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FOREWORD 

The  paper  entitled  "On  a new  f luctuat ion-diss ipat ion 

theorem  in  climate  dynamics"  will  be  publ ished  in  Developments  in 

Atmospheric  Sciences. 

A V A N T - P R O P O S 

L'article  intitule  : "On  a new  f luctuat ion-dissipat ion  theorem 

in  climate  dynamics"  sera  publie  dans  Developments  in  Atmospheric 

Sciences. 

VOORWOORD 

Het  artikel  : "On  a new  f luctuation-dissipat ion  theorem  in 

climate  dynamics"  zal  verschijnen  in  het  t i jdschr i f t  Developments  in 

Atmospheric  Sciences. 

VORWORT 

Die  Arbei t  : "On  a new  f luctuation-dissipation  theorem  in 

climate  dynamics"  wird  in  Developments  in  Atmospheric  Sciences  heraus-

gegeben  werden. 



O N A NEW F L U C T U A T I O N - D I S S I P A T I O N T H E O R E M IN 

C L I M A T E D Y N A M I C S 

by 

C . N I C O L I S 

A b s t r a c t 

In recent y e a r s , a f luc tuat ion-d i s s ipat ion theorem l ink ing the 

time correlat ion of f luctuat ions of climatic var iab les to the matrix 

monitor ing the linear response to an external f o r c i n g , has been 

extens ive ly used in climate dynamics . In the present paper an extended 

f luctuat ion-d i s s ipat ion theorem is s u g g e s t e d , which refers to the 

propert ies of the random forces rather than those of the climatic 

va r i ab le s . The implications of th i s theorem are analyzed in the f rame-

work of an energy -ba l ance model. In par t i cu lar , some character i s t ic 

propert ies of the noise associated with climatic var iab i l i ty are identif ied. 

Résumé 

A u cours de ces dern ières années un théorème de f luctuat ion-

d i s s ipat ion rel iant la fonction de corrélat ion temporelle des f luctuat ions 

cl imatiques aux coefficients de réponse l inéaires a été introdui t en 

dynamique climatique. Dans le présent travai l on propose une extens ion 

de ce théorème fa i sant intervenir les propr iétés des forces aléatoires au 

lieu de celles des var iab les c l imatiques. Les conséquences de ce nouveau 

théorème sont ana lysées et i l lustrées s u r un modèle de bi lan 

énergét ique. 



Samenvatting 

Gedurende de laatste jaren wordt een f luctuatie-dissipatie 

theorema, dat de ti jdscorrelatie van klimaatschommelingen in verband 

brengt met de coëfficiënten van lineaire respons, veelvuldig gebru ik t in 

de klimaatdynamica. In dit werk wordt een uitbreiding van dit theorema 

voorgesteld, die veeleer de eigenschappen van wil lekeurige krachten 

naar voor brengt i . p . v . deze van de klimaatschommelingen. De gevolgen 

van dit nieuw theorema worden geanalyseerd en geï l lustreerd op een 

model van energetische balans. In het bijzonder worden bepaalde 

karakterist ieke eigenschappen van het geluid, geassocieerd met klimaat-

variabi l i te i t , uitgelegd. 

Zusammenfassung 

In letzter Zeit ist eines Schwankung-Dissipation Theorem, 

dass die Zeitcorrelation von Klimatschwankungen in Verbindung setz mit 

die Koeffizienten von linear Antwort , viel benutzt in die Klimatdynamik. 

In diese Arbeit ist eine Ausbreitung von diesem Theorem dargestel l t , 

die vielmehr die Eigenschäppe von Zufal lskräfte tu t auftreten statt diese 

von die Klimatveränderlichern. Die Gefolge von diesem neuem Theorem 

sind analysiert und i l lustr iert am eines Modell von Energie-Bi lanz. 

Besonders sind manche charakteristische Eigenschäfte von Geräusch, 

assoziiert mit Klimatvariablität, e rk lä r t . 
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1. I N T R O D U C T I O N 

Climate variabil ity is an undisputable fact, and its effect both 

on the short term behavior and on the large scale transit ions of the 

climatic system is widely recognized (Lorenz, 1976). On the other, hand, 

its quantitative characterization is an extremely complex statistical 

problem. Indeed, climate dynamics is an ensemble of nonlinear processes 

involving a large number of coupled variables, which evolve under 

conditions far away from thermodynamic equilibrium. Even at a labo-

ratory scale, such processes are poorly understood. For instance the 

statistical foundations of hydrodynamic instabilities (see e . g . Swinney 

and Gollub, 1981) or of chemical instabilities (Nicolis and Pr igogine, 

1977) are still in their infancy. 

An important step toward the quantitative formulation of 

climate variabil ity was accomplished by Leith (1975, 1978), whose ideas 

were further d iscussed by Bell (1980) and North et al. (1981) among 

others. We briefly summarize the main points. 

Let {x } be a set of climatic variables. On the one side, their 

evolution is subjected to continuous random deviations from some macro-

scopic average, owing to the intrinsic stochasticity of climate. And on 

the other side, these same variables are capable of responding to any 

change of the external environment (like e . g . the solar output, the 

earth's orbital characteristics, the C 0 2 level e t c . . . ) in the form of a 

deterministic s ignal. But the local dynamics of {x a } has presumably no 

way to "know" whether the perturbation to which it responsed was due 

to the system's intrinsic stochasticity or to the external forc ing. Hence, 

the two responses must somehow be related. We call this relation the 

fluctuation-dissipation theorem. Leith wrote it in the form : 
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< 6 x a (0) 6 Xp(x) > = I < 6x a (0 ) 6x^(0) > . g y p ( t ) (1) 

The left hand side of Eq. ( 1 ) features the time-correlation matrix of the 

fluctuations {6><a} in the absence of external forcing. In the r ight hand 

side we have the static quadratic average of these same fluctuations 

multiplied by the matrix g ( x ) , which monitors the linear response of 

fx 1 to a small change of the external environment. Specifically, the 1 or 
time integral of g „ ( t ) may be viewed as some sort of t ransport Of p 

coefficient, 

00 
(2a) 

ƒ « « P
( x ) d T 

relating the response 6<xa> to the external forcing, : 

6 <x > = I D Q 6F r ( 2 b > a p a0 p 

The brackets in Eqs ( 1 ) and (2b ) denote the averaging over a 

statistical ensemble descriptive of the system. Presumably, both the 

time-correlation functions and the static quadratic averages of {6x a } are 

accessible from meteorological data. Hence, from Eq. ( 1 ) one can 

evaluate the response function g ( t ) and subsequently determine thanks 

to Eqs ( 2 ) , the system's sensitivity to a var iety of external signals. 

Th is , according to Leith, is the main usefulness of f luctuation-

dissipation like relations in climate dynamics. 

In view of the enormous complexity of the earth-atmosphere 

system, it is only unavoidable that many of the assumptions needed to 

ar r ive at the basic relation, Eq. ( 1 ) , are not ful ly justi f ied. Let us 

examine the most crucial of them in some detail . 
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First , in the original derivation (Le i th , 1975, 1978) the 

Liouville equation for a conservative flow is the start ing point. Now, 

the dynamics of the climatic variables is a dissipative, non conservative 

dynamics. As well known the passage from the microscopic degrees of 

freedom evolving according to the Liouville equation to the macro-

variables obeying to such conservation laws as the Navier-Stokes 

equations is a complex process. Additional assumptions are therefore 

needed. Specifically, it is postulated that the probabil i ty ensemble of 

the macro variables is given by a Gaussian distr ibution and that the 

process is ergodic. This is certainly t rue when the system evolves in 

the vicinity of a single globally stable steady state. If on the contrary 

the earth-atmosphere system is capable of performing transitions 

between di f ferent types of climatic states (Lorenz, 1976, North et al. 

1981) this assumption should break down : The probabil i ty ensemble is 

in this case multi-humped (Nicolis and Nicolis, 1981) and the process 

becomes "metrically almost intransit ive" (Lorenz, 1976). 

Second, relation ( 1 ) involves two unknown sets of 

quantities : the correlation functions and the static quadratic averages 

of the fluctuations. As a result , it cannot give to us information on the 

source of intrinsic randomness of the climatic system. Moreover, a 

di f f iculty arises when one is interested in long term climatic changes, 

like those on which one focuses in the framework of energy-balance 

models. The measurability of the above mentioned two sets of average 

quantities becomes then questionable, and as a result the usefulness of 

a fluctuation-dissipation relation of the form given in Eq. ( 1 ) is 

reduced. -

The purpose of the present paper is to present some results 

contributing to a partial resolution of the above mentioned diff icult ies. 

The starting point is to realize that climatic variabi l i ty is the result of 

f luctuations. The latter are incorporated into the traditional description 

based on the phenomenological balance equations through the addition of 

random forces, as suggested by Hasselmann (1976) : 
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dx 
= f 0 ( { x p } ) - d iv J a + F a ( r , t ) (3a ) 

Here f are the source or sink te rms, J the f l u x of x , and F the a a a a 
random force associated to x^ . T h e problem of obta in ing information on 

the statist ics of climatic var iables amounts t h e r e f o r e to f ind ing the 

statistical proper t ies of these random forces. As , by de f in i t ion , the 

lat ter are not accessible exper imenta l ly , one must resor t to physica l ly 

plausible models and test t h e i r va l id i ty a poster ior i , on the basis of the 

behavior they pred ic t for the or iginal climatic var iab les . 

One , widely adopted, assumption is t h a t the random forces 

def ine a Gaussian white noise in time : 

< F a ( t , t ) F p ( t ' f ) > = Q a p ( r , r ' ) 6 ( t - f ) (3b) 

In o rder to character ize the statist ics completely, it remains however to 

obtain information on the covariance matr ix { Q a p ( £ ' £ ' ) } • T h i s i n t u r n 

can only be achieved if the physical mechanisms at the or ig in of f l u c t u a -

tions are ident i f ied . So f a r this aspect has been completely over looked 

in the l i t e ra ture : e i ther the authors assign an a r b i t r a r y s t r u c t u r e to 

{Q a p} (Hasselmann, 1976; Nicolis and Nicolis, 1981; S u t e r a , 1981) o r , at 

best , they incorporate in the descr ipt ion some constraints ar is ing from 

symmetry arguments ( N o r t h and Cahalan, 1981) . As a resu l t , in 

systems involv ing several var iables one is confronted with a large 

number of unknown parameters . Th is obscures considerably the u n d e r -

standing of the mechanisms which are at the or ig in of climatic 

v a r i a b i l i t y . 
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Our work provides a f i r s t step toward a more fundamental 

characterization of the noise associated with climatic variabi l i ty. The 

basic idea is the following : Fluctuations originate, typical ly, in the 

form of localized, small scale events and as a result they cannot 

perceive the nonequilibrium constraints conferring a nonlinear character 

to the overall dynamics. It is therefore h ighly plausible that such 

properties as microscopic reversibil ity and f luctuation-dissipation like 

relations still hold for the random forces descriptive of these f luctua-

tions, even if they may be compromized for the state variables them-

selves. 

The search of such a f luctuation-dissipation theorem of the 

"second kind" will be the central point of our work. A s a byproduct, 

this procedure will enable us to determine the characteristics of the 

fluctuations of the state variables and thus obtain information on the 

type of noise characterizing climate variabi l ity. 

The general formulation of these ideas, which are patterned 

after the Landau-Lifshitz theory of fluctuations in fluid dynamics, is 

presented in Section 2. In Section 3 we apply the theory to a zonally 

averaged energy balance climate model and derive express ions for the 

correlation matrix of the effective random forces. Section 4 is devoted 

to the detailed analysis of the implications of this result, us ing the 

two-mode truncation of the model of Section 3. In particular, we show 

that the globally averaged surface temperature constitutes a non-

Markovian process with red noise spectrum. Some comments and 

suggest ions are presented in Section 5. 

2. A F L U C T U A T I O N - D I S S I P A T I O N T H E O R E M FOR E N E R G Y - B A L A N C E 

M O D E L S : G E N E R A L F O R M U L A T I O N 

In order to avoid unnecessary complications and present the 

ideas as clearly as possible we focus, in the major part of this 



paper , on e n e r g y balance climate models. We do not comment on the 

range of va l id i ty of the descr ipt ion a f forded by such models, re fe r r ing 

to North et al (1981) for a recent s u r v e y . We want to emphasize 

however that most of the bas ic ideas exp re s sed below are model-

independent. 

The general form of the evolut ion equation in an e n e r g y 

balance model is : 

Here e ( e n e r g y per unit su r f ace ) is the e n e r g y content of a column 

hav ing a unit c ro s s section and a he i gh t of the o rder of the depth of 

the mixed layer, c is the heat capaci ty of th i s column, T the sur face 

temperature, f the radiat ion budge t (d i f ference between incident solar 

f lux and outgo ing in f rared radiat ion) : 

Final ly £ is the space coordinate, and J the ene r gy f l u x . 

We would now like to e x p r e s s the mechanism b y which f l uc tua -

t ions appear in the balance equation ( 4 ) . A s d i s cu s sed extens ive ly in 

the theory of i r revers ib le processes ( see e . g . P r i gog ine , 1961; Landau 

and L i f sh i tz , 1959) f luctuat ions or ig inate from the dynamics of the 

d i s s ipat ive degrees of freedom. In o rder to ident i fy the latter we have 

to t u r n to the entropy balance equation associated to Eq. (4 ) and 

cons t ruc t the expres s ion of the rate of d i s s ipat ion per unit time - the 

ent ropy product ion. For an ene r gy balance model of the k ind cons idered 

E = f (T ' «> " div I (4) 

f ( T , = F s - F i r 
(5) 
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in the present Sect ion th i s was accomplished in Nicol is and Nicol is 

(1980). The resu l t is 

In other words the radiat ive terms f ( T , r ) do not contr ibute to the 

d i s s ipa t i ve behav ior of the sys tem in th i s approximat ion. We are 

therefore forced to conclude that the on ly way f luctuat ions can 

inf luence the ene r gy balance equation is t h r o u g h the heat f lux J. In 

the framework of the determinist ic descr ipt ion it is cus tomary to 

exp re s s J b y a Four ier type law, the d i f ference being that the 

proport ional i ty coefficient is here the eddy d i f f u s i v i t y rather than the 

molecular heat conduct i v i t y . In the presence of f luctuat ions the 1 
s i tuat ion will change , and we will have 

J t ) = - D' V T + I ijr, t ) (7) 

D' is the eddy d i f fu s i v i t y which for s implicity is taken to be both r and 

t - independent and 4 ( r , t ) is the spontaneous heat f lux a r i s ing from 

f luctuat ions . Sub s t i t u t i n g into Eq. ( 4 ) we obtain a s tochast ic differential 

equat ion of the form g i v e n in Eq . (3a ) : 

c t * = f ( T , r ) + D' V2T + F Q:, t ) (8a) 
ot 

which d i s p l a y s the random force term 

entropy product ion = 
- 1 

(6) 

O = - d i v l (;r, t ) 
(8b) 



We want now to establ ish the proper t ies of the random f ie ld 

j^(r , t ) f rom which the proper t ies of the e f fec t ive random force F will 

follow automatical ly. Let us f o r g e t for a moment t h a t we are deal ing 

wi th the ear th -a tmosphere system and consider a simple heat conduct ing 

f lu id operat ing in the v ic in i ty of thermodynamic equ i l ib r ium. In th is 

case a f luctuat ion-d iss ipat ion theorem l ink ing ^ ( r , t ) to the phenomeno-

logical coeff ic ient D' was der ived by Landau and Li fshi tz (1959 ) on 

in tu i t ive grounds and f u r t h e r just i f ied by Fox and Uhlenbeck ( 1 9 7 0 ) . I t 

has the form : 

< j
£
 (

< f
 t) > = 0 (9a) 

< Ji
 t }

 > =
 2

 S D ' ^ «An ^ " £ ' ) 6 ( t " t , } 

(9b) 

where K is the Boltzmann's constant and f the equi l ibr ium tem-
B 

p e r a t u r e . In o ther words d i f f e r e n t components of the random p a r t of 

the heat f lux are uncorre la ted between themselves, the values of a 

g iven component at d i f f e r e n t space regions are also uncor re la ted , and 

f ina l ly the whole process const i tutes a Gaussian white noise in t ime. 

As pointed out in the In t roduct ion , f luctuat ions or ig inate 

spontaneously in the form of localized, short scale events independent ly 

of the distance from the state of thermodynamic equi l ibr ium. We 

there fore expect tha t the above proper t ies will stil l hold under the 

h ighly nonequi l ibr ium conditions character iz ing the climatic system (see 

Nicolis and Pr igogine, 1977; Ke izer , 1978 for a general discussion of 

this p o i n t ) . We there fo re wr i te 
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I 

K h (S> > = 0 

< j £ t } j
m

 t f ) > = ° 2 6£m " 6 ( t " ^ 

In other words we require to have the same spatial and temporal 

properties as in equil ibrium but allow for a d i f ferent numerical factor , 
2 - 2 ct , which replaces the factor 2 K_ D' T in Eq. ( 9 b ) and e x p r e s s e s the 

B 2 s t rength of f luctuations far from equi l ibr ium. In the sequel a will be 

treated as a parameter. O u r analys is will focus solely on the 

consequences of the fact that j is delta-correlated both in space and 

time. Note that, because of Eq. ( 8 b ) , thie effective random force F 

appearing in the e n e r g y balance equation ( 8 a ) , is not delta correlated 

in space. T h e consequences of this rather important property are 

examined in Section 4. 

E q s . (10) are somewhat reminiscent of the formalism developed 

recently by North and coworkers (North et al, 1981; North and 

Cahalan, 1981). However, to our knowledge these authors have not 

incorporated in their descr ipt ion the physical constra int that, the 

effective random force F is the d i v e r g e n c e of a random vector field and 

that the latter is a white noise both in space and time. T r u e , our 

express ions may be considered as a special case of a general covar iance 

matrix {Qap(jC'JC'^ t h e r a n d o m f ° r c e field ( c f . Eq. ( 3 b ) ) . However, 

in the theory of f luctuations it is important to become g r a d u a l l y as 

specif ic as possible in order to incorporate the maximum amount of 

information available from f i r s t pr inc ip les . 

F ina l ly , let us emphasize that the procedure outlined above 

can be extended readily to any other kind of conservation equation 

l ike, for instance, the momentum balance equation : 

(10a) 

(10b) 
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in which p is the mass density, % is the velocity field, p the hydro-
static pressure, a the dissipative part of the stress tensor, and d/dt 
the hydrodynamic derivative. For an incompressible fluid the analogue 
of Eq. (7) is : 

dv. 6 v . 
= " n ( a r + + s i j 

J 1 

r| being the shear viscosity and S.. the fluctuating stress tensor. Eqs. 
(9) are now to be replaced by (Landau and Lifshitz, 1959) : 

< S . . ( t , t ) > = 0 

< S i j U . S£m U ' » f ) > = 2 k b T n ( 6 i A 6 j m
 + 6 i r a 

fixing the statistics of the effective random force present in the 
momentum balance equation. The transition from this near-equilibrium 
result to the highly nonlinear regime of climate dynamics would 
naturally follow the same lines as above and would lead to an equation 
similar to (10b), in which the factor 2KBTn is replaced by a simple 
parameter a 2 expressing the strength of fluctuations far from 
equilibrium. Some properties of the noise of the vector field % are 
reported in Nicolis et al. (1983) along with an application to the Lorenz 
model. 
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3. A P P L I C A T I O N TO A Z O N A L L Y - A V E R A G E D MODEL 

We now simplify f u r t h e r the model introduced in the previous 

Section by tak ing into account only the energy t rans fe r in the mer i -

dional d i rect ion. In this zona l ly -averaged , one-dimensional ( 1 - d ) model 

Eqs. ( 8 ) take the form ( N o r t h , 1975) 

c = f ( T , X ) + D ( 1 - x 2 ) f l - i (1 - x2 )1 7 2 j ( x , t ) 
5t 9x ox R dx 

= f ( T , x) + D (1 - x 2 ) g + F ( x , t ) (11) 

To a r r i v e at Eq. ( 11 ) one has also to perform a change to spherical 

coordinates on the earth 's surface, x is the sine of the la t i tude, R the 

earth 's radius , and D an ef fect ive heat di f fusion coefficient defined b y N 

D = D ' / R 2 . 

In order to f ind the form of the general ized f luctuat ion-

dissipation theorem, Eqs. ( 1 0 ) , in these coordinates, we f i r s t observe 

that in the framework of our 1 - d model, only the localization in the 

8-d i rect ion needs to be expressed. The c p - dependence contained in the 

delta function 6 ( r - r ' ) should there fore merely enter as par t of the 

Jacobian of the transformation to spherical coordinates, namely 
2 R Acpcos 6. Thus 

• U - f J - T T R Aq> cos 8 

2 
The size of Aq> has to be chosen in such a way that R Aqp reduces to the 

uni t surface element for which the energy balance equation is usually 

wr i t ten . Fur thermore, 
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6(x - x ' ) =f 6(s in 6 - sin 9 ' ) = 6(9 - 9 ' ) 

We obtain therefore 

6(£ - = - J c o s 9 6(x - x ' ) = 6(x - x ' ) (12) 
R Acp cos 0 

and hence (cf. Eq. (10b)) : 

< j (x, t ) j (x* , f ) > = a2 6(x - x ' ) 6 ( t - t ' ) (13) 

From this relation as well as Eq. (8b) we may compute the auto-

correlation function of the effective random force 

< F(x, t ) F(x* , f ) > = 

= ( 2 , 2 ( , . x 2 ) 1 ' 2 ( 1 - X ' 2 ) 1 / 2 6 ( x - X ' ) ( 1 4 ) 

e 

As usual (North, 1975) we expand both the temperature and the random 

force fields in series of Legendre polynomials : 
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T = I T ( t ) P ( x ) ( 1 5 a ) 
n n n 

F = I F ( t ) P ( x ) ( 1 5 b ) 
n n n 

Inser t ing relat ion ( 1 5 b ) into Eq. ( 1 4 ) mul t ip ly ing by P m ( x ) p
f l ( x ' ) a n d 

i n tegra t ing over x and x' we obtain : 

2 2 < F F „ > = ( | ) 2 6 ( t - f ) . 
2A + 1 2 m + 1 m £ V R 

ƒ d x d x ' P m ( x ) ( 1 - x 2 ) 1 / 2 P £ ( x ' ) ( 1 - x ' 2 ) 1 / 2 6 ( x - x ' ) 

I n tegra t ing by par ts and per forming the delta funct ion we f ina l ly 

obtain : 

< F F „ > = q 2 6 * r 6 ( t - t ' ) ( 1 6 a ) 
M Si TII Jim 

with 

= . ( . + 1) ( | ) 2 (16b) 

Several important conclusions can be drawn from these 

expressions. F i r s t , the random forces associated to d i f f e r e n t Legendre 

modes are u n c o r r e c t e d . Second, t h e r e is no random force act ing 

d i rec t ly on the equation for the global ly averaged tempera ture T q , as 

q = 0 from Eq. ( 1 6 b ) . And t h i r d the importance of the f luctuat ions 
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I 

d e p e n d s o n t h e o r d e r o f t h e L e g e n d r e mode. For t h e f i r s t f e w modes 

q is e x p e c t e d t o be smal l , because o f t h e p r e s e n c e o f t h e i n v e r s e 

s q u a r e o f t h e e a r t h ' s r a d i u s i n Eq . ( 1 6 b ) . For h i g h e r m h o w e v e r q 
3 

r a p i d l y i n c r e a s e s , v a r y i n g r o u g h l y as m . Now as we l l k n o w n h i g h e r 

o r d e r L e g e n d r e modes r e p r e s e n t loca l ized d i s t u r b a n c e s . We r e a c h 

t h e r e f o r e a v e r y n a t u r a l c o n c l u s i o n , namely t h a t t h e i m p o r t a n c e o f 

f l u c t u a t i o n s d e p e n d s o n t h e i r space sca le . T h i s is r e m i n i s c e n t o f t h e 

phenomenon o f n u c l e a t i o n f r e q u e n t l y e n c o u n t e r e d in phase t r a n s i t i o n s . 

T h e above p o i n t s w o u l d o f c o u r s e h a v e been missed c o m p l e t e l y i f we 

had p r o c e e d e d f o r m a l l y , k e e p i n g a g e n e r a l , u n s p e c i f i e d s t r u c t u r e f o r 

t h e c o v a r i a n c e m a t r i x o f t h e r a n d o m f o r c e s . 

4 . T H E TWO-MODE T R U N C A T I O N 

In t h i s Sec t ion we e x p l o r e t h e c o n s e q u e n c e s o f Eqs . ( 1 6 a ) 

a n d ( 1 6 b ) on t h e t w o - m o d e t r u n c a t i o n o f Eq . ( 4 ) , in o r d e r t o o b t a i n 

e x p l i c i t i n f o r m a t i o n on t h e s t a t i s t i c s o f t h e t e m p e r a t u r e f i e l d . As wel l 

k n o w n ( N o r t h e t a l . 1981) t h e f i r s t t w o L e g e n d r e modes p r o v i d e a 

r e a s o n a b l y good d e s c r i p t i o n o f t h e l a r g e scale f e a t u r e s o f t h e m e r i d i o n a l 

t e m p e r a t u r e d i s t r i b u t i o n a n d hea t f l u x . 

T h e s t a r t i n g e q u a t i o n s a r e o b t a i n e d b y i n s e r t i n g (15b ) „ i n t o 

( 4 ) , m u l t i p l y i n g b y P m ( x ) > i n t e g r a t i n g o v e r x , and r e c a l l i n g t h a t F q = 

0 . We t h u s h a v e : 

dT 

C d T = Q H o ( x s } " ( A + B V 

dT 
C d t = Q H 2 ( X S } " ( B + 6 D ) T 2 + F 2 ( t ) 

(17a) 

(17b) 
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Here Q is the solar constant divided by 4, A and B are cooling 

coefficients arising in the parameterization of the infrared radiation 

flux : 

F i r = A + BT (X, t) 

and H H_ are the first two Legendre moments of the coalbedo a(x) 
o 2 

multiplied by the mean annual distribution, S(x), of radiation reaching 

the top of the atmosphere (North, 1975) . Both H q and H 2 depend on 

the position of the ice edge xg , which is related to T q and T^ through 

the Budyko boundary condition (Budyko, 1969) 

T (t) + T (t) P.(x ) = - 10°C (18) 
o ^ z s 

Let T*. T , x* be a reference steady-state solution of Eqs. 
o 2 s 

(17) representative, say, of the present-day climate. We first focus on 

the short term variability of this climate. To this end it is sufficient to 

analyze the linear response by introducing the small deviations 

6 = T - T* • o o o 

0 = T - T* (19) 
2 2 2 

| = x - x* . s s 

- 1 7 -



Linearizing Eqs. (17), (18) with respect to these quantities we obtain : 

* = " T* P ' U [6o + 92 P2 
2 2 

= a 8 + p 0, (20) o 2 

and 

de 
c = (Q H' a - B) 6 + Q H' p 6 (21a) dt o o o z 

de0 
c ^ = Q H' a 6 o - (B + 6D - Q H' P) e 2 + F 2(t) (21b) 

where the prime denotes differentiation of H H^, P2 with respect to 

their argument. 

The first point we make in connection with these equations is 

motivated by a result of one of the authors (Nicolis, 1980) concerning 

the passage from 1-d to 0-d climate models. Specifically, by eliminating 

62 in terms of 6o from Eq. (21b), we obtain a closed equation for 6q . 

Contrary to the deterministic analysis reported (Nicolis, 1980), this 

equation contains now an effective noise term, as depends oh the 

random force F2(t). To evaluate the characteristics of this noise we 

first solve Eq. (21b) with the initial condition that e2 = 0 at t = -

We find : 

- 1 8 -



<J 

t 

e2(t) = e " Y t i ƒ d f [Q H^ a 0 o ( f ) + F2(t')] e Y t ' (22) 
- 0 0 

w i t h 

Y = i (B + 6D - QH^ p) (23) 

We t h u s ob ta in a s tochas t i c d i f f e r e n t i a l equat ion f o r 6 q : 

de t 

± = - (Q H ; a - B) 60 + \ Q2 H ; RJa p f d f e " Y ( t _ t , ) ^ ( f ) 
C C J dt 

- oo 

+ ^ Q H ; p ƒ d f e " Y ( t " t , ; ) F 2 ( t ' ) (24) 

c -oo 

Let us denote b y <t> ( t ) the last te rm of t h e r i g h t h a n d s i d e . T h e o 
c o r r e l a t i o n f u n c t i o n of t h i s e f f e c t i v e noise te rm is : 

< <t> ( t ) 4> ( t ' ) > = o o 

' Q H l S \2 f f - 7 ( t - x ) - 7 ( f - T ) 
- f - / d x 1 ƒ d t 2 e ! e < F 2 ( t 1 ) F 2 ( t 2 ) > 

c ' -oo -oo 

U t i l i z i n g E q . (16a) f o r m = 2 we obta in a f t e r some a l g e b r a : 

< 4> ( t ) • ( t 1 ) > = o o 
Q H 0 P 2 1_ ~yI t - t ' f 

i 2 2 V 

2 1 - y t - t l 
= r tt e " ' o 2y , (25) 
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This relation is characteristic of an Ornstein-Uhlenbeck process (Soong, 

1973). In other words, the effective noise acting on the globally 

averaged surface temperature 6 q is not a white noise, characteristic of 

a diffusion process, but a colored noise having an exponentially 

decaying time correlation function. In as much the only Markovian 

process with continuous realization is a diffusion process, it therefore 

follows (Arnold , 1974) that 0 q is a non-Markovian process. In other 

words, if fluctuations are incorporated in a reduced description ( l ike 

for instance in a zero-dimensional climate model) involving a limited 

number of variables ( l ike for instance the mean average surface tem-

pera ture ) , one should be part icularly careful in the modelling of the 

corresponding random forces. On the other hand, the pair ( 9 q , 0 2 ) is 

still Markovian and thus amenable to a description in terms of a bl-

variate Fokker-Planck equation. 

In order to see the repercussions of this property on the 

characteristics of 6 and 0_ themselves, we solve Eqs. (21) by the 
O c. 

method of Fourier transforms. Defining 

(26a) 

(26b) 

we obtain by a straightforward algebra : 

§ 2 ( W ) = ^ Q «2 " ®o ( w ) + ^ f 2 ( U ) ) ( 2 ? ) 

and 

/

00 

du) e " 1 U ) t eo(u>) 
- 0 0 

/

00 ' . 

du> e"1 U ) t 02(u») 
- 0 0 

- 2 0 -



e (w) = - Q H* p 
F

2
( W ) 

o - ' - o r 2 „, u ( . _N . 2 
Q H' H' a3 + 7(QH' a-B) + u + iw (7 + B - QH' a) o 2 0 ' H o 

(28) 

For simplicity we have normalized our time scale so that c = 1. From 

relation (28) we can evaluate th« 

noting that from Eq. (16a) one has 

relation (28) we can evaluate the autocorrelation function of 6o(u>), 

< F2(u>) F2(u)') > = q* ^ 6(u) + W) (29) 

By switching back to the time variables one finally obtains : 

f„s2 |t-t'| 

2 2 
2n Z y-oo (K + a) ) + u" L' 

(QHoP) 2 rco e 1 ' 
< e (t) 0 (t1) = 2 q„ / dw~ Y~2~ 2 2 O O „_ I J (V , J. 

(30) 

where we set 

K = Q2 H' HI ap + Y (Q H' a - B) o / o 

L = -y +' B - Q IT Of 

(31) 
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The integral in Eq. (30 ) can be performed by the calculus of residues. 

The result is 

Q H'3 , 

< 0 ( t ) 6 ( f ) > = — ; r r — q . 
° ° J L| (L + 4K)

 2 

1 - u ^ t - t 1 ) 1 - u ( t - t 1 ) 
— e + e 

2w 1 2u, 
(32) 

Here u)^, u^ are the singularities of the integrand of Eq. (30 ) : 

^ •= \ [ L + (L2 + 4 K ) 1 / 2 ] 

u>2 = \ [ | l | - (L2 + 4 K ) 1 / 2 ] 

2 
If L + 4K > 0 , expression (32) describes the superposition of 

two decaying exponentials with d i f ferent characteristic times. This is to 

be contrasted with the Ornstein-Uhlenbeck process, whose auto-

correlation function is a single decaying exponential ( c f . Eq. ( 2 5 ) ) . If 

the effective noise acting on the equation for 6 q were a Gaussian white 

noise, the autocorrelation function of 6 would be of this latter type . o 
The difference with the present situation, Eq. ( 3 2 ) , is therefore due to 

the fact that the effective noise acting on 0 q is not a white noise, 

which in tu rn implies that 6 is a non-Markovian process. o 

Fig. 1 illustrates the difference between the power spectra of 

the two types of stochastic process. Both spectra are characteristic of 

red noise processes which are commonly observed in atmospheric 

phenomena (Gilman et al, 1962; Hasselmann, 1981). However, in the 
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0) 

Fig. 1.- Power spectrum associated with the autocorrelation function of the mean 
surface temperature. Eq. (32) (curve (a)) and an Orstein-Uhlenbeck 

2 - 2 - 1 process (curve (b)), for q = 1_ Kcal cm yx . The parameters of the 
- 2 - 1 

model described in Eq. (21) are as follows : Q = 252.76 Kcal cm yr , 
A = 159.24 Kcal cm"2 yr"1, B = 1.17 Kcal cm"2 yr"1, D = 0.44 Kcal cm"2 

yr"1, S(x) = 1 - 0.477 P„(x), a(x) = 0.697 - 0.00779 P„(x) for x < x 2 s and a(x) = 0.38 for x > x , T* = 14.9°C, T* = - 28.2°C, x* = 0.96. ' S O 4 s 



case analyzed in the present paper (curve ( a ) ) the spectrum is 

localized more sharply in the low frequency range as compared to the 

spectrum characterizing the Ornstein-Uhlenbeck process (curve ( b ) ) . 

This reflects the additional "f i l ter ing" achieved by the spatially in-

homogeneous fluctuations. The evaluation of the power spectrum of 8 

using Eq. ( 2 7 ) , leads to similar conclusions. The situation would be 
2 altogether di f ferent for L + 4K < 0, as in this case the correlation 

function of 6 q would exhibit damped oscillations. However, for the 

parameter values usually adopted in the deterministic analysis of Eqs. 
2 

( 1 7 ) , L + 4K turns out to be positive. This possibility has therefore to 

be ruled out. 

A very interesting case aribub when K 0. One can easily 

see from the deterministic version of Eqs. (21 ) and the definitions (31) 

that the limit corresponds to the occurrence of a climatic transition in 

the form of bifurcation of new branches of solutions of the initial non-
* ) 

linear equations . From Eq. (32 ) it then follows that the second 

exponential acquires a long time tail and a divergent amplitude. In 

other words, a climatic change appears to be "signalled" by an 

enhancement of the amplitude and lifetime of- the correlation function of 

the fluctuations of the climatic var iables. This is reminiscent of the 

phenomenon of critical divergencies familiar from phase transit ions. 

Actual ly, this conclusion is characteristic of a mean-field theory of 

phase transitions (Ma, 1976), whereby only the effect of long wave-

length spatial fluctuations is taken into account. 

* ) Note that for the parameters values f i t t ing the present climate the 

case K -»• 0 cannot be realized for the energy balance model 

corresponding to Eqs. ( 1 7 ) . 
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5. DISCUSSION 

Our principal goal in this work was to incorporate into the 

description of fluctuations in climate dynamics certain physical 

constraints suggested by the statistical theory of i r reversible 

processes. This was achieved by applying a f luctuation-dissipation type 

of relation to the random forces appearing in the deterministic balance 

equations. Clear ly , the above idea holds for quite general situations 

and can thus be applied to complex sets of coupled evolution equations, 

as long as the local description of the processes involved remains a 

legitimate approximation. In the present paper however we preferred to 

keep the formalism as simple and explicit as possible, and for this 

reason we carried out the main part of the analysis for the part icular-

although quite representative-class of zonally-averaged energy balance 

models. This provided us with extensive information on the characteris-

tics of the fluctuations of the temperature f ield. 

We have f i rs t shown that when a Legendre expansion of the 

noise and temperature field is performed there is no random force 

associated with the equation for the globally averaged surface tem-

perature. As a byproduct , in the framework of a two-mode truncat ion, 

it follows that the noise source 

F (x , t ) = F 2 ( t ) P 2 ( x ) 

is more important in high latitudes ( P 2 - » 1 ) than in equatorial latitudes 

( P 2 1 / 2 ) . This might provide a plausible interpretation for the 

observations (see for instance Leith, 1978 and quite recently, North et 

al, 1982). 
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A second result of interest is that the effective noise acting 

on the equation for the globally averaged surface temperature 6 is an 
o 

Ornstein-Uhlenbeck rather than a Gaussian white noise. As a resul t , 6 
o 

is a non-Markovian process. I t also displays the characteristics of red 

noise and is picked around tu = 0 more sharply than if the effective 

noise were white. These features should play an important role in the 

interpretation of power spectra associated with climatic var iabi l i ty . 

Finally, we have seen that a transit ion in the climatic system 

in the form of a bifurcation of new branches of solutions is reflected by 

the emergence of persistent, high amplitude correlations. We believe 

that this property should provide a useful index of climatic change. 

The specific application considered in Section 4 was limited to 

a linear response analysis around the present climate. On the other 

hand the fluctuation-dissipation theorem of the second kind utilized in 

the present work should remain valid in the nonlinear range since, as 

we repeatedly emphasized, it reflects the short range character of the 

fluctuation sources. It follows that the results of Sections 2 and 3 

provide also the basis of an analysis in which the multiplicity of 

solutions of the ful ly nonlinear model, Eqs. ( 1 7 ) , is taken into account. 

I This would allow us to investigate for instance, the passage times 

between the di f ferent climatic states (see Nicolis and Nicolis, 1981 for 

the estimation of these times in a zero-dimensional model). Moreover, it 

would be highly desirable to set up a suitable description of localized, 

short wavelength fluctuations. We will report on these problems in 

future work. 
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