * '
dT -~ . (2n + 1) P (x) 1 Loh ..
‘\ n_s _ : eff :
R R
dx =3 w' + 1 +n(n+ 1) 2" B c ‘
even B (22a

where we introduced the dimensionless variable :
w' = — (22b)

An important feature of equation (22a) is to contain the effect
of the discontinuity of the flux at the ice boundary in each term of the
series. For this reason a truncation to the first few terms, which is
necessary if explicit values of w' are to be obtained, can be envisaged

without contradicting the free boundary condition, Eq. (6).

The results are highly dependeht on the numerical value of
heff as defined by equations (12a) and (12b) for the two ice sheet
models respectively. Adopting A ~ 7 m, which gives reasonable central
thicknesses as compared to thoses characterizing Antarctica and

~Greenland today, we have for a full ice cap :
— - o
2 ¢S ~ 16 and heff ~ 3500 m

On the other hand for a ring of ice :

- Q
¢M ¢S ~ 6 anq heff ~ 1500 m

-19-



For usually accepted values of the thermal inertia coefficient,
associated with a mixed ocean layer of a few meters (e.g. ¢ = 4.6 x 107

2

J m?© °K) and for the wvalues of L, p given by thermodynamics,'

Lpheff/c is of the order of 2.3 x 104 and 1. x 104 respectively.

We solved equation (22a) when truncation to n = 0 and 2 was
successively performed, and found that the solutions w' were always
real and negative. This implies the absence of oscillations and the
stability of the present day climatic regime with respect to small ice
sheet disturbances. The first two columns of Table 1 summarize the
results concerning that solution w' which corresponds to the longest
characteristic time scale, T ~ % = %W_’ for wvarious values of heff' we
see that w' becomes as small as ~ 10 for values of Lpheff/c of the
order of 104 which is precisely the order of magnitude suggested by
the two model ice sheets. Now w' ~ 1 corresponds (see eq. 22b) to a
relaxation rate of the order of Bc-1, characteristic of usual energy
balance models. Such values are indeed found from the solution of the
characteristic equation (22a). In addition to them however the results
given in Table 1 show that we have been able to generate, self-
consistently, the long time scale characterizing the interaction between
atmosphere, hydrosphere and cryosphere. The appearance of such long
scales reflects the enhanced inertia gained by the system as a result of
the presence of ice sheets. In this respect from the estimations we made
earlier it becomes obvious that the full ice cap gives rise to a greatler

inertia than the circumpolar one.

5. SOLUTION BY GALERKIN'S METHOD

The mode truncation obtained in the preceeding Section gave

rise to a characteristic equation containing explicitly the effect of the

-20-



TABLE 1 : Dependence on the slowest w', solution of Eq. (22a), for

- various values of Lph¢e/c : two mode truncation (first
two columns) compared to the results obtained by
Galerkin's method (third column). Numerical values of
the parameters used : Q = 340 Wm-z; A = 214.2 Wm-z;
B =1.575wm2 K; D=0.591 wm2; S(x) =
1 - 0.477 Pz(x);
1 - a(x, xs) = 0.697 - 0.0779 Pz(x) for x < X and
1 - a(x, xs) = 0.38 for x > X

Lpheff/c one mode two modes Galerkin's

method

1 - 0.610 - 0.235 - 0.234

10 - 0.550 - 0.175 - 0.172

100 - 0.277 - 0.481 x 107" - 0.457 x 107}

1000 - 0.464 x 107} - 0.579 x 1072 - 0.544 x 1072

10000 - 0.498 x 1072 - 0.591 x 107> - 0.55 x 107>

-21-



ice sheets. On the other hand any truncation to a finite number of
modes implies (see Eq. (18)) that the discontinuity of the flux across
the ice boundary will be smeared out. In order to remove this
deficiency we analyze in this Section the linearized problem using
Galerkin's method. We start from expression :

N
6 = \_ Bn(t) Pn(x) + u(x) (23)

(o]
ven

o3
1]

where u(x) is orthogonal to all Legendre polynomials Po to PN, and

view 6 as a trial function, to be-adequatly parameterized. The simplest

non-trivial case is
6 = Bo(t) + 62(1:) P2(x) + u(x, t) (24)

in addition from- being orthogonal to Po and P2, the function u(x,. t) is
_taken to satisfy the boundary conditions (6) and (16b), including'the
flux discontinuity at the ice edge. The simplest: x-dependence:of* u(x)
compatible with these requirements is :

