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SELF-OSC I L LAT IONS AND P R E D I C T A B I L I T Y IN CL IMATE DYNAMICS 

by 

C. N lCOL IS 

Abstract 

A class of nonlinear climatic models giving rise to sustained 
oscillations is considered. The evolution equations are cast into a 
"normal form" which allows one to distinguish between two different 
types of quantities : a radial variable, which obeys a closed equation 
and has strong stability properties; and a phase variable which is 
extremely labile. It is shown that as a result of these peculiar stability 
properties, the disturbances or random fluctuations acting on the 
system tend to deregulate the oscillatory behavior. It is concluded that 
such a phenomenon is a basic reason for progressive loss of 
predictabil ity. 

Résumé 

Dans ce travail on étudie certaines propriétés des modèles 
climatiques simples donnant lieu à des solutions périodiques dans le 
temps. Dans ce but les équations d'évolution du système sont trans-
formées en une "forme normale" faisant apparaître deux types de 
variables : l'amplitude de l'oscillation et sa phase. On montre que la 
première de ces variables est extrêmement stable vis à vis des 
fluctuations aléatoires d'origine interne ou externe tandis que la seconde 
est caractérisée par une grande labileté. Le lieu entre ce comportement 
et la prédictabilité climatique est analysé. Les résultats généraux sont 
illustrés sur un modèle tenant compte de l'interaction entre glace marine 
et température océanique. 



FOREWORD 

The article entitled "Self-oscillations and predictability in 
climate dynamics" will appear in Tellus. 

AVANT-PROPOS 

L'article intitulé "Self-oscillations and predictability in climate 
dynamics" sera publié dans Tellus. 

VOORWOORD 

Het artikel "Self-oscillations and predictability in climate 
dynamics" zal in Tellus gepubliceerd worden. 

VORWORT 

Der Artikel "Self-oscillations and predictability in climate 
dynamics" wird in Tellus herausgegeben werden. 



Samenvatt ing 

In dit werk worden bepaalde e igenschappen van non- l inea i re 

klimaatmodellen bestudeerd die aanleiding geven tot per iodieke 

op los s ingen in de tijd. De evo lut ieverge l i jk ingen van het systeem 

worden omgezet in een "normale vo rm" waardoor 2 soorten var iabelen 

ontstaan : de radiaalvariabele en de fasevar iabele. Er wordt aangetoond 

dat de eerste bijzonder stabiel is t . o . v . wi l lekeur ige interne of externe 

schommelingen, terwijl de tweede zeer labiel is. Het ve rband tu s sen dit 

ged rag en de kl imaatvoorspel l ing wordt bes tudeerd . De algemene 

resultaten worden op een model ge ï l lu s t reerd, reken ing houden met de 

wi s se lwerk ing tu s sen zee-ijs en oceaantemperatuur. 

Zusammenfassung 

In diese Arbe i t werden bestimmte E igenschafte von n icht -

lineare klimatische Modellen s tud iert die An l a s s geben zu per iodische 

Lö sungen in der Zeit. Die Evo lut iong le ichungen vom Sys tem werden 

ungestel l t in einer "normalen Form" wodurch zwei Veränder l i chen 

entstehen : die Radia lveränder l iche und die Phaseveränder l i che. Es wird 

gez igt da s s die erste sehr stabil ist mit Rück s i ch t auf wi l lkür l ichen 

internen oder externen S c h w a n k u n g e n , während der zweite seh r labil 

ist. Der Zusammenhang zwischen diesem Benehmen und der klimatische 

Vo rau s sage wird s tud iert . Die Resultate werden in einem Modell 

i l lustr iert, rechnend mit der Wechse lwi rkung zwischen Seeeis und Ozean-

temperatur. 



1. INTRODUCTION 

In recen t years i t has been po in ted ou t by severa l a u t h o r s 

t h a t simple cl imate models are capable of p r o d u c i n g autonomous sus -
3 

ta ined osc i l la t ions . Cons ider f i r s t the range of 10 years w h i c h , as 

po in ted ou t . by Be rge r (1981) , is an u p p e r bound of the i n t r i n s i c t ime 

scale of va r i a t i on of sea ice e x t e n t . Saltzman and coworke rs (1978, 

1980, 1981, 1982a) analyzed t he in te rac t i ons between the la t te r and the 

ocean sur face t e m p e r a t u r e . T h e y sugges ted the ex is tence of a nega t i ve 

feedback loop a r i s i ng f rom the pos i t i ve ( " i n s u l a t i n g " ) e f f ec t of sea ice 

on t e m p e r a t u r e , and f rom the nega t i ve e f fec t of t empera tu re on sea ice. 

T h e y conc luded t h a t such a system shou ld g i ve r ise to autonomous 

susta ined osc i l l a t ions , and proposed a mathematical model f o r cuch a 

behav io r . For one set of i nd i ca t i ve parameter va lues the p e r i o d i c i t y 3 
t u r n s indeed ou t to be of the o r d e r of 10 yea rs . 

