The simultaneous effect of the Rayleigh scattering absorption and of the $\mathbf{0}_2$ and $\mathbf{0}_3$ absorption on the atmospheric transmittance

$$T = \exp \left[-\tau_{RS} + \tau_{O_2} + \tau_{O_3} \right]$$

$$= \exp \left[-\sigma_{RS} N(M) + \sigma_{O_2} N(O_2) + \sigma_{O_3} N(O_3) \right]$$

can be written (τ , optical depth, σ , absorption cross section and N, molecules cm⁻²)

$$T = \exp \left[(4.8 \sigma_{RS} + \sigma_{0_2}) N(0_2) + \sigma_{0_3} N(0_3) \right]$$

The "cross section (0_3) " in the last column of Table I and II correspond to 4.8 σ_{RS} and leads to a direct comparison (in the homosphere) of the scattering absorption and molecular oxygen absorption using N(0₂) as the parameter.