2
= X
u(x)—ao+a2 5 x<xS
(25)
=b + + x2 >
u(x) = bo b2x S X > X,

The orthogonality condition of u(x) together with relations
(6) and (16) constitute the following system of four equations with 5

unknowns

-22-



2 2
*s *s
3, tay 3 by x, -y 5= by
x3 b c
s 2 2 .3 _ _
3y X + a, 3 (x 1) % (xS 1) = bo(xs 1)
3 3 4
a 3x X, b 3x
3 2 s S 2 s 2 1 . .
ao (XS XS)+—2(—5— 3——)'—2(7')(5'5) (26
3xS xz ( 3
- —_— . — - —— = - }
) ( 5 3 15) by *s T ¥s
Lph dx
ff s
-a, x +b,+c, x = ———r —
27s 2 2 D(1 - xi) dt

Leaving bo as a free parameter we want to derive the equations of
evolution for this quantity as for 60 and 62. To this end, substituting
the trial function Eq. (24) into the augmented energy balance equation,
Eq. (11), multiplying successively by Po, P2 and P4, integrating over

the domain of X and’ linearizing, we arrive at the following expressions

for 60, 62 and bo

c ;;9 * Lpheff'g% = - (B8, + Q8 &)

c ;ig +5 Lpheff P2 %% = - [(B + 6D) 62 *+5Q 4, £]
(27)

¢ ;;9 Fpo+ Lph ¢g ( Fy & Fy g;% ) = by F,- Q8,8

-23-



X
where F1 to F4 are cumbersome functions of X and the parameters
arising from the solution of Eqs. (26) and the integration ot the

different terms of the energy balance equation.

From the above system of linear differential equations 24:

together with the ice boundary condition

Q?IQ?
13

£ = - (6o + 6, P, (x:) + u(x, t)) ( )X. (28)

one can again obtain a characteristic equation which is of sixth degree
in w. However it can be conélder‘ably simplified if one anticipates. in
agreement with the previous Section, the existence of solutions
corresponding to a long relaxation time. Another simplification which
yield similar results is to uncouple the first two equations from the
third one by choosing bo = 0, but still keeping the influence of uf x)
which now does not contain any free parameter in the first two
equations. ‘
The third column of Table 1 gives the slowest mode w' in
terms of Lpheff/c, as determined from the above described Gaierkin
procedure. We see that the agreement with the two mode truncations i1s
excellent. We are therefore confident that we have indeed determined a

long intrinsic time scale of the climatic system.

6. THERMODYNAMIC ASPECTS. CONCLUDING REMARKS

In this Section we further discuss the origin of the enhanced
inertia arising from the presence of the ice sheets. To this end, we
construct the entropy balance equation and then analyze the stability
properties in terms of the excess entropy production.

-24-



we first write the energy balance equation (11) in the form
9 R4 rn SZ5(2 - 2) (29)

where R stands for all terms except those related to the movement of

the ice boundary.

According to the discussion at the end of Section 3, the
entropy of the system in the presence of the moving boundary is (at

constant pressure))
S = S(T, 2)=-fsd2 | 30

where the integration extends from the equator to the pole and

as f c 9T (as ds - .
== = 2=+ = —= 4 - 31
ot 2 [ T at 04 )TP dt 6( QS)] ( '

According to chemical thermodynamics [11] -

s _ TP .
(—— )TP = (32
where A is the affinity of the phase transformation. Combining EQgs.

(29) to (32) we obtain

-25-



dz

The first term of the right hand side has been studied in detail in a
recent paper [12]. The second term is specific to the ice boundary. It .
has the familiar bilinear form [13] of a thermodynamic force, A/T,

multiplied by the flux, dls/dt, of an irreversible process.

The next step is to construct the balance equation for the

excess entropy of the system. The main motivation behind this calcula-

tion is the Glansdorff-Prigogine theory [13], according to which excess
entropy is a convenient Lyapounov functional governing stability of a
reference state. Specifically, if 625 is the second differential of entropy
evaluated at the present day climate, stability of thermodynamic

equilibrium implies

68 ¢ 0 (34a)

525 3 0 | ~ (34b)

by Lyapounov's theorem, the reference state will be neutrally stable (if
the equality sign prevails in (34b)) or asymptotically stable (if the
inequality sign prevails in Eq. (34b)).