4 5 
Cons ider nex t the range of 10 - 10 yea rs , wh ich b r i n g s us 

to the t ime scale of q u a t e r n a r y g lac ia t ions . Saltzman et al (1982b) 

worked out an ex tended ve rs ion of the above ment ioned model w h i c h , 

f o r another set of parameter va lues , g ives r ise to se l f -osc i l l a t ions of 

per iods comparable to the g lac ia t ion t ime scales. A long per iod 

autonomous osc i l l a t ion , i n v o l v i n g ice sheet dynamics has also been 

s tud ied by Kal len et al (1979) and Bha t tacha rya and Ghi l (1982) . 

Let us now examine the c l imat ic reco rd to see i f i t ca r r i es 

some t race of such pe r iod i c i t i es . As Saltzman et al (1981) po in t ou t an 

u n d u l a t o r y va r ia t i on of sea ice e x t e n t p resumab ly o c c u r r e d at least once 

w i t h i n the l i t t l e ice age. As ide f rom th i s however , t h e r e seems to ex i s t 

no compel l ing ev idence of c lea rcu t cyc l i c c l imat ic change on the scale of 
q 4 5 

10 yea rs . The s i tua t ion is qu i t e d i f f e r e n t f o r t he scale of 10 - 10 

yea rs . In p a r t i c u l a r , i t is well known (see e . g . B e r g e r , 1981) t h a t 

q u a t e r n a r y g lac iat ions p resen t a cyc l i c charac te r w i t h a dominant pe r i od i -
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city of 105 years. Th i s difference is reflected in a s t r ik ing manner on 

the structure of variance spectra of paleoclimatic time 
3 

series : The values around the frequencies corresponding to the 10 

year range are indeed by orders of magnitude smaller than the values 
4 5 corresponding to variability in the 10 - 10 range. 

One is naturally tempted to correlate these facts with the 

apparent lack of systematic external forc ings acting on the climatic 
3 

system in the range of 10 years, and with the presence of a systematic 

astronomical forcing ar is ing from the earth ' s orbital variations in the 

range of 10^ years. In other words : Might it not be that the absence 

of a " synchron iz ing agent" such as an external forc ing, compromizes 

the existence of a relatively well defined cyclic variability despite the 

potential existence of autonomous oscillations? 

The purpose of the present paper is to suggest that the 

answer to the above question is in the affirmative, for a reason that is 

deeply rooted in the dynamics of any nonlinear nonconservative 

oscillator operating in the absence of a systematic forcing. In Section 2, 

the equations for the evolution of such an oscillator are cast into a 

"normal form" which allows us to undertake a qualitative study largerly 

independent of the details of the particular model. In Section 3 it is 

observed that from this transformation a basic difference emerges 

between the order parameter, that is to say the variable that evolves at 

the slowest time scale, and the phase variable of the oscillator. 

Specifically while the order parameter shows a pronounced stability, the 

phase variable is extremely labile. A s a result, there is an inherent 

tendency to desynchronization, chaotic behavior and loss of predictabil-

ity. In Section 4 the phenomenological description is enlarged to take 

the fluctuations of the climatic variables into account. We show that de-

synchronization is reflected by the existence of a stationary state for 

the probability distribution as a result of which, statistically speaking, 

oscillation disappears altogether. Final comments are presented in 

Section 5. Throughout the work the general ideas are illustrated on 

Saltzman's model oscillator. 



2. NORMAL FORM AND ORDER P A R A M E T E R OF A NONLINEAR 

O S C I L L A T O R 

Let { X . } , i = 1, . . . , N be a set of climatic va r i ab les , {X?1} a 

reference regime corresponding to a steady s tate . T h e evolution of the 

excess var iab les 

x . = X. - X« (1 ) i l l 

can be wr i t ten in the generic form 

dx  . N 

" d i = 1 3 i j X j + * i ( { X J } ) ' 1 = ••• N ( 2 ) 

j = l 

in which the coeff ic ients of the l inearized part a. , depend on the 

reference state and gj contain the ef fects of nonl inear i ty . Suppose that 

system ( 2 ) predicts the ex istence of sustained osci l lat ions. In a typica l 

situation th is will be ref lected by the fact that among the N eigenvalues 

of the matr ix {3.^}, 2 will be complex conjugate with posit ive real p a r t s , 

and the real parts of the remaining N - 2 will be negat ive . It is known 

from the qual i tat ive theory of d i f ferent ia l equations (see e . g . A rno ld , 

1980) that under these conditions the number of var iables contr ibut ing 

ef fect ive ly to the dynamics can be great ly reduced. Spec i f i ca l l y , close 

to the bi furcat ion point and in the limit of long times we can cast eqs . 

