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FOREWORD 

The paper entitled : "A free boundary value problem ar is ing 

in climate dynamics" will be published in T h e International Journal of 

Heat and Mass T r a n s f e r , 25, 1982. 

A V A N T - P R O P O S 

L'art ic le intitulé : "A free boundary value problem ar is ing •<-• 

climate dynamics" sera publié dans The International Journal of Heat 

and Mass T r a n s f e r , 25, 1982. 

VOORWOORD 

Het artikel getiteld : "A free boundary value problem ar is ing 

in climate dynamics" zal verschi jnen in het t i jdschr i f t The International 

Journal of Heat and Mass T r a n s f e r , 25, 1982. 

VORWORT 

Die Arbeit : "A free boundary value problem ar is ing in 

climate dynamics" wird in T h e International Journal of Heat and Mass 

T r a n s f e r , 25, 1982 herausgegeben werden. 



A FREE B O U N D A R Y V A L U E PROBLEM A R I S I N G 

IN C L I M A T E D Y N A M I C S 

by 

C . NI C O L I S 

Abstract 

A heat and mass transfer problem of geophysical interest 

involv ing coexisting phases is studied. T h e dynamical system considered 

is the a t m o s p h e r e - h y d r o s p h e r e - c r y o s p h e r e , wherein the spatial degrees 

of freedom along the vert ical and longitudinal directions have been 

lumped. T h e reduced one-dimensional system is modelled by a simple, 

y e a r l y averaged, energy balance model taking into account the coupling 

between the two phases present : the ice sheets and the ocean. T h i s is 

done se l f -cons istent ly by introducing a Stefan type of boundary 

condition at the interface. T h e result ing balance equation is l inearized 

and solved analyt ica l ly us ing mode truncation and Galerk in 's method. 

T h e analys is is centered on the stabi l i ty of the p r e s e n t - d a y climatic 

regime with respect to small excurs ions of the ice boundary . Special 

emphasis is put on the thermodynamic aspects, as well as on the 

character ist ic time scales of evolution. 



Résumé 

On étudie le transfert de masse et de chaleur en présence de 

phases coexistantes dans un problème d' intérêt géophysique. Le système 

dynamique considéré est l 'atmosphère-hydrosphère-cryosphère, où l'on a 

effectué des moyennes suivant les directions verticale et longitudinale 

Le système réduit qui en résulte est stylisé par un modèle de bilan 

énergétique uni-dimensionel tenant compte du couplage entre les deux 

phases en présence (les calottes glaciaires et les océans), par 

l'intermédiaire d'une condition aux bords du type Stefan (problème de 

front ière l ibre). L'équation de bilan est résolu analytiquement dans 

l'approximation linéaire, par une procédure de troncature de modes, 

ainsi que par la méthode de Galerkin. On obtient ainsi des informations 

sur la stabilité du climat actuel par rapport à de petits déplacements de 

la limite de la glace. On insiste également sur les aspects thermo-

dynamiques, ainsi que sur les échelles de temps caractérist iques de 

l'évolution. 
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Samenvatting 

Een voor de geofysica belangrijk probleem van warmte- en 
massa-overdracht met coëxisterende fasen wordt bestudeerd. Het 
beschouwde dynamisch systeem is de atmsfeer-hydrosfeer-cryosfeer 
waarbij de ruimtelijke vri jheidsgraden langs de vertikale en longitudinale 
richtingen samengenomen werden. Het gereduceerde eendimensionale 
systeem wordt beschreven door een eenvoudig energiebalans model 
waarbij de koppeling tussen de twee aanwezige fasen - de i js -
oppervlakken en de oceaan - in acht genomen wordt. Dit wordt op een 
zelf-consistente wijze gedaan door het invoeren van een Stefan type 
randvoorwaarde aan het scheidingsvlak. De bekomen balansvergeli jking 
wordt gelinearizeerd en analytisch opgelost met behulp van Galerkin's 
methode. De analyse heeft vooral betrekking op de stabiliteit van het 
huidige klimaat t . o . v . kleine afwijkingen van het i jsoppervlak. 
Bijzondere nadruk wordt gelegd op de thermodynamische effekten en de 
karakteristieke tijdsschalen voor de evolutie. 
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Zusammenfassung 

Wir untersuchen ein Wärme- und Massentransportproblem in 

Anwesenheit koexistierender Phase von geophysikalischem Interesse. Das 

betrachtete System ist die Atmosphäre-Hydrosphäre-Kryosphäre, in dem 

die räumlichen Freiheitsgrade in vert ikaler und horizontaler Richtung 

zusammengefasst werden. Das reduzierte eindimensionale System wird 

durch ein einfaches Modell der jahresgemittelten Energiebilanz 

beschrieben unter Berücksichtigung der zwei anwesenden Phasen : 

Eiskruste und Ozean. Das Problem wird selbstkonsistent mittels einer 

Stefanschen Randbedingung an der Grenzfläche behandelt. Die sich 

ergebende Bilanzgleichung wird linearisiert und analytisch mittels Moden • 

abschneidung und Galerkinmethode gelöst. Die Analyse ist auf die 

Stabilität des gegenwärtigen Klimas bezüglich kleiner Verschiebunben 

der Eisgrenze ausgerichtet. Den thermodynamischen Gesichtspunkten 

sowie den charakteristischen Zeitskalen der Entwicklung wird besondere 

Aufmerksamkeit geschenkt. 
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1. INTRODUCTION 

It is well known that most situations involving energy 

transfer between two coexisting phases separated by an interface, give 

rise to free boundary value problems [1 ] . Typical problems of this kind 

refer to rather simple geometries with a high degree of symmetry : 

Solidification of a semi-infinite body, of a plate, a sphere, a cylinder., 

and so for th . 

Large scale geophysical phenomena provide beautiful examples 

of heat and mass transfer in a somewhat less traditional context. The 

present paper is devoted to one such problem, namely, the interaction 

between an ice cap and the earth-atmosphere system. Interactions of 

this sort are known to play an important role in climate dynamics, 

especially in connection with the onset of glaciation cycles. 

The mathematical modelling of the climate system received 

considerable attention recently [ 2 ] . One of the most powerful tools has 

been the systematic use of simple energy balance models where an 

average over the longitudinal and vertical coordinates is taken, and the 

only energy exchanges considered explicit ly are along the meridional 

direction. Such models are reasonably tractable, and predict a variety 

of bifurcation phenomena associated with transitions between present 

day and less favorable climatic conditions [3 ] . They all involve a 

discontinuous element that marks the beginning of an ice sheet. Aside 

from this discontinuity, the dynamical aspects of the interaction between 

the ice sheet and the ice free part of the earth are discarded. It is 

only when the explicit ice sheet dynamics, and hence the coupling 

between energy balance and mass balance of the glaciers is considered 

that one takes such interactions into account [4, 5 ] . On the other 

hand, the explicit form of the coupling requires a number of additional 

parameterizations of such quantities as the ablation rate of the ice sheet, 
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the snow fall etc. Although plausible, such parameterizations certainly 

go beyond the basic assumptions under ly ing the balance equations 

The main thesis of the present paper is that the interaction 

between an ice sheet and the ice free part of the earth-atmosphere 

system can be viewed as a free boundary value problem. In Section 2 a 

one-dimensional energy balance model is introduced, and some problems 

related to the time scales of the evolution predicted by this model are 

raised. In Section 3 we construct the augmented model in which the 

position of the ice edge is related, self-consistently, to the energy 

balance equation through a Stefan type of boundary condition, m 

Section 4 and 5 a linearized analysis around the present-day conditions 

using, respectively, mode truncation and Galerkin's method is outl ined. 

Section 6 is devoted to the thermodynamic aspects, particularly the 

entropy and excess entropy balance equations as well as to the presenta-

tion of the main conclusions. 

2. THE MODEL 

We begin with the yearly averaged energy balance equation of 

a column of unit surface extending from the top of the atmosphere unti l 

a certain ocean depth (mixed layer) within which most of the transport 

processes are assumed to take place. Quite general ly, one can write 

= Sources - Sinks - d iv J ( D 
at ^ 

where E is the internal energy and ^ the energy f lux. In pr inciple, Eq 

(1) is coupled to the momentum and mass transfer equations. However, 

because of the wide separation of the characteristic times associated 
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with the vertical and longitudinal directions on the one side, and the 

meridional direction on the other side, it has been suggested |6. /| 

that Eq. (1) can be averaged over the f i rst two ones, in the 

result ing one-dimensional model (see Fig. 1), North [8] was able to 

obtain a reasonably satisfactory representation of the present-dav 

meridional temperature distr ibut ion by modelling as a ( turbulent; 

d i f fus ive heat transfer : 

J = - D' (VT) 

or J = - D' 2 v 1/2 3T 
ÏT ( 1 " X } â ï ( 2 I 

Here D1 is the eddy d i f fus iv i ty , R the radius of the earth, T IMP 

surface temperature and x the sine of the latitude, x .= sin 0. 

Within the same approximation the remaining terms in i 1 ; are 

treated as follows. dE is replaced by dT through the thermodynamic 

relation 

dE = c dT (3a t 

where c is a heat capacity (or thermal inertia coeff icient). The source 

term is written as 

Source = Q S(x) a(x, xg) (3b) 
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where Q is the solar constant div ided by 4, g iv ing the value of the 
incoming solar radiative f lux averaged over a year and over the surface 
of the earth (the factor 1/4 results from the earth's spher ic i ty ) S i x ) 
is the normalized distr ibution of solar radiation determined by astronom-
ical calculations, and a ( x , x g ) is the absorption function, written as 
1 - a ( x , x g ) , a being the albedo. In climate modelling it is common to 
represent a ( x , x g ) as a function which changes in a step- l ike fashion 
in the v ic in i ty of the ice edge, x g , due to the marked difference 
between the reflectivit ies of ice and ocean or land. In part icular , it .s 
customary to consider symmetric hemispheres and write : 

a(x, x g) = 

% + °2 P 2 

X > X 

X < X 

(3c) 

where PQ is the absorption coefficient over ice or snow when 50% 
covered with c louds, and a Q , a 2 are the absorption coefficients over ice 
free areas obtained after analyz ing the albedo distr ibution by Legendre 
ser ies. F inal ly , the s ink term expresses the effect of the infrared 
cooling and is approximated by 

Sink = I(x) = A + B T(x) (3d) 

provided that the range of variation of T around a reference value is 

not v e r y h igh. 

On subst i tut ing Eq. ( 2 ) as well as Eqs. (3a) to (3d) into the 
2 

energy balance equation ( 1 ) , and setting D = D'/R we obtain 



c U = Q S(x) a(x, x s) - (A + BT(x)) + [(1 - x
2
) D ] (4) 

In order to have a closed form equation we still have to relate 

the position of the ice edge, x g , to the temperature T. Following 

Budyko [6] we require that : 

T(x) > - 10°C no ice present 

(5) 

T(x) < - 10°C permanent ice present 

Equations (4) and (5) constitute a well posed problem if, in addition, 

appropriate boundary conditions are given at x = 0 and x = ± 1. In the 

symmetric hemisphere case here considered the appropriate conditions 

are zero energy flux at the pole and across the equator. Finally, in all 

studies performed so far a physically motivated condition has been 

added, namely that the temperature and its gradient, g iv ing the heat 

f lux, must be continuous at the ice edge. 

As mentioned in the Introduction, the analysis of Eqs. (4) -

(5) g ives rise to an amazing variety of bifurcation phenomena 

corresponding to climatic transitions. Rather than dwell on these results 

however, we prefer to insist on the limitations arising from some of the 

assumptions adopted in this formalism, which in our opinion are particu-

larly stringent. 

As well known, one of the ubiquitous features of the climatic 

system is the coexistence of processes characterized by widely 

separated time scales. Thus , our usual perception of climate is 

associated with variations of temperature, humidity etc. on a scale of a 
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few yea rs ; the a t m o s p h e r e - h y d r o s p h e r e - c r y o s p h e r e system b r i n g s about 

new fea tu res w i t h cha rac te r i s t i c scales of 103 - 104 yea rs , the onset o* 

a g lac ia t ion t ime; f i n a l l y , in a longer t ime scale the in te rac t ion w t h 

ex te rna l va r ia t i ons ( o r b i t a l parameters , solar o u t p u t o r geological e n v i r -

onment ) beg in to p lay a non neg l ig ib le role ( 9 ] . 

Now, in the model l ing based on Eqs. (4 ) - ( 5 ) these va r ious 

processes have been complete ly decoup led. Move spec i f i ca l l y , the 

assumpt ion of con t inuous t empera tu re g rad ien t across the ice edge 

implies equa l i t y of the heat f l uxes on both s ides. As a r e s u l t , the i re 

edge fo l lows pass ive ly the tempera tu re va r i a t i ons even if the la t te r 

occur w i t h the cha rac te r i s t i c re laxa t ion t ime c / B of Eq. (4 ) wh ich is 

t y p i c a l l y of the o r d e r of a few yea rs . Th i s is c lear ly w r o n g ; as the 

enormous ine r t i a of the ice sheets should imply a va r i a t i on of the i rp 

edge of the o r d e r of h u n d r e d s of years at least . 

As ment ioned in the I n t r o d u c t i o n , the most sa t i s fac to ry way 

to account c o r r e c t l y f o r the a t m o s p h e r e - h y d r o s p h e r e - c r y o s p h e r e 

coup l ing would be to appeal bo th to the e n e r g y balance equat ion and to 

the mass balance of the ice sheets . However , in v iew of the complex i ty 

of t h i s p ro jec t and the concomitant unce r ta in t i es invo lved in the 

parameter iza t ion of the va r ious quan t i t i es i nvo lved in the t h e o r y , we 

adopt he rea f te r an a l t e rna t i ve po in t of v iew. We show tha t indepen-

d e n t l y of exp l i c i t ice sheet dynamics , t he re ex is ts a completely sel t -

cons is ten t coup l ing mechanism between a tmosphere , h y d r o s p h e r e and 

c r yosphe re wh ich is based solely on the ene rgy balance equa t ion , and 

which is s u f f i c i e n t to genera te the long t ime scale miss ing in Eqs. ( 4 ) -

( 5 ) . 

