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ABSTRACT

The technique of fitting with asymptotic functions has been used to
develop simple equations relating the forces for a variety of types
of ice crystals and water drops and droplets in terms of the Davies,
Bond and Knudsen numbers to the Reynolds numbers and hence to the
velocities. Equations are also given, in a common format suitable
for incorporation in computer models, of the sedimentation velocity
and mobility as functions of the atmospheric pressure Tevel and an
appropriate length parameter for each particle type.

RESUME

La technique d’ajustement a 1’aide de fonctions asymptotiques a
été utilisée pour déduire des équations simples reliant les forces au
nombre de Reynolds donc aux vitesses pour plusieurs types de cristaux
de glace, des gouttes et des gouttelettes d’eau en termes des nombres
de Davies, Bond, et Knudsen. Des équations de la vitesse de
sédimentation et de la mobilité en fonction de la pression
atmosphérique et d’une dimension caractéristique pour chaque type de
particule sont également données dans un format utile pour
1’incorporation dans des codes numériques.



SAMENVATTING

De aanpassingstechniek met behulp van asymptotische functies
werd gebruikt om eenvoudige vergelijkingen af te leiden die een
verband leggen tussen de krachten voor een aantal types
ijskristallen, waterdruppels en druppeltjes in termen van de Davies,
Bond, en Knudsen getallen tot de Reynolds getallen en daarom tot de
snelheden. Vergelijkingen werden eveneens gegeven, in een algemeen
formaat geschikt om opgenomen te worden in computer modellen, van de
sedimentatiesnelheid en beweeglijkheid in functie van de
atmosferische druk en een geschikte lengte-parameter voor elk soort
deeltje.

ZUSAMMENFASSUNG

' Die Anpassungstechnik mit der Hilfe von asymptotischer
Funktionen wurde benutzt um Vergleichunggen ab zu leiten, die einen
Zussammenhang machen zwischen den Kriften fiir mehrere Typen
Eiskristallen, Wassertropfen und Wassertrdopfchen nach dem Wortlaut
der Davies, Bond und Knudsen Zahlen, und der Reynolds Zahlen, und
folglich der Geschwindigkeiten. Vergleichungen sind auch gegeben, in
einem geeigneten Format fir nimerische Modellen, der
Absetsgeschwindigkeit und der Beweglichkeit wie Funktionen des
atmosphdrischen Druckes und ein geeignete Lidngenparameter fir jede
Partikel.
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1. INTRODUCTION

The motions of hydrometeors in the gravity and electric fields
of a thundercloud are of prime importance in understanding the
generation, neutralization, accretion and transport processes. At
the upper end of the mass spectrum are the hail and graupel particles
with sizes of the order mm to cm, while at the lower end cloud
conductivities are controlled by cloud droplets as small-as a few
microns in diameter. Because gravitational forces are proportional
to the volume while the electrical forces may be more closely
proportional to the surface area the size spectrum of interest when
electrification is involved generally extends below that which must
be considered when all the particles are neutral.

For several processes it is the differences in velocities
between different types and sizes of particles that are critica].
Currents are produced when relative motion occurs between charged
‘particles of opposite polarities. It is upon the differences in
velocities that the collision rates depend which control charge
transfer and accretion for example. Electrical forