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FOREWORD 

This article has been presented at the Conference "Milankovitch 

and Climate. Understanding the response to orbital forcing". I t will be 

published in the proceedings volume of this Conference. 

AVANT-PROPOS 

Ce texte a été présenté au Colloque "Milankovitch and Climate. 

Understanding the response to orbital forcing". Il sera publié dans les 

comptes rendus de ce colloque. 

VOORWOORD 

Volgende tekst werd voorgedragen op de Conferentie 

"Milankovitch and Climate. Understanding the response to orbital 

forcing". Hij zal verschijnen in de mededelingsbundel. 

VORWORT 

Dieser Tex t wurde vor der Konferenz "Milankovitch and 

Climate, understanding the response to orbital forcing" vorgetragen. Er 

wird in die Übertragung dieser Konferenz veröffent l icht . 



S E L F - O S C I L L A T I O N S , E X T E R N A L F O R C I N G S , A N D C L I M A T E 

P R E D I C T A B I L I T Y 

by 

C . N I C O L I S 

Abstract 

A class of nonlinear climate models involving two simultan-

eously stable states, one stationary and one time-periodic, is analyzed. 

The evolution is cast in a universal, "normal form" from which a basic 

difference . between "radial" and "phase" variables emerges. In 

particular, it is shown that the phase variable has poor stability 

properties which are at the orig in of progress ive loss of predictability 

when the oscillator is autonomous. Next, the coupling to an external 

periodic forcing is considered. New types of solution are found, which 

correspond to a sharp and reproducible behavior of the phase. In this 

way predictability is ensured. Moreover, it is shown that the response 

can be considerably amplified by a mechanism of resonance with certain 

harmonics of the forc ing. The implication of the results on the 

mechanism of quaternary glaciations is emphasized. 



Résumé 

On  analyse  une  classe  des  modèles  climatiques  non-l inéaires 

donnant  lieu  à deux  états  simultanément  stables  dont  un  représente  une 

solution  stationnaire  et  l 'autre  une  solution  périodique  au  cours  du 

temps.  Les  équations  d'évolution  sont  transformées  en  une  "forme 

normale"  à part i r  de  laquelle  une  di f férence  fondamentale  apparaît  entre 

les  variables  "radiales"  et  les  variables  de  "phase".  En part icul ier  on 

montre  que  l'absence  de  stabilité  prononcée  de  la  phase  est  à l 'origine 

d'une  perte  de  prédictabil ité  lorsque  l 'oscil lateur  fonctionne  de  façon 

autonome.  Cependant,  la  présence  d'une  perturbat ion  périodique 

extér ieure  permet  au  système  d'établ ir  une  phase  stable  et 

reproduct ib le,  tout  en  amplifiant  considérablement  sa  réponse  à t ravers 

un  mécanisme  de  résonance.  L' intérêt  de  ces  résultats  dans 

l ' interprétation  des  glaciations  quaternaire  est  mis  en  évidence. 
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Samenvatting 

Men analyseert een klasse van non-lineaire klimaatmodellen die 

aanleiding geven tot 2 staten die geli jkti jdig stabiel z i jn. Eén ervan is 

stationair, de andere is periodiek en ti jdsgebonden. - De evolutie v indt 

plaats in eèn "normale vorm", van waaruit een fundamenteel verschil 

ontstaat tussen de "radiaalvariabelen" en de "fasevariabelen". In het 

bijzonder wordt aangetoond dat het gebrek aan stabiliteit bij de fase de 

oorzaak is van een progressief verlies van voorspelbaarheid wanner de 

oscillator op autonome manier werk t . De aanwezigheid van een externe 

periodieke storing laat toe dat het systeem een stabiele fase ontwikkelt 

die tevens kan gereproduceerd worden, d i t , terwij l de respons 

aanzienlijk vers terk t wordt d . m . v . een resonantiemechanisme. Het 

belang van deze resultaten bij de interpretat ie van quaternaire ijs-

vormingen wordt sterk benadrukt . 
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Zusammenfassung 

Man analysiert eine Klasse von nich-Lineare Klimatmodellen die 

Anlass geben zu 2 Zustanden die gleichzeitig stabil s ind. Ein davon ist 

stationär, die andere ist periodisch und Zeitgebunden. Die Evolution 

findet statt in einer "Normalform"; von diese entsteht ein fundamental 

Unterschied zwischen die "Radia lveränderl ichern" und die "Phase-

veränderl ichern". Gesonders ist gezeigt dass der Stabilitätmangel am 

Phase die Ursache ist von einen progress iven Voraussagenmögl ichkeit 

Verlust wenn der Oszillator autonom arbeitet. Die Anwesenheit von eine 

externe periodische Störung erlaubt das System eine stabile Phase 

entwickelt die auch kann reproduziert werden, während das Antwort 

anschnlich verstärkt wird mit ein Resonanzmechanismus. Der Belang von 

dieser Resultäte bei die Interpretation von quaternäre Eisformung ist 

s tark unterstrichen. 
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1. INTRODUCTION 

A central question in climate dynamics concerns the relative 

role of internally generated and external mechanisms of climatic change. 

It is well known that many climatic episodes, amorig which quaternary 

glaciations are the most str ik ing example, present a cyclic character 

whose characteristic time is strongly correlated with external 

periodicities, like those of the earth's orbital variations (Becger , 1978). 

On the other hand, the balance equations of the principal variables 

predict that the coupling of such external forcings to the system's 

dynamics is exceedingly small. Hence, it is dif f icult to understand how 

such small amplitude disturbances can cause a response in the form of a 

major climatic change. 

In the last few years two types of explanation of this 

"apparent paradox" have been advanced. In a f i rs t attempt by Benzi et 

al. (1982) and the present author (Nicolis, 1982a), the coupling 

between an energy balance model giving rise to multiple stable steady 

states and an orbital forcing perturbing periodically the solar constant 

has been considered. I t has been shown that the internal fluctuations 

generated spontaneously by the system can amplify dramatically the 

response to the forcing, provided that the period of the latter is 

comparable to the mean f i rs t passage time between the stable climatic 

states. As a result the system experiences systematic deviations from 

the present-day climate to a less favorable climate, which are entrained 

to the periodicity of the external forcing. 

A second attempt at a solution of the problem is to examine to 

what extent the climatic system is capable of generating self-oscillating 

dynamical behavior. Saltzman and coworkers (1978, 1980, 1981, 1982) 

analyzed the interactions between sea ice extent and ocean surface 

temperature, and revealed the existence of an autonomous oscillator 

arising from the insulating effect of sea ice on temperature, and from 
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the negative effect of temperature on sea ice. For plausible parameter 
3 

values the periodicity turns out to be of the order of 10 years. This 

was to be expected, in view of the fact that such a value is an upper 

bound of variation in time of sea ice extent ( B e r g e r , 1981). On the 

other hand, by analyzing the interactions between the meridional ice-

sheet extent and global temperature Ghil and co-authors (1979, 1982a, 

b ) have also identified an autonomous oscillator. The periodicity of the 

latter turns out to be larger compared to Saltzman's oscillator, with an 4 
upper bound of the order of 10 years for realistic parameter values. 

In a recent paper devoted to the implications of self-

oscillations in climate dynamics (Nicolis, 1982b), we arr ived at the 

surprising conclusion that an autonomous oscillator subject to its own 

internal fluctuations or to a noisy environment has poor predictabi l i ty 

properties. Specifically, its dynamics can be decomposed into a "radial" 

part and an "angular" par t . I t then turns out that the radial variable 

has strong stabil ity properties whereas the phase variable becomes 

completely deregulated by the fluctuations. As a result any trace of the 

oscillatory behavior is wiped out af ter a sufficiently long lapse of time. 

It would appear therefore that self-oscillations alone cannot provide a 

reliable mechanism of cyclic climatic change encompassing both a long 

time interval and a global space scale. 

The purpose of the present work is to show that the coupling 

between an autonomous climatic oscillator and an external periodic or 

quasi-periodic forcing can, under certain conditions ensure sharp 

predictabi l i ty. The latter will be reflected by the occurrence of cyclic 

variations of climate displaying a well-defined periodicity. We focus on 

the role of orbital forcings in quaternary glaciations. As the relevant 

orbital periodicities are of the order of 2 x 104 to 105 years, it is clear 

that only the land ice dynamics is expected to couple effectively to such 

variations. For this reason we subsequently consider the type of models 

analyzed by Ghil (Ghil and Tavantz is , 1982b) as a prototype of this 

coupling. In Section 2 we cast these models in a generic, "normal" form 
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and summarize the results concern ing the bi furcat ion of var ious k inds 

of solution. In Section 3 we show how poor predictabi l i ty can ar ise in 

the absence of external f o r c i n g . Section 4 is devoted to the effect of 

such a f o r c i n g . We show that , c o n t r a r y to the autonomous osc i l lator , 

the d r i v e n one attains, asymptotical ly, a well defined phase. Moreover, 

substantial amplification of the response can take place by the 

o c c u r r e n c e of resonance with some of the harmonics of the f o r c i n g . In 

Section 5 we present some comments on the implications of the r e s u l t s . 

2. NORMAL FORM A N D B I F U R C A T I O N A N A L Y S I S O F G H I L T Y P E M O D E L S 

In Ghil and T a v a n t z i s (1982b) a set of two coupled nonlinear 

differential equations for the evolution in time of the dimensionless 

var iables 8, 9. descr ipt ive of the mean surface temperature and the 

meridional ice-sheet extent is analyzed. For plausible values of the 

physical parameters a stable s teady-state climate is shown to coexist 

with a stable t ime-periodic one. An intermediate unstable periodic 

branch separates the above two solutions. T h e amplitude of the stable 

periodic solution, which emerges by a mechanism of Hopf b i furcat ion, 

corresponds roughly to that obtained from data on quaternary glaciation 

c y c l e s , whereas its period is in the 104 year range. For other p a r a -

meter values more complex behavior becomes possible, culminating in the 

appearance of infinite period orbits represented in phase space by a 

separatr ix loop which is doubly asymptotic to an unstable steady state. 

We are not interested here in this latter type of behavior . Instead, we 

focus on the range of two stable solutions, one of them per iodic , 

separated by an unstable solution. 

A c c o r d i n g to the qualitative theory of o r d i n a r y differential 

equations ( A r n o l d , 1980) any system operating in the v ic in i ty of a Hopf 

bifurcation and present ing the above mentioned bistable behavior can be 

transformed, by a suitable change of var iab les , to the following 

universal form, known as normal form : 
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g = z ( i « , o + P + Y | z | 2 - C | Z | 4 ) (1) 

Here z, y, C are complex-valued combinations of the initial variables 

and parameters; p measures the distance from the Hopf bifurcation; and 

u)Q is the frequency of the periodic solution at exactly the bifurcation 

point (p = 0). For simplicity we hereafter take y and £ to be real, and 

set without further loss of generality £ = 1. Instead of viewing eq. (1) 

as equivalent to a pair of equations for the real and imaginary parts of 

z (which, as already pointed out, are suitable combinations of the initial 

balance equations), it now becomes convenient to switch to "radial" and 

"angu lar " variables through 

Subst i tut ing into eq. (1) and equating real and imaginary parts on both 

sides we obtain : 

d r rt> ^ 2 ^ T T = r ( p + y r - r ) (3a) 

(3b) 

Th i s set of equations admits a single steady state solution, 

(4 ) 
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It also admits solutions in which r is a nontrivial root of the right hand 

side of (3a) and <f> varies according to (3b) : 

o 

<|>q being an (arbitrary) initial phase. In view of eq. (2), these are 

therefore time periodic solutions of the initial problem. To determine 

them we consider the biquadratic 

or 

r s " * r s " P = ° 

r s± = \ [ * * ( y 2 + 4 P ) 1 / 2 ] ( 6 ) 

This admits two positive solutions as long as the following inequalities 

are satisfied : 

p S 0 

Y > o 

P * " £ < 7 ) 

Linear stability analysis carried out on eq. (3a) shows that r g o is 

stable for 0 < 0 and unstable for p > 0, r is stable whenever it exists p 
(P ^ - Y /4), and rg_ is always unstable. Figures 1a,b summarize the 



r s 

SVO 

/C 

Stable ] l s 0 Unstable 

u 

(a) 
Fig. 1a . - Bifurcation diagram for the amplitude of the 

solutions of eq. ( ! ) as a function of the para-

meter p. Full and dotted lines denote respectively 

stable and unstable branches. 

P 
(b) 

Fig. 1 b . - Dashed region indicates the domain of parameter 

space ß, y for which there are two nontrivial 

periodic solutions of eq. ( 1 ) . 
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information concerning these various solutions in the form of a bifurcation 
diagram, completed by a state diagram in parameter space. 

The resemblance between Fig. 1a and the results of Ghil and 
Tavantzis (1982b) is striking. Actually we can make use of the formal 
identity of the results to fit some of the parameter values of our model 
equation. Specifically, in the Ghil-Tavantzis analysis bifurcation occurs 
when |j, the ratio of the heat capacity to the land ice inertia 
coefficient, is equal to |J = 1.76735. Moreover the two periodic solutions 
- the analogs of our r g + and r g _- disappear below jj = 1.7583. Comparing 
with inequalities (7 ) we see that our equation can fit this model 
provided that 

p = M - 1-76735 

and 

Y 2 

j - = 1.76735 - 1.7583 4 

or 

y = 0.1903 (8a) 

In an example given by Ghil and Tavantzis |j is taken to be equal to 

1.76 for the present climate. In our notation 
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0 - 0.00735 (8b) 

From relations (8) we arr ive at the rather interesting conclusion that, 

for realistic parameter values, we can consider that our model operates 

close to the bifurcat ion point 0 = 0. Moreover, the width of the multiple 

stable state region as measured by y is small. As we see in the next 

Sections these features will allow us to perform a systematic analytical 

study of the system. 

3. THE PREDICTAB IL ITY PROBLEM 

The decomposition of the dynamics into a radial and phase 

part achieved by eqs. (3a) - (3b) allows us to obtain, straight-

forwardly, preliminary information on the predictabi l i ty properties of 

our model oscil lator. Indeed, let us perform the following thought 

experiment. Suppose that the system runs on its limit cycle r = r g + . A t 

some moment, corresponding to a value <J> = of the phase, we displace 

the system to a new state characterized by the values r , <|>o of the 

variables r and <J>. According to eq. (3a) and the stabil ity analysis 

performed in the previous Section the variable r will relax from r Q back 

to the value r g + , as the representative point in phase space will spiral 

toward the limit cycle (cf . F ig. 2). On the other hand, according to 

eq. (5), the phase variable (J) will keep for ever the memory of the 

initial value <|>o. In other words, when the limit cycle will be reached 

again, the phase will generally be di f ferent from the one that would 

characterise an unperturbed system following its limit cycle dur ing the 

same time interval. In as much as the state at which the system can be 

thrown by a perturbation is unpredictable, it therefore follows that the 

reset phase of the oscillator will also be unpredictable. In other words, 

our nonlinear oscillator is bound to behave sooner or later in an erratic 

way under the action of perturbations. Th is is tantamount to poor 

predictabi l i ty. 
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F ig .  2 . -  Schematic  Representat ions  of  the  evolut ion  fol lowing  the  act ion  of  a 

per tu rba t ion  leading  from  state  on  the  limit  cyc le  to  state  A Q .  Par ts 

(a)  and  ( b )  desc r ibe  the  s i tuat ion,  r e spec t i ve l y ,  in  the  space  of  the 

var iab les  of  the  normal  form  and  in  the  space  of  the  va r i ab les ,  6SL,  60 

represent ing  the  deviat ions  of  the  or ig ina l  var iab les  Si, 9 from  the 

steady  state. 



The above surprising property can be further substantiated 
by a stochastic analysis of the model. As well known any complex 
physical system possesses a universal mechanism of perturbations 
generated spontaneously by the dynamics, namely the fluctuations. 
Basically, fluctuations are random events. It thus follows that the state 
variables themselves ( r , <f>) (or 0 and & in Ghil's original model) become 
random processes. As we will show shortly this will result in a complete 
deregulation of the phase variable, whereas the radial variable will 
remain robust. The end result will be that because of destructive phase 
interference (cf . eqs. (2 ) and (5 ) with a randomly distributed initial 
phase <|>o), the signal of the system will tend to become flat if an 
average over a sufficiently long time is performed. 

The analysis of fluctuations follows the same lines as in 
Nicolis, 1982b. We incorporate the effect of fluctuations by adding 
random forces F_, F . to the deterministic rate equations (Hasselmann, D X» 
1976). As usual, we assume the latter to define a multi-Gaussian white 

noise : 

> = q* 6 ( t - f ) 

> = q2
& 6 ( t - f ) 

> = q e £ 6 ( t - f ) (9) 

This allows us to write a Fokker-Planck equation for the probability 
distribution P(0, H, t ) of the climatic variables. In general this 
equation is intractable. However, the situation is greatly simplified if 
one limits the analysis in the range in which the normal form (eqs. (1 ) 
and ( 3 ) ) is valid. To see this we first express the Fokker-Planck 
equation in the polar coordinates ( r , 0 ) . We obtain (Baras et al, 1982, 
Nicolis, 1982b) 

< F 0 ( t ) F 0 ( t ' ) 

< F £ ( t ) F £ ( f ) 

< F 0 ( t ) F £ ( f ) 
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- k ! - . - 7 % J p 

2 2 Q 2 Q 

+ - { — Q + 2 5 Z** + ü t t } p ( 1 0 ) 
2 2 rr 2 2 s 

6r 3r 30 r 96 r 

2 2 
in which Q ^ / Q r r

 ä r e suitable combinations of q^, q q Q £ / s in ((> 

and cos <J>. 

T o go f u r t h e r it is necessary to introduce a perturbat ion 

parameter in the problem. We chose it to be related to the weakness of 

the noise terms, and we e x p r e s s this t h r o u g h the scal ing 

= e Q„ 

Q = £ S , £ « 1 (11) r r r r 

We next recall that , in view of the remark made at the end of 

Section 2, both the bifurcation parameter p and the parameter y 

control l ing the width of the multiple stable state region can be taken 

small. We e x p r e s s this by scal ing these parameters by suitable powers 

of e, chosen in such a way that the scaled F o k k e r - P l a n c k equation still 

admits smooth and non-tr iv ia l solutions. Af ter a long calculation 

(Nicol is , 1982b and 1982c) we obtain the following two resu l ts . 
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(i) Let us define the conditional distribution P(<|>/r,t) through 

P(r,<J>,t) = P(<J>/r,t) P ( r , t ) (12) 

Then, to dominant order in e, P(<|>/r,t) obeys to the equation 

^ ^ ^ =-h% (13=) 

which admits a properly normalized stationary solution 

Ps U/r) = ^ ( 1 3 b ) 

(ii) Substituting (13b) into the bivariate Fokker-Planck equation for 

P(r, <J>,t) and keeping dominant terms in e we find a closed 

equation for P(r,t) of the form : 

8P(rjO = _ ( p r + Y r3 . r5 + q_ } + Q a L p ( 1 4 ) 

at dr 2r 2 3r 

2 
in which the positive definite quantity Q is another combination fof qQ , 

o 
Eq. (14) admits the following steady-state solution : 

Pg ( r ) -v r exp [ - I ( r ; ß, y ) ] (15a) 
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where U ( r , p, -y) is the kinetic potential generating the equation of 

evolution for r : 

dr 9U 
dt " 3r 

From eq. (3a ) : 

2 4 6 
U ( r ; p, Y ) = - P £ 2 " Y £ 4 + £ 6 ( 1 5 b ) 

2 
Fig. 3 represents the function (15a) in the range - y / 4 

< P < 0. We obtain a distribution in the form of a wine bottle whose 

upper part has been cut . The projection of the upper edge and of the 

basis of the bottle on the phase plane are, respectively, the stable and 

unstable deterministric limit cycles. 

The main conclusion to be drawn from the above analysis is 

that the phase variable has a completely f lat probabil i ty distr ibution 

(c f . eq. ( 1 3 b ) ) . I t may therefore be qualified as "chaotic", in the 

sense that the dispersion around its average will be of the same order 

as the average value itself. On the other hand, the radial variable has 

a stationary distribution (c f . eq. ( 15a ) ) such that the dispersion 

around the most probable value ( r = 0 or r = r g + ) is small. Neverthe-

less, the mere fact that the probabil i ty distribution is stationary rather 

than time-periodic implies that a remnant of the chaotic behavior of <f> 

subsists in the statistics of r : If an average over a large number of 

samples (or over a sufficient time interval in a single realization of the 

stochastic process) is taken, the periodicity predicted by the 

deterministic analysis will be wiped out as a result of destruct ive phase 

interference. This property is at the origin of a progressive loss of 

predictabi l i ty. 
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Schematic  representation  of  the  steady  state  probabi l i ty  d istr ibut ion 

eq.  (15a)  - (15b)  as  a function  of  the  excess  variables  6£  and  66. 
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Using eqs. (15 ) one can also determine the range of para-

meter values over which the steady state climate ( r = 0 ) or the time 

periodic one ( r = r g + ) are dominant, in the sense that they correspond 

to the deepest of the two minima of the potential. The results are 

summarized in Fig. 4. As expected, near the bifurcation point p = 0 the 

time-periodic solution dominates. On the contrary , near the limit point 
2 p = - y / 4 the steady-state climate is the most probable one. 

The knowledge of the steady-state distr ibution (15a) is also 

sufficient for calculating the mean characteristic passage times needed 

to jump between the two stable states through fluctuations (Nicolis and 

Nicolis, 1981). We find (Nicolis, 1982c) that for the parameter values 

given by eqs. ( 8 ) , this time is only twice the periodicity of the limit 

cycle itself. This is another manifestation of the poor predictabi l i ty 

properties of the system. 

4. EFFECT OF A PERIODIC FORCING : P R E D I C T A B I L I T Y ESTABLISHED 

We now consider the response of the climatic oscillator 

described by eqs. ( 1 ) and ( 3 ) to an external periodic forcing. Our 

purpose is to show that the forcing provides the synchronizing element 

that was missing in the autonomous evolution, and ensures in this way 

the existence of a sharp and predictable signal. 

We f i rs t analyze a purely sinusoidal forcing. The most general 

coupling with the internal dynamics would be described by an 

augmented eq. ( 1 ) , in which both additive contributions as well as 

contributions multiplied by suitable powers of z are considered. It is 

clear however that , as long as the system is in the range of small p 

and y, z itself would be small. As a result the response will be 

dominated by the additive par t . 

To study quantitat ively the effect of the forcing it will be 

convenient to work with the equations for the real and imaginary parts 
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U(rJ>U( r Q ) 

0; 
o 
C 
Q> •*-> 
CO 
X 
<b 
O 
U U ( r J < Ü ( r J 

H *— 

l 2 ßs - 1 V 2 
U c* 1 6 

Stationary 
solution 

dominant 

0 

v_ 

Oscillating solution dominant 

/ 

Domain of three solutions 

Fig.  4 . -  Range  of  values  of  the  parameter  0 for  which  the  stationary  solution  or 

the  time  periodic  solution  is  the  most  probable  state  of  the  system. 



of our variable z , in view of the subtleties associated with the handling 

of the phase variable. We can write these equations in the form ( c f . 

eq. ( 1 ) with z = x + iy ) : 

j 2 2 2 2 2 
= 0x - u)Qy + yx(x + y ) - x(x + y ) + e q sin uijt 

g = u>0x + f$y + yy (x 2 + y 2 ) - y ( x 2 + y 2 ) 2 (16) 

Here ^ is the frequency of the forcing, e a smallness parameter, q the 

coupling amplitude. The absence of coupling in the second eq. (16 ) 

simplifies the calculations considerably and will therefore be adopted in 

the sequel. Note that there is no essential loss of generality implied by 

such an assumption. 

In order to handle eqs. (16 ) we shall take into account the 

fact , already utilized in Section 3, that the system operates close to 

bifurcation (0 -*• 0 , y •* 0 ) . Setting 

2 3 x = exj + e x 2 + e x 3 + 

y = ey : + e 2 y 2 + e 3 y 3 + . . . . (17) 

we then see that to order e the only terms surviving in (16) are 

dx 
+ u)_ y , = q s in u>- t dt 0 ' 1 

- u)_ x , = 0 dt 0 "1 
(18) 
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A part icular solution of (18) is easily found to be 

c o s Ul j t 

s i n u i j t ( 1 9 ) 

This solution is well-behaved for all values of u^ except those for which 

there is resonance, u^ = uuQ. In the context of quaternary glaciations, 

in which the frequency of the (orb i ta l ) forcing is at least two times 

smaller than u>Q, it is unlikely that resonance can be expected. We 

therefore exclude this possibility for the time being. 

X1P 2 2 

y l P 2 2 
w - to, 

As well known, the general solution of eqs. (18) is given by 

the particular solution eq. (19) to which the general solution of the 

homogeneous equation is added. As the homogeneous equation is simply 

the harmonic oscillator problem, we finally obtain : 

x = A c o s u>0 t + B s i n UIQ t + — ^ c o s u ^ t 

y 1 = A s i n U)Q t - B c o s U)Q t + - — q 0 s i n u j j t ( 2 0 ) 

to - to 0 1 

At this point A and B are undetermined constants. As a matter of fact 

their indeterminacy reflects, in par t , the lability of the phase variable 

in the absence of the forcing. Contrary to the autonomous case how-

ever , we now have a way to remove this indeterminacy. It suffices to 

push expansion (17) to a higher order with the additional requirement 

that p and y have also to be scaled in terms of e : 
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p = e 4 $ + . . . 

Y = e 2 y + • • • (21) 

We obtain in this way, to f i rs t nontrivial order beyond ( x ^ , y^) : 

dx 
5 y , 2 , 2 . , 2 . 2 .2 

— i + u»Q y 5 = p Xj + Y (x j + y j ) - X j (x j + y ^ 

^ . ^ x 5 = p" Y l + Y y , (x 2 + y f ) - yx (x 2 + • y j ) 2 (22) 

in which x^, y 1 are given by eqs. ( 2 0 ) . 

This inhomogeneous set of equations for ( x 5 , y & ) admits a 

solution only if a solvability condition expressing the absence of secular 

terms ( i . e . terms increasing unboundedly in t ) is satisfied. It turns out 

(Sat t inger , 1973) that this condition expresses the orthogonality of the 

r ight hand side of ( 2 2 ) , viewed as a vector , to the two eigenvectors of 

the operator in the left hand side : 

(cos u>Qt , s in u)Qt) 

and 

(s in u)Qt , - cos U)Qt) (23) 

The scalar product to be used is the conventional scalar product of 

vector analysis, supplemented by ah averaging over t . The point is 
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that we dispose of two such solvabil ity condit ions, for the two unknown 

constants A and B. Because of the presence of terms in q in eq. (20) 

these will be inhomogeneous equations. Both A and B will therefore be 

f ixed ent irely, without fur ther indeterminacy. In other words, we have 

shown that whatever the initial perturbat ion which may act on the 

system, the final solution will be perfect ly well defined both as far as 

its amplitude and its phase are concerned. We have therefore shown 

that the unpredictabi l i ty pointed out in the previous Section is removed 

by the presence of the forc ing. 

Once the solvabil ity condition is satisfied one can compute 

(Xj., y^) from eq. (22). A novel feature then appears since the solution 

involves trigonometric functions having arguments 3u>.|t and 5u).jt. Th is 

will give rise to denominators of the form (u)Q - 3 ^ ) and (u)Q - 5uj1). 

The appearance of resonance becomes now much more plausible, since 
3 

for an intr insic period of say 7 x 10 years it would be realized by 
4 4 

external periodicities of 2 x 10 and 4 x 10 years. These are known to 

be present in the orbital forc ing. In other words, in addition to 

establishing predictabi l i ty we obtain, for free, the enhancement of the 

response in the form of resonance with certain harmonics of the 

external forc ing. 

5. DISCUSSION 

The principal result of the present paper has been that 

self-oscil lations in climate dynamics are bound to show erratic behavior 

after the lapse of suff ic iently long time, as a result of poor stabil ity 

properties of the phase variable. On the other hand when the nonlinear 

oscillator is coupled to an external periodic forc ing the response is 

characterized, under typical conditions, by a sharply defined amplitude 

and phase. In other words the signal becomes "predictable" in the 

sense, that its power spectrum computed from time series data would, be 

dominated by a limited number of well-defined frequencies. Computer 
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simulations on a model including land ice dynamics by Le Treut and Ghil 

(1982a) confirms entirely this point. 

In addition to predictability the coupling with the external 
forcing can also lead to the enhancement of the response, through a 
mechanism of resonance between the intrinsic frequency and certain 
harmonics of the forcing. Besides, eqs (20) show that the response to 
the forcing will in general be quasi-periodic, in view of the fact that 
the internal and external frequencies need not be rationally related to 
each other. Again, these features are in complete agreement w'ith the 
numerical simulations by Le Treut and Ghil (1982a). 

In the analysis of Section 4 we adopted a purely phenomeno-
logical description. A stochastic analysis incorporating the effect of 
both fluctuations and external forcing, would certainly provide a more 
convincing proof of how predictability is ensured in the system. We 
intend to report on this point in future investigations. 
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