( 2 ) in the form 

I t = b n n + b i 2 0 + h i <n, 0) 

f = b 2 1 n + b 2 2 0 + h 2 (n , e> (3) 



in wh ich t he e igenva lues of t he 2 x 2 ma t r i x {b j . } are t he two p r i v -

i leged e igenva lues of {a^.} r e f e r r e d to above. The "master va r i ab l es " n 

and 0 are a p p r o p r i a t e l inear combinat ions of t he x1 s , wh i le t he 

remain ing N -2 va r iab les of the o r i g i na l prob lem are exp ressed e n t i r e l y 

in te rms of n a r | d 0-

A p a r t i c u l a r example of (2 ) - ( 3 ) , wh ich wi l l be used 

f r e q u e n t l y in t he sequel f o r i l l u s t r a t i v e purposes is t he sea ice ocean 

sur face tempera tu re model deve loped by Saltzman et al (1981) : 

i ? = " n + § 

d e = - n + «1», e - «1», n 2 e (4) 

in wh ich all parameters are pos i t i ve , n is the dev ia t ion of the sine of 

the la t i t ude of the sea ice e x t e n t f rom the s teady s ta te , and 6 is the 

excess mean ocean sur face t e m p e r a t u r e . A c t u a l l y , instead of ( 4 ) we wi l l 

p r e f e r to w o r k w i t h a d imensionless fo rm r e s u l t i n g f rom the fo l l ow ing 

scal ing t r ans fo rma t i on : 

1/2 0 3 / 2 

n , e = = ( 5 , 

The resu l t is : 

? = - n + 0 dt 1 

d0 = _ V l + _ 2 ' ( 6 ) 

dt 0 2 n <t»2 
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We see that the dynamical behavior depends on two dimensionless para-

meters on ly , p lay ing , a role analogous to that of Rayleigh or Prandt l 

numbers in f lu id dynamics . In what follows we shall f i x il^, tjjg, <J>and 

<J>2 to the values given by Saltzman et a l , and use ^ as b i furcat ion 

parameter . 

We now re turn to the general case , eq. ( 3 ) . Let 

ujj = u)* = p + iu>o (7 ) 

be the eigenvalues of the l inearized operator {b.._}. At p. = 0 the system 

undergoes a bi furcat ion beyond which a limit cyc le is expected to 

emerge. In general the ful l problem of solv ing exact ly eq. ( 3 ) in th is 

range is intractable . Let us therefore limit ourse lves to a qual i tat ive 

ana lys i s . To th is end it is convenient to cast the dynamics in a form in 

which the l inear part becomes separable , corresponding to a ful l diag-

onalization of { b j j } . T h i s is achieved by a l inear transformation T , 

which in the present case is a 2 x 2 matrix whose columns are the two 

r ight eigenvectors of { b . . } . Operat ing on both sides of eq. ( 3 ) with the 
_ -i 'J 

inverse matrix T and introducing the new (complex) var iables 

(8) 

we obtain 

g = ( M iw 0 ) z 

2 2 3 
+ H2 ( Z , z * z , z* ; p) + H3 (z Z« , z z- , z , z * ; p) 

(9 ) 

-7-



and a similar equation for z*, obtained by taking the complex conjugate 
of both sides of eq. ( 9 ) . The functions H H ^ etc contain the 

quadrat ic , cubic etc nonlinearities of the problem. T h e y are obtained by 
- 1 ' * operating with T on h^ and b^ (eq. ( 3 ) ) and switching subsequently 

to the variables z , z* by the transformation law g iven in eq. ( 8 ) . 

As it stands the system of eq. ( 9 ) is as complicated as the 
original system, eq. ( 3 ) . However, the form displayed in eq. (9i) is 
especially suitable for approximations. To see this we perform a final 
transformation, switching to "radial" and "angular" variables through 

z = r e ^ (10) 

Eqs . (9 ) g ive then rise to the following two equations for r and 4> 

dr Q . D u ( 2 i<|> 2 -±<f> 2 -2i<|K = Pr + Re ( r e , r e r e T ) 

D „ , 3 3 2i<J> 3 — 2i4> 3 -4i<k . , + Re H3 ( r , r e Y , r e r e T ) + . . . (11a) 

d(b A 1 T „ , 2 i<t> 2 -icj> 2 -2i(|). -7± = U) + - Im H0 ( r e T , r e , r e r ) dt o r 2 

1 Y JJ / 3 3 2±0 3 -2i(f> 3 -4i<(). + - Im H„ ( r , r e , r e r e Y ) ( l i b ) r 3 

The simplification to be made is now intuit ively clear. Indeed, close to 
the bifurcation point the r ight hand sides of eqs. (11) display a slow 

3 
motion part , corresponding to the terms pr, r , and a fast motion 
corresponding to oscil lating terms of the type r^ e~ 'n<'), r^ e~ with 
n = 1,2 etc. It may thus be expected that for the long time behavior 



only the s low, " secu la r " par t will be important. Ac tua l l y , the ful l 

just i f icat ion of th is conjecture requi res the use of a chapter of b i fu rca-

tion theory known as theory of normal forms ( A r n o l d , 1980). As it 

tu rns out , d i scard ing the angular dependence is a completely consistent 

procedure provided that the system operates re lat ive ly close to the 

bi furcat ion point , in the sense that 

L&l • « 1 (12) U) o 

Throughout our qual i tat ive analys is we shall assume that in all cases of 

interest th is inequal ity is satisfied» T h i s will allow us to procecd a 

considerable way with an analyt ic approach. Subsequent ly we will re lax 

this condition and we will v e r i f y numerical ly that the qual i tat ive resu l ts 

hold even fa r from bi furcat ion . 

? 
Summariz ing, by retaining only the slow part of the motion we 

obtain : 

j j f = ßr - u r 3 + . . . . (13a) 

^ = u> - v r 2 + . . . . (13b) 
dt o 

where u and v are parameters a r i s ing from the real and imaginary parts 

of H^ and H^. 

In bifurcat ion theory (A rno ld , 1980) eqs . (13 ) are known as 

the normal form of the initial dynamical system (eqs . ( 3 ) ) , whereas the 

radial var iable r is re fe r red to as the order parameter . 



Let us i l l u s t r a t e t h i s r e s u l t f o r Sa l t zman ' s mode l . A s t r a i g h t -

f o r w a r d b u t t e d i ou s a l g e b r a y i e l d s 

8 + iu) = -o 2 
^ - 1 + [( ^ - l ) 2 - 4 ( - ) ] 

0O 0O 

(14a) 

and a t r a n s f o r m a t i o n ma t r i x T equa l to 

1 1 

T = 
3 + i u + 1 13 - i u + 1 

o o 

(14b) 

o r , more e x p l i c i t l y 

r| = 2r cos <|> 

0 = 2r { (P + 1) cos (j) - u) s i n (J) } (14c) 

T h e e vo l u t i o n equa t i on s in the ( r , <)>) r e p r e s e n t a t i o n a r e 

d r - « r 
dE " P r " " 2 : 

f = u) (1 + p) r 2 

d t o 2ui ^ 

(15a) 

(15b) 

T h e f i r s t of t hese equa t i on s a l lows us to e va l ua t e a n a l y t i c a l l y 

t h e r a d i u s of t he l imit c y c l e . S e t t i n g d r / d t = 0, wh i c h in the ( r , (J)) 

r e p r e s e n t a t i o n p l aces us on the l imit c y c l e , we ob t a i n : 

- 1 0 -



r s . * (2 P) 1/2 (16) 

For the numerical values g iven in Saltzman et al (1981) f o r the behav ior 
3 

in the 10 year range we obta in p = 1 .5 , r g = 1.73. Going back to the 

o r ig ina l var iab les one can see tha t th i s implies an ampl i tude of 

osci l lat ion of q equal to r j m a x -v 0.035 in good agreement w i th the 

numerical s imulat ions of the o r ig ina l paper . We see the re fo re t ha t the 

normal form analysis g ives the r i g h t t r e n d even beyond the immediate 

v i c i n i t y of b i f u rca t i on po in t . 

The second re lat ion (15) inc ludes two types of con t r i bu t i on to 

the angu lar ve loc i ty Q = . One a r i s ing t h r o u g h the dependence of 

the l inear ized f requency u)o on the b i fu rca t i on parameter p (see eq. 

( 14a ) ) , and another a r i s ing f rom the e f fec t of non l inear i t ies , 
2 2iu0 

(1 + P) r . With in the range of v a l i d i t y of the normal f o rm, eqs. ( 15 ) , 
on ly the f i r s t non t r i v i a l cor rec t ion to the value of uj at the b i f u rca t i on 

o 
po in t P = 0, u)Q(0), should be re ta ined. We a r r i v e in th i s way at the 

fo l lowing express ion fo r the angu lar ve loc i ty 

° = S • •.(« * p ( ^ ) + lû coT . (»•> 

On the l imit cycle i tsel f r = r , and the dominant cor rec t ion to the 

angu lar ve loc i ty is : 

Q = = < V ° ) + i ^ O ) P (17b) 

- 1 1 -



We see that as the system moves further from bifurcation the period is 

shortened with respect to the value 2n/u)o predicted by the linear 

theory. Th i s agrees qualitatively with the numerical simulations reported 

in Saltzman et al (1981). Indeed these authors report a periodicity of 

1260 years far from bifurcation whereas the linearized period 2n/\aQ, 

corresponding to p = 0 can be shown to be equal to 1740 years. Fig. 1 

describes the dependence of both amplitude and period in terms of p. 

We obtain the r ight qualitative trend but, as expected from the 

perturbative nature of the normal form analys is, quantitative agreement 

fails beyond the range of small values of p. 

Finally, one can compute analytically the phase lag a between 

H and 0 variables. From the f irst eq. (14c) one sees that a = arc tg 

(u)Q/(p + 1) ) . Near bifurcation this yields a ^ 320 years in excellent 

agreement with numerical results in this range. 

3. S T A B I L I T Y OF THE ORDER P A R A M E T E R V E R S U S L A B I L I T Y OF 

THE PHASE . C L I M A T I C " I S O C H R O N S " 

Inspection of the normal forms derived in the previous Section 

(eqs. (13) and (15)) reveals a fundamental difference between the 

evolution of the order parameter r and of the phase <(>'. The former 

obeys a closed equation that can be solved analytically. For Saltzman's 

model, starting with r = rQ at t = tQ, one easily f inds 

' 2 ( t ) " = 2 P 1 _ 2 p ( t . t ) (18) 
1 + D e ° 

with 
2 

2(3 - r 
D = 

- 1 2 -



F i g . 1 . - A n a l y t i c a l l y compu ted d ependen ce of t he amp l i t ude of o s c i l l a t i on of the 

sea ice e x t en t ( p a r t ( a ) ) and of the p e r i o d of the l imit c y c l e ( p a r t 

( b ) ) of Sa l t zman ' s model as a f u n c t i o n of t he b i f u r c a t i o n pa r ame te r p. 

Do t ted l ines a re u sed f o r the p a r t of the c u r v e s f o r wh i c h t he v a l i d i t y 

of the p e r t u r b a t i v e ca l cu l a t i on c anno t be g u a r a n t e e d . C r o s s e s 

c o r r e s p o n d to the va l ue s ob t a i ned f rom numer i c a l s o l u t i on of 

Sa l t zmann ' s equa t i on s f a r f rom b i f u r c a t i o n . 



As long as p > 0 and rQ t 0, this predicts an exponential relaxation to 
the limit cycle. In other words the variable r enjoys asymptotic 
stabil ity, in the sense that any perturbation that may act accidentally 
on r will be damped by the system. 

The situation is ve ry different for <J>. Being an angular 
variable, the latter increases continuously in the interval (0, 2n) from 
some initial value <|>o. If <j>o is perturbed this monotonic change will start 
all over again from the new value, and there will not be any tendency 
to reestablish the initial phase <t>0. 

In order to realize better the consequences of this property, 
let us perform the following thought experiment. Suppose that the 
system runs on its limit cycle, r = r . At some moment, corresponding 
to a value (|>o of the phase, we displace the system to a new state ( c f . 
Fig. 2) . Owing to the stability of the order parameter, the perturbed 
state will spiral to the limit cycle. Clearly however, when the limit cycle 
will be reached again, the phase will generally be different from the 
one that would characterize an unperturbed system following its limit 
cycle during the same time interval. Inasmuch as the state at which the 
system can be thrown by a perturbation is unpredictable, it therefore 
follows that the reset phase of the oscillator will also be unpredictable 
(see Fig. 3) . In other words, a non linear oscillator is bound to behave 
sooner or later in an erratic way under the action of the perturbations. 
This provides already a qualitative answer to the question raised in the 
I ntroduction. 

We can go further and define the locus of perturbed states 
which, when the limit cycle will be reached again will be characterized 
by a given value of phase, We call this locus a climatic isochron, 
and the common phase <l> latent phase. These notions were f irst 
introduced by Winfree (1980) in connection with biological oscillations. 
For Saltzman's model an analytic expression for <t> can be derived, by 



(a) (b) 
F ig . 2 . - Schematic representat ions of the evolution following the action of a 

perturbat ion leading from state A q on the limit cyc le to state A . Parts 

( a ) and ( b ) descr ibe the s i tuat ion, respect i ve ly , in the space of the 

var iables of the normal form and in the space of the va r iab les , r|r 9-



Fig. 3.- Resetting of a perturbed oscillation on its limit cycle. Depending on 
the type of the perturbation the reset phase may differ widely from 
that of the unperturbed situation. 



i n t e g r a t i n g eq . ( 15b ) in t ime and u s i n g t h e f a c t t h a t r s a t i s f i e s e q . 

( 15a ) . T h e i n t e r e s t e d r e ade r is r e f e r r e d to W in f r ee (1980) f o r t h e 

de t a i l s of t h i s d e r i v a t i o n . Fo r o u r model t he r e s u l t is : 

* = < b - d > + — (1 + B ) l n — (19) 
° % r s 

whe r e <t>Q is t h e i n i t i a l pha se on t h e l imi t c y c l e ( i . e . <|> = <t>0, $ = 0, r = 

r ) a nd ( r , <J>> a r e t h e v a l u e s of t he r ad i a l a nd pha se v a r i a b l e s 

d e s c r i p t i v e of t he p e r t u r b e d s t a t e . T h e r - d e p e n d e n t p a r t of t he r . h . s . 

e x p r e s s e s t he d e v i a t i o n f r om the i s o c h r o n o u s mot ion , a nd is due to t h e 

f a c t t ha t The equa t i on f o r t h e phase of t h e o s c i l l a t o r ( s ee ( 1 5 b ) ) 

c on t a i n s a c o n t r i b u t i o n f r om the r ad i a l p a r t of the mot i on . F i g . 4 g i v e s 

p l o t s in the ( r , (|>) p l ane c o r r e s p o n d i n g to v a r i o u s v a l u e s of <J>. A s in 

t h e p r e v i o u s Se c t i on it is u n d e r s t o o d t ha t o n l y dom inan t t e rms in 0 a r e 

to be r e t a i n ed in o r d e r to e n s u r e c o n s i s t e n c y w i t h the r a n g e of v a l i d i t y 

of t he normal f o r m . 

A s an examp le s u p p o s e t h a t an i n i t i a l s t a te on t h e l imit c y c l e 

c o r r e s p o n d i n g to phase <|> = - 1 .114 is p e r t u r b e d . We wan t to 

c h a r a c t e r i z e t ho se p e r t u r b e d s t a te s t h a t w i l l r e se t on t h e l imi t c y c l e in 

phase oppo s i t i o n , <t> = 7t w i t h r e s p e c t to t he u n p e r t u r b e d s i t u a t i o n . 

C h o o s i n g , f o r i n s t a n c e , r = 0 . 5 , we f i n d f r om eq . (19) t h a t <|> = - 0 . 05 

nea r b i f u r c a t i o n (p = 0 . 005 ) . F rom e q s . ( 14c ) and (5 ) we can t h en 

e x p r e s s t he p e r t u r b e d s ta te in t e rms of t he o r i g i n a l v a r i a b l e s 

rj -v 0 .01 , 0 ^ 0 .14 > (20) 

A numer i c a l e x p e r i m e n t , c on f i rms e n t i r e l y t h i s a n a l y t i c 

p r e d i c t i o n : s t a r t i n g w i t h t h e i n i t i a l c ond i t i o n ( 20 ) , we i ndeed f i n d t h a t 
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Fig. 4.- Plot of climatic isochrons for Saltzman's model as given by eq. (19) for 
1 an initial phase <j>Q = 0 and for a value of bifurcation parameter p = 

0.005. Motion along these isochrons leads to a resetting on the limit 

cycle in phase opposition, 4> = n , with the unperturbed signal. The 

isochrons <t> = - n , - 3n etc. describe evolutions in which the system 

spirals once, twice etc. before resetting on limit cycle. 



the system reaches the l imit cycle wi th a phase sh i f t pract ica l ly equal to 

n. I t is fu r the rmore found tha t the analyt ical resul t g ives the r i g h t 

t rend far from the b i fu rca t ion po in t , fo r the parameter values g iven by 

Saltzman et al (1981) in the case of va r iab i l i t y in the 103 year range. 

From a pract ical point of v iew, we believe tha t thé notion of 

climatic isochron wi l l prove to be important . Such plots as in Fig. 4 

g ive us information on the most "dangerous" per tu rba t ions tha t are 

l ike ly to deregulate the osci l lator completely, by induc ing a reset t ing at 

a value near ly in phase opposit ion wi th respect to the unpe r tu rbed 

s i tuat ion. They also show that there exist "ben ign" per tu rba t ions fo r 

which no sensible var ia t ion of phase is observed. In te res t i ng l y , both 

small and large ampli tude per tu rbat ions may equal ly well belong to 

ei ther of the above two classes. 

4. STOCHASTIC ANALYSIS 

In th is Section we pursue the consequences of phase lab i l i t y . 

The main point tha t we want to make is tha t in any complex physical 

system there is a universal mechanism of per tu rba t ions generated 

spontaneously by the dynamics, namely the f luc tuat ions . Because of the 

complexity of the processes at the i r o r i g i n , f luctuat ions are basical ly 

random events. This impli es tha t the state var iables (r), 8) or ( r , <J>) 

become themselves random processes. Our purpose here is to examine 

whether th is may af fect the robustness of the osci l latory regime on the 

l imit cycle. I n tu i t i ve l y , we expect from the previous Section tha t the 

radial var iable r wil l remain robus t , bu t the phase var iable $ wil l 

become completely deregulated. It is shown in th is Section tha t th is is 

indeed the case. Moreover, because of the deregulat ion of <(> the 

osci l latory behavior wil l disappear al together af ter a su f f i c ien t ly long 

lapse of t ime. 
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Let us incorporate the effect of f luctuat ions by add ing random 

forces F , FQ to the determinist ic rate of equat ions (Has se lmann, 1976). 

A s usual we assume the latter to define a mul t i -Gauss ian white noise : 

< F n ( t ) F n ( t ' - ) > = qjj 6 ( t - t ' ) 

< F 0 ( t ) F g ( t ' ) > = qg S ( t - f ) 

< F n ( t ) F 0 ( f ) > = q n e S ( t - f ) 

T h i s allows us to write a F okke r -P l anck equation for the probabi l i ty 

d i s t r ibut ion P(r|, 6, t ) of the climatic var iab les . In general this 

equation is intractable. However, the situation is g reat ly simplified if 

one limits the ana lys i s to the range in which the normal form (eqs (13) 

or ( 15 ) ) is va l id. 