The first differential of entropy density is (cf. Eqs. (30) to
(32) and the notation of Section 4 and 5)
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C

bs =7 0 + ——— ga(z-zs) (35)
it follows that
] ( AT Trp
152 _ _1cp2 1 T .2
g 0s=-576° ¢ l 2 [
a TP
(A - rTP)
. a T——
+ 6 £ l 6(2-25) (36)
aT P4

where we neglected the variation of c on ¢ and of rrp ON T.
The differential of affinity at the ice boundary (at constant

pressure) is given by

§(=2)=-—F 06-"2 & ’ (37a)

=3 >>

where

]

G )
= - (%)TP = (%)TP (37b)

e 82

G being Gibb's free energy.
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Substituting into Eq. (36) we see that

A-r

a( TTP)
[ .. S, =0
AT - Py
and
A-r
TP
o | (g
) S,
@ TP T
Thus
1 .2, . _ 1 c 2_1C§TP 2
. 7 §°S = 7 [ ds ;E 0 3 —Tg g { 38)

where the last term is evaluated at the ice boundary.

Expression (38) is negative definite. Indeed, ¢ andC)DTp are
non-negative and do not vanish simultaneously owing to the convexity of

the Gibbs free energy.

2

We now evaluate the time derivative of §°S. Within the frame-

work of a linearized stability analysis we discard the time variation of
the coefficients of the quadratic form, which are to be evaluated at the

(stationary) reference state. We thus have

2 (12 --[dﬂc— ea—"-ciE - (39)

On the other hand, the linearized form of Eq. (29) reads
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5 5(2 - 2.) (40)

ds
9 12 __/ 6 1 "TP >s
at(ZGS)— dﬂTz SR T (TP§S+—-——T Bs)at— (41)
S S

The first term of the right hand side has been analyzed in detail in
[12]. The remaining terms are specific to the dynamics of the ice
bouidary. Ulilizing Eq. (37a) one can easily see that they can be put

in the form

(5 (3,00 (3, &

This has the same structure as the second term of Eq. (33), except
that the force and flux have been replaced, respectively, by their
excess values around the reference state. We may therefore refer to

this contribution as excess entropy production.

In our problem the reference state around which <S(A/T)S is
to be evaluated is a steady state. From the point of view of the phase
transformation, it has to be considered as a state of equilibrium (zero
affinity), since the two phases coexist under these conditions. It is
therefore reasonable to evaluate (S(A/T)s by adopting a linear law

relating fluxes and forces
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df :
A _ s '

where the Onsager coefficienti is positive.

Thanks to Eq. (43), expression (42) becomes

(5 (b)) =Lig) oo

Thus according to Lyapounov's stability theorem, Eq. (34b). the

presence of the ice boundary has a stabilizing effect. This resuit may
seem unexpected at first hand, but can nevertheless be understood as
follows. When ice melts the region around the ice boundary blocks a
certain amount of energy. Thus, on the average the temperature around

this region will have to drop and this will tend to move the boundary

back to its initial position. A similar negative feedback woulid obtain in
case the ice front would tend to advance as a result of a perturbatién.
Note, however, that the coupling between ice boundary and buik terms
may have a destabilizing effect through the dependence of the albedo on

the position of the ice boundary.

In summary, the analysis reported in this paper establishes
the high inertia and the infinitesimal stability of the ice edge character-

izing present-day climate as well as the absence of oscillations (even

damped ones) in the time dependence of perturbations. The absence of
oscillations implies that one cannot expect any resonance phenomena
associated with a weak external periodic forcing. In the context of
climate modelling, such forcings (associated with the earth's orbital
variations), have been widely invoked [14] to explain the glaciation
cycles. An explanation of these cycles based on a resonance mechanism

has therefore to be ruled out in our model.
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It would be interesting to extend some of the results reported
in ‘this paper by taking nonlinear effects into account. An intriguing
possibility is the appearance of new bifurcations to time-dependent
solutions. Numerical experiments aiming to verify these points are ‘in

progress.
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