3. AN AUGMENTED ENERGY-BALANCE MODEL 

The s t a r t i n g po in t is to real ize t ha t the c o n t i n u i t y of the f l u x 

across the ice edge may s t i l l be a sa t i s fac to ry assumpt ion f o r s teady 
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s t a t e s , but s h o u l d b r e a k down completely for t ime-dependent o n e s . A s 

well known from f r e e b o u n d a r y v a l u e p r o b l e m s , the e x c e s s between 

" r i g h t " and " lef t" f l u x e s a r o u n d a b o u n d a r y s e p a r a t i n g two p h a s e s can 

s e r v e for the a d v a n c e of one of them at the e x p e n s e of the other 11 | 

Let L denote the heat of melt ing of ice per un i t mass , p i ts mass 

d e n s i t y , and V the sect ion of the ice sheet along the meridional 

d i r e c t i o n . T h e n , remembering that the o r i g i n of the coord inate s y s t e m 

in the e n e r g y ba lance equat ion is at the e q u a t o r , 

dV 
J (x - e) - J (x + £) = - Lp - (6) 
q s q s at 

where e(e > 0) denotes a small d i s t a n c e from the ice b o u n d a r y x . 

d V 
We proceed to the eva luat ion of . If p r e s e n t day c o n f i g u r a -

t ions of ice sheets a re to be modelled, two d i f f e r e n t c a s e s can be 

e n v i s a g e d : i ) a fu l l ice cap c e n t e r e d at the pole ( s o u t h e r n hemi-

s p h e r e ) , and i i ) a c i r c u m p o l a r r i n g of ice del imited b y the p r e s e n c e of 

sea ( n o r t h e r n h e m i s p h e r e ) . 

A c c o r d i n g to Weertman [ 1 0 ] , the ice sheet f lows as a 

p e r f e c t l y p las t i c s u b s t a n c e and the flow is on ly in the meridional d i r e c -

t ion. It fol lows that the ice sheet prof i le remains a l w a y s paraboi ir 

a r o u n d its c e n t e r of s y m m e t r y . C h o o s i n g the latter as the o r i g i n of a 

local coord inate system : 

h( u) = A
1 7 2 (£ - ! u | ) 1 / 2 (7) 

where h is the elevat ion above sea leve l , & is the width of the sheet 

and K a parameter d e p e n d i n g on the y i e l d s t r e s s of ice. 
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C o n s i d e r f i r s t t he case of a f u l l ice c ap . T h e c r o s s sec t ion V 

is then 

V = A 1 / 2 ƒ d u t f - u l ) 1 / 2 = | A 1 / 2 £ 3 / 2 (8, 

Hence 

dV _ , x n l / 2 d£ 
dt dt ( 9 a ) 

dJI 
Now, can be r e l a t ed s t r a i g h t f o r w a r d l y to the mot ion of the 

ice b o u n d a r y x , as d e s c r i b e d in the o r i g i n a l c oo rd i na t e s y s t em, 
t h r o u g h (see F i g . 2a) 

R dx d£ 
d t ~ , , 2 ^ 1 / 2 

(1 - x ) dt 
s 

£ = R ( I - 0 S ) 

s (10a) 

0 be i ng the l a t i t ude in r ad i an s (<t>s = a r c s i n x g ) . 

We nex t c on s i d e r the case of a c i r c umpo l a r r i n g of ice. 

Equa t i on (7 ) rema ins una l t e r e d p r o v i d e d that £ is now i n t e r p r e t e d as 

the ha l f w i d t h . T h u s , 

f t - 2 ( m l / 2 f t (9b: 
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Fig.  2 . -  Schematic  representation  of  hemispherical  ice  sheet  models 

(a)  full  ice  cap 

(b)  a circumpolar  r ing  of  ice. 



The connection between this expression and x g becomes now 
more involved. From Fig. 2b we have 

R dx 
= - J L HOb 

^
 1

 <> \Xl2
 A* ( 1 - x ; at s 

* = 5 (*M " V s I % " V 
Where <J»M is the latitude of the poleward tip of the sheet. Using Eqs 
(6) to (10) we may finally write the energy balance equation taking ice 
melting or advance into account in the form 

c = Q S ( x ) a ( x , x s ) - (A + B T ( x ) ) + | x [(1 - x 2 ) D ^ J 

dx 
- L p h e f f ^ 6 ( x - x s ) (11. 

Where we introduced an "effective hight" h g f f . Comparing with Eqs 

(9a) to (10b) 

h « = I K R ( ^ " 4 » ) ] 1 / 2 f o r a f u l 1 i c e c a P ( 1 2 a ; 
CIX Z S 

h e f f = [ A I % ' f ° r 3 r i n g ° f 1 0 6 ( 1 2 b 

On integrating both sides of Eq. (11) over a small slice 

around x g and on assuming continuity of T one finds the free boundary 

condition, Eq. (6 ) . 
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From the point of view of thermodynamics Eq. (11) can also 

be interpreted as follows. In a two phase system the internal energy E 

depends on both temperature T and relative composition. Measuring the 

latter by the length P. of a meridian between the equator and the ice 

boundary we have (at constant pressure) 

E = E(T, £s ) 

or dE = c dT + ( § f - ) d£s 6(2 - tj (13) 

where from now on P. will denote the length along a meridian measured 

from the equator. 

According to thermodynamics 

- r T O (14) - - * T p ( lls ) T P " P ( M s )T P 

where - r T p is the heat of melting 

Neglecting the variation of volume with respect of and substituting 

3E/9£s from the above expressions we obtain the extra term of Eq. (11) 

associated with the phase transition. 

The problem we now face is to solve Eq. (11) subject to the 

additional boundary conditions mentioned in Section 2, namely 
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J (0) = J (1) = 0 (16a I 

T(x - e) = Tlx + e) = T. (16b) s s ice 

4. L INEAR IZAT ION AND MODE TRUNCAT ION 

In view of the complexity of the full problem we carry out a 

linear analysis around the present day temperature distribution T -* * 
T ( x ) and position of the ice-sheets, x = x . To this end we set 

T(x, t) = T (x) + 0(x, t) (17a I 

x ( t ) = x + 4 ( t ) (17b) s s 

Keeping dominant terms in 6 and £ one f inds from Eqs. (11) and (16) 

— = - Q S(x) [a(x, x ) - a(x, x * ) ] - B0 + D — ( 1 - x 2 ) f -9t s s ,îx a } 

' L P h e f f St 6 ( X " X s } ° 8 a ) 

( g l * U t ) + 0 (x* ) = 0 (18b) 

Let 0 n denote the n Legendre moment of 0 : 

~v> 
0(x) = I 0 P (19) 

n=o n 

even 
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1 

6 = I (2n + 1) 6(x) P (x) dx n J n 
o 

The following equations for 0 n are easily obtained from Eqs. (18), 

after a complete linearization in £ a n d 6 i s made : 

. "A" * Hf , 
C = - [B + n(n + 1) D] 8 - (2n + 1) [Q An(x s) | + L p h P n(x s) ^ | 

dt (20a ) 

* ,-1 

* - l 
( P - ) . V e p (x") (20b) \ dx jy. > n n s ' 

n=o 
even 

where 

1 

\ = ƒ S(*> <"(x' X
S> P a d* lx-

o s 

From these relations one can obtain the characteristic equation 

for the problem which, as well-known, determines the temporal evolution 
* * 

in the vicinity of the reference state (T , x ). Setting : 

6 = 6 e n a 
U)t 

4 = 4 e U)t 

(21) 
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we find : 

. dT* -1 ~ (2n + 1) P (x* ) . 1 . loh 
\ EL_2 - Q ( X ) . i l i p ( x , 

1 dx j — u - + Pi + n ( n + 1) £ 1 1 B " S c n ^ 
even B (22a' 

where we introduced the dimensionless variable : 

m,' = (22b) w B 

An important feature of equation (22a) is to contain the effect 

of the discontinuity of the flux at the ice boundary in each term of the 

series. For this reason a truncation to the f i rst few terms, which is 

necessary if explicit values of w1 are to be obtained, can be envisaged 

without contradicting the free boundary condition, Eq. ( 6 ) . 

The results are highly dependent on the numerical value of 

h as defined by equations (12a) and (12b) for the two ice sheet 
eff 

models respectively. Adopting \ * 7 m, which gives reasonable central 

thicknesses as compared to thoses characterizing Antarctica and 

Greenland today, we have for a full ice cap : 

| - $ ~ 16° and h g f f * 3500 m 

On the other hand for a ring of ice : 

and h ~ 1500 m e f f 
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For usua l l y accepted va lues of the thermal i ne r t i a coe f f i c i en t , 

associated w i t h a mixed ocean layer of a few meters ( e . g . c = 4 .6 x 10 

J m~2 ° K ) and f o r the values of L, p g i ven by the rmodynamics , 
4 4 

Lph £ J c is of the o r d e r of 2 .3 x 10 and 1. x 10 r e s p e c t i v e l y , 
e f f 

We solved equat ion (22a) when t r u n c a t i o n to n = 0 and 2 was 

success ive ly pe r f o rmed , and f ound tha t the so lu t ions UJ1 were always 

real and nega t i ve . Th i s impl ies the absence of osc i l la t ions and the 

s tab i l i t y of the p resen t day c l imat ic regime w i t h respect to small ice 

sheet d i s t u r b a n c e s . The f i r s t two columns of Table 1 summarize the 

resu l t s conce rn ing tha t so lu t ion w' wh ich co r responds to the longest 

characteristic time scale, x * jjj = , for various values of h g f f . We 

see tha t w1 becomes as small as ^ 10~3 f o r values of L p h e f f / c of the 

o r d e r of 104 wh ich is p rec ise ly the o r d e r of magn i tude suggested by 

the two model ice sheets. Now u>' ~ 1 co r responds (see eq. 22b) to a 
-1 

re laxa t ion ra te of the o r d e r of Be , cha rac te r i s t i c of usual energy 

balance models. Such values are indeed found f rom the so lu t ion of the 

cha rac te r i s t i c equat ion (22a) . In add i t i on to them however the resu l t s 

g i ven in Table 1 show tha t we have been able to genera te , se l f -

c o n s i s t e n t l y , the long t ime scale cha rac te r i z i ng the i n te rac t i on between 

a tmosphere, h y d r o s p h e r e and c r y o s p h e r e . The appearance of such long 

scales re f lec ts the enhanced i ne r t i a ga ined by the system as a resu l t of 

the presence of ice sheets. In th i s respect f rom the est imat ions we made 

ear l i e r i t becomes obv ious t h a t the f u l l ice cap g ives r ise to a g r e a t e r 

i ne r t i a than the c i rcumpo la r one. 

5. SOLUTION BY GALERKI N'S METHOD 

The mode t r u n c a t i o n ob ta ined in the p receed ing Sect ion gave 

r ise to a cha rac te r i s t i c equat ion con ta in ing e x p l i c i t l y the e f fec t of the 
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TABLE 1 : Dependence on the slowest u)', solution of Eq. (22a) , for 

various values of Lph g ^ /c : two mode truncation ( f i rs t 

two columns) compared to the results obtained by 

Galerkin's method ( th i rd column). Numerical values of 
- 2 - 2 the parameters used : Q = 340 Wm ; A = 214.2 Wm ; 

B = 1.575 Wm"2 K - 1 ; D = 0.591 Wm"2; S ( x ) = 
1 - 0.477 P 2 ( x ) ; 
1 - a ( x , x ) = 0.697 - 0.0779 P 2 ( x ) for x < x g and 

1 - a ( x , x ) = 0.38 for x > x . s s 

Lph /c one mode two modes Galerkin's 
ef f 

method 

1 - o. 610 - 0.235 - 0. 234 

10 - o. 550 - 0.175 - o. 172 

100 - 0. 277 - 0.481 X io" 1 
- 0. 457 X io" 1 

1000 - o. 464 x IO- 1 - 0.579 X io" 2 
- o. 544 X io"2 

10000 - o. 498 x io" 2 - 0.591 X io" 3 
- o. 554 X io" 3 
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ice sheets. On the other hand any truncation to a finite number of 

modes implies (see Eq. (18)) that the discontinuity of the flux across 

the ice boundary will be smeared out. In order to remove this 

deficiency we analyze in this Section the linearized problem using 

Galerkin's method. We start from expression : 

V 
e = > e ( t ) p (x) + u(x) ( 2 3 ) t — n n 

n=o 

even 

where u(x) is orthogonal to all Legendre polynomials PQ to P^, and 

view 0 as a trial function, to be adequatly parameterized. The simplest 

non-trivial case is 

6 = 6 (t) + 60(t) P,(x) + u(x, t) (24) o l l 

In addition from being orthogonal to PQ and P^, the function u(x, t) is 

taken to satisfy the boundary conditions (6) and (16b), including' the 

flux discontinuity at the ice edge. The simplest x-dependence of u( x) 

compatible with these requirements is : 

x < x s 
(2!S) 

X > X s 

2 

u(x) = a
0
 + a2 ~2 

x2 

u(x) = b + b x + c2 -5 

The orthogonality condition of u(x) together with relations 

(6) and (16) constitute the following system of four equations with 5 

unknowns 
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2 2 x x 
a 0 + a 2 r " b2 xs " c2 = b0 

X_ by o Co o 
a0 Xs + a 2 " I " i ( X s * " " " I ( X s " = V X s " 11 

, 3 ' 2 / 3 * 3 . xa \ b 2 ( 3 % 2 1 \ 
a0 (XS " xs> + T ( — " r ) ~2 I T " " Xs " 2 > U h ) 

i 5 3 
/ 3 x s x s 4 \ - c — 5 - — - _ = b <x - x . ) 2 V 5 3 15/ O s s 

Lph dx 
a. U • e f f S - a 2 xs + b2 + c2 xs - — — 

D ( 1 - x ) dt s 

Leaving bQ as a free parameter we want to derive the equations of 

evolution for this quanti ty as for 6Q and e^. To this end, substituting 

the trial function Eq. (24) into the augmented energy balance equation, 

Eq. ( 1 1 ) , multiplying successively by PQ / P 2 and P^, integrating over 

the domain of x and l inearizing, we arr ive at the following expressions 

for 8 n , 8« and b 0 2 o 

66» 

d60 At 
C 3 T + 5 L P h e f f p2 i f = - l(B + 6 D ) e 2 + 5 Q A 2 4 ] 

(27) 

C § T F 1 + L 0 h e f f ( F 2 5t + F 3 ~ 2 ) = 
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where F^ to F 4 are cumbersome functions of x g and the parameters 
ar is ing from the solution of Eqs . (26) and the integration ot the 
different terms of the energy balance equation. 

From the above system of linear differential equations ' 2 4 ' 
together with the ice boundary condition 

4 = - (e 0 + e 2 P 2 (x*) + u(x, t ) ) ( g (28, 
s 

one can again obtain a characterist ic equation which is of s ixth degree 
in u). However it can be considerably simplified if one anticipates, m 
agreement with the previous Section, the existence of solutions 
corresponding to a long relaxation time. Another simplification which 
yield similar results is to uncouple the f i r s t two equations from the 
third one by choosing bQ = 0, but stil l keeping the influence of u< * ) 
which now does not contain any free parameter in the f i rst two 
equations. 

The th i rd column of Table 1 g ives the slowest mode w' in 
terms of L p h ^ / c , as determined from the above descr ibed Galerkin 
procedure. We see that the agreement with the two mode truncations is 
excellent. We are therefore confident that we have indeed determined a 
long intr insic time scale of the climatic system. 

.6. THERMODYNAMIC A S P E C T S . C O N C L U D I N G REMARKS 

In this Section we further d iscuss the or ig in of the enhanced 
inertia ar is ing from the presence of the ice sheets. To this end, we 
construct the entropy balance equation and then analyze the stabil ity 
properties in terms of the excess entropy production. 
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We first write the energy balance equation (11) in the form 

( 29 ) 

where R stands for all terms except those related to the movement of 

the ice boundary. 

According to the discussion at the end of Section 3, the 

entropy of the system in the presence of the moving boundary is (at 

constant pressure)) 

S = S(T, t) = J s dH (JO) 

where the integration extends from the equator to the pole and 

where A is the affinity of the phase transformation. Combining Eqs. 

(29) to (32) we obtain 

(3 l l 

According to chemical thermodynamics [11] 

A - r 
(32) 
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as _ ( 
at J 

1 A d£* 
d 4 R + f d T (33) 

The f i r s t term of the r ight hand side has been studied in detail in a 
recent paper [12]. T h e second term is specif ic to the ice boundary. It 
has the familiar bil inear form [13] of a thermodynamic force, A / T , 
multiplied by the f l u x , d £ s / d t , of an i r revers ib le process. 

T h e next step is to construct the balance equation for the 
excess entropy of the system. T h e main motivation behind this calcula-
tion is the Glansdorf f -Pr igogine theory [13], according to which excess 
entropy is a convenient Lyapounov functional governing stabil ity of a 
reference state. Speci f ica l ly , if 6 2 S is the second differential of entropy 
evaluated at the present day climate, stabi l ity of thermodynamic 
equil ibrium implies 

62S < 0 ( 3 4 a ) 

T h u s , if 

62S » 0 (34b) at 

by Lyapounov's theorem, the reference state will be neutral ly stable ( i f 

the equality s ign prevai ls in ( 3 4 b ) ) or asymptotically stable ( if the 

inequality s ign prevai ls in Eq. ( 3 4 b ) ) . 

The f i r s t differential of entropy density is ( c f . Eqs . (30) to 

(32) and the notation of Section 4 and 5) 
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A - r 
6s = | 0 + —^——- I 6(1 - 2s) <3S.) 

It fol lows that 

A - r 

2 2 T 2 
i 6 2

s = - i I e2 t \ l ( - ! — E ' I - 2 

* C-r^i 
ÖT / Pi 

6 4 | 6(2 - «sJ (.361 

where we neglected the var ia t ion of c on St and of r T p on T . 

The d i f fe ren t ia l of a f f i n i t y at the ice boundary (at constant 

pressure) is g iven by 

6 ( | ) = - ^ f 6 i (37a) 
T 

where 

^ T P " ( B ) t p - ( S ) T P 

G being Gibb's f ree energy . 
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Substituting into Eq. (36) we see that 

, A - r , 
a ( — - — 

5T 

and 

= 0 

p? 

Thus 

where the last term is evaluated at the ice boundary. 

Expression (38) is negative definite. Indeed, c a n d ^ T p are 
non-negative and do not vanish simultaneously owing to the convexitv of 
the Gibbs free energy. 

2 
We now evaluate the time derivative of ô S . Within the frame-

work of a linearized stability analysis we discard the time variation of 
the coefficients of the quadratic form, which are to be evaluated at the 
(stationary) reference state. We thus have 

— ( - &2s) = - I d * ^ 4 . ^ (39) 
a t 2 T ô t T 

On the other hand, the linearized form of Eq. (29) reads 
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38 
c at = 6R + r T p ^ 6 U " V (40) 

Substituting into Eq. (39) we obtain 

( - 6 2 S ) = - ƒ \ 6 R - L ( ? f + 6 ) ( 4 1 ) 
a t 2 1 T T T F s T s a t 

s s 

The f irst term of the right hand side has been analyzed in detail in 
[12]. The remaining terms are specific to the dynamics of the ice 
boundary. Utilizing Eq. (37a) one can easiiy see that they can be put 
in the form 

( f e ( i ) . 

This has the same structure as the second term of Eq. (33), except 
that the force and flux have been replaced, respectively, by their 
excess values around the reference state. We may therefore refer to 
this contribution as excess entropy production. 

In our problem the reference state around which 6 ( A / T ) s is 
to be evaluated is a steady state. From the point of view of the phase 
transformation, it has to be considered as a state of equilibrium (zero 
aff in ity) , since the two phases coexist under these conditions. It is 
therefore reasonable to evaluate 6 ( A / T ) g by adopting a linear law 
relating fluxes and forces 
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A ƒ d i s 
T = d T 

( 4 3 ) 

w h e r e t h e Onsager c o e f f i c i e n t * is p o s i t i v e . 

T h a n k s to Eq. ( 4 3 ) , e x p r e s s i o n (42 ) becomes 

( S t U « 2 ° ) ) b d - 1 ( £ ) ' > ° bound 

T h u s a c c o r d i n g to L y a p o u n o v ' s s t a b i l i t y t heo rem, Eq. ( 3 4 b ) , t he 

p resence of t he ice b o u n d a r y has a s t a b i l i z i n g e f f e c t . T h i s resu l t may 

seem u n e x p e c t e d at f i r s t h a n d , b u t can n e v e r t h e l e s s be u n d e r s t o o d as 

fo l l ows . When ice mel ts t h e reg ion a r o u n d t he ice b o u n d a r y b locks a 

c e r t a i n amount of e n e r g y . T h u s , on t he ave rage the t e m p e r a t u r e a r o u n d 

t h i s reg ion w i l l have to d r o p and t h i s w i l l t end to move t he b o u n d a r y 

back to i ts i n i t i a l p o s i t i o n . A s imi la r nega t i ve f eedback wou ld o b t a i n in 

case t h e ice f r o n t wou ld t e n d to advance as a r e s u l t of a p e r t u r b a t i o n . 

Note , h o w e v e r , t h a t the c o u p l i n g between ice b o u n d a r y and b u l k te rms 

may have a d e s t a b i l i z i n g e f f e c t t h r o u g h t he dependence of the a lbedo on 

t h e pos i t i on of t h e ice b o u n d a r y . 

In summary , t he ana lys i s r e p o r t e d in t h i s paper es tab l i shes 

t he h i g h i n e r t i a and t he i n f i n i t es ima l s t a b i l i t y of the ice edge c h a r a c t e r -

i z i ng p r e s e n t - d a y c l imate as wel l as t he absence of osc i l l a t i ons ( e v e n 

damped ones) in t he t ime dependence of p e r t u r b a t i o n s . T h e absence of 

osc i l l a t i ons impl ies t h a t one canno t expec t any resonance phenomena 

assoc ia ted w i t h a weak e x t e r n a l pe r i od i c f o r c i n g . In t he c o n t e x t of 

c l imate mode l l i ng , such f o r c i n g s (assoc ia ted w i t h t he e a r t h ' s o r b i t a l 

v a r i a t i o n s ) , have been w i d e l y i n v o k e d [14 ] to e x p l a i n the g lac ia t i on 

c y c l e s . An e x p l a n a t i o n of these cyc les based on a resonance mechanism 

has t h e r e f o r e to be r u l e d o u t in o u r model . 
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It would be interesting to extend some of the results reported 

in this paper by taking nonlinear effects into account. An intriguing 

possibil ity is the appearance of new bifurcations to time-dependent 

solutions. Numerical experiments aiming to ver i fy these points are in 

progress. 
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