To see th is we f i r s t e xp re s s the Fokke r -P l anck equation in 

the polar coordinates ( r , $) defined in eq. (10) . For Sa l tzman ' s model 

we obtain, after a long calculation (see also Ba ra s et al, 1982) : 

9P ( r , <t>> t ) = 
3t 

a_ 
3r 

a_ 
3ct> 

+ -

w +. ~ — o 2u), 

3r 
<rr + 2 

9r 30 

Pr - \ r 3
 + ^ Q 

3 (1 + P ) r 2 - ^ Q
r<J> 

2 Q 2 Q 
a a w 

2 
(21) 

where 
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Q<|><|> = q R s i n 2 * " 2 q RC s i n ^ c o s ^ + % C O s 2 * 

2 2 2 2 Q ^ = - q R s i n 4> cos <|> + q R C (cos <f> - s i n (|)) + q c s i n <|> cos (J) 

2 2 2 2 Q r r = q R cos <() + 2qR(, s i n <|> cos (() + q c s i n <|> (22) 

? 2 2 2 and q ^ , q^ and q R C are su i table l inear combinations of q ^ , q Q , q^g. 

T o go f u r t h e r it is n e c e s s a r y to introduce a per turbat ion 

parameter in the problem. It is reasonable to choose it to be related to 

the weakness of the noise terms. Mathematical ly, we e x p r e s s th i s 

t h r o u g h the following sca l ing : 

Qaa = e Q„ 

Q = e Q (23) 
r r r r 

We next scale both the b i furcat ion parameter p and the deviat ion of the 

rad ius r from its va lue on the limit c y c l e , r = r g , b y suitable- powers of 

e. We do th i s in order to be in accordance with the condit ions of 

va l id i ty of the normal form ( e q s ( 1 2 ) and ( 1 5 ) ) . However , we should 

keep in mind that accord ing to the numerical resu l t s reported in the 

preceeding Sect ion, the qual i tat ive pred ict ions should st i l l d e s c r i b e the 

general t r e n d beyond the v i c i n i t y of the b i furcat ion point . Note that no 

sca l ing can be appl ied to the a n g u l a r v a r i a b l e <)), as the latter increases 

in the interva l ( 0 , 2n) and does not enjoy any s tab i l i ty p r o p e r t y . 

Summariz ing we wr i te , u s i n g also eq . ( 1 6 ) and fol lowing B a r a s et al 

(1982) : ' 
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f = > e 2 c 

r = r • peb = (2 h V 2 eC + peb 
s 

4» = <t> (24) 

The (nonnegat ive) exponents b and c are chosen in such a way that 

both the d r i f t and d i f fus ion terms con t r ibu te to the evolut ion of P in 

eq. (21) . Indeed, should the d i f fus ion terms be negl ig ib le the probab i l -

i t y P would be a delta func t ion around the determinist ic motion, and as 

a resu l t the ef fect of f luc tuat ions would be wiped ou t . If on the other 

hand the d r i f t terms were negl ig ib le P would exh ib i t a pure ly random 

motion similar to tha t of a Brownian par t ic le in a f l u i d , and would tend 

to zero everywhere as t « . The best way to estimate the magnitude of 

these two terms is to in t roduce the condit ional p robab i l i t y P(<|>/p,t) 

t h rough 

In tegra t ing eq. (21) over (f) and tak ing the scaling (23) and (24) into 

account one can see that 3 P ( p , t ) / 8 t is of order e. P ( p , t ) is there fore a 

slow var iable : This is the probal is t ic analogue of the fact stressed in 

Section 2, that the order parameter var ies at the slowest of all time 

P (p, <t>, t ) = P (<j>/p,t) P(p, t ) (25a) 

where 

2n 

0 

-22-



scales present in the problem. Using this property and d iv id ing 
through eq. (21) with P ( p , t ) we obtain a closed equation for P(<j>/p,t) 
which to dominant order in e reads : 

= - - „ P « / P . t ) (26) 

T h i s equation admits a properly normalized stationary solution, 

P(<t>/p,t) = ^ (27) 

Introducing this into eq. (25a) and integrating eq. (21) over (|> we can 
obtain a closed equation for the slow variable P ( p , t ) . On this equation 
one can see that the dr i f t and diffusion terms are of the same order of 
magnitude if and only if 

b = c = | (28) 

The equation for P ( p , t ) reads then : 

3P(p,t) = 

~ \n 
- e ^ ! [ . 2 f c . 3 ( I ) . p 2 - I p 3 

+ 2 ; I P U ^ ^ P (29) 
2 ( ( 2 $ ) 1 / 2 + p) J 
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where 

J = i • %-> R (30) 

This equation admits a s teady-state solut ion. Swi tching back to the 

or ig ina l var iables and parameters r , p and Q th rough the inverse 

scaling (eqs (23) and (24) ) we can see that th is s teady-state is of the 

form 

The terms in parenthesis in the exponential feature the integral of the 

r i gh t hand side of the determinist ic evolut ion equation (15a). Th is 

quan t i t y is known as kinet ic potent ia l , and i ts importance in climate has 

been stressed by Ghil (1976), Nor th et al (1980) and Nicolis and Nicolis 

(1981). In the present case, denot ing the potential by U ( r , 0 ) , we can 

wr i te 

P ( r ) ^ r exp 2 r & d - ^ (31). 
Q K 2 8 

dr 9U(r,P) 
dt ap 

wi th 

P s ( r ) * exp [ - | U ( r ,P ) ] (32) 
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F ig . 5 represents function (31) or (32) in terms of the 
variables ( n , 6 ) - We obtain a c rater - l i ke d istr ibut ion. T h e projection of 
the lip of the crater is identical to the deterministic limit cyc le . 

Let us summarize the situation. We have shown that start ing 
from the initial var iables r|f 6 o n e c a n switch to two combinations which 
have a completely different status. The angular variable (|> which, 
according to the transformation laws g iven in Section 2, is related to q, 
0 through 

d. = arc tg [ -J- (p + 1 - £ ) ] (33) 
wo 1 

has a completely "flat" probabil ity distr ibution ( c f . eq. ( 2 7 ) ) . It may 
therefore be qualified as "chaotic", in the sense that the dispersion 
around its average will be of the same order as the average value it-
self . T h i s is to be correlated with the remarks made in Section 3 about 
the labile behavior of the phase under the action of perturbat ions. 

The situation is different as far as the statist ics of the radial 

variable r is concerned. T h i s var iable, related to 0 through 

r
2 = I { n 2 + ±2- [ (P + 1) n - 6 ] 2 } (34) 

w o 

has a stationary probabil ity distr ibution (eqs (31) and ( 3 2 ) ) such that 
the dispersion around the most probable value r = r g is small. Nev-
ertheless, the mere fact that the probabil ity distr ibution is stationary 
rather than time-periodic implies that a remnant of the chaotic behavior 
of c|> subs ists in the statistics of r . In a sense we arr ive at a picture 
whereby if an average over a large number of samples is taken, the 
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Fig. 5.- Schematic representation of the steady state probabil ity distr ibut ion 

eq. (31). Note that the projection of the lip of the crater on the phase 

Diane of the variables reproduces the deterministic limit cycle. 
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per iodic ity predicted by the determinist ic ana ly s i s will be wiped out as 

a resu l t of des t ruct i ve phase interference. We believe that th is p rope r t y 

may be at the o r i g in of the lack of p ronounced systematic periodicit ies 

in the climatic record for time scales for which no systematic external 
3 

fo rc ing is act ing, like for instance in the range of 10 yea r s . 

It shou ld be pointed out that the above result is to be u n d e r -

stood in an asymptotic sense. In a g i ven system which represent s a 

part icular realization of the stochast ic p rocess descr ibed by the F o k k e r -

Planck equation a trace of the periodic behavior may s u b s i s t for a 

substant ia l amount of time and show up as a peak in a power spectrum 

computed over that interval . Eventua l ly however, the osci l latory 

behavior is bound to d i sappear . How soon th is will happen depends on 

the s t r eng th , Q of the random force. The computer s imulations on the 

effect of noise reported in the paper by Saltzman et al (1981) 

corroborate th is v iew. 

5. D I S C U S S I O N 

In th is paper we explored some qualitative propert ies of 

autonomous oscil lations in climate dynamics . O u r ana lys i s led us to raise 

some general quest ions concern ing predictabi l i ty. Specif ical ly we have 

shown that, as a result of the poor stabi l i ty propert ies of the phase 

var iable, the systematic oscillation tends to d i sappear in the climatic 

record and to be g radua l l y replaced by a random looking motion. 

Co r r e s p o n d i n g l y , in a time ser ies co r re spond ing to a long sampling 

interval detailed predictabi l i ty would be compromized. 

It is important to realize that the or ig in of this mechanism of 

loss of predictabi l i ty is completely di f ferent from the one associated with 

the appearance of aperiodic or chaotic solut ions ( s t r ange at t ractor s ) of 



the deterministic balance equations. More work is necessary to 

differentiate between the consequences of "probabi l ist ic" and 

"deterministic" chaos. 

Throughout this work we have argued in terms of an 

oscillatory behavior of mean surface properties, encompassing the entire 

earth-atmosphere-cryosphere system. It is clear however that if spatial 

inhomogeneities are allowed, such a global oscillator can only result 

from the dynamics of localized oscillators, each of them representing the 

climate of a certain region of the globe. In this picture, the lability of 

the phase of each local oscillator will be reflected by the desynchroniza-

tion of this oscillator with respect to its neighbors. T h u s , if an average 

over a large space region ib laken, Ihe oscillatory behavior will be 

wiped out. The behavior of coupled Saltzman oscillators is analyzed in a 

forthcoming paper by the author (Nicolis 1983a). 

The analysis carried out in this work is valid both for 

intermediate and for longer period oscillations, like those developed in 

connection with quaternary glaciations. In this latter case however an 

additional argument comes into play : Because of the existence of a 

systematic external forcing of comparable period, related to the earth 's 

orbital variations, the oscillator may be entrained and thus be less 

sensitive to external disturbances or fluctuations. A s a result, a 

relatively well defined periodicity may exist in the climatic record. We 

arr ive in this way at a synthes is between internally generated and 

external mechanisms of climatic change. In Nicolis (1982, 1983b) the 

behavior of forced oscillators is analyzed, and the mechanisms of phase 

stabilization by resonant or harmonic coupling to the forcing are 

explored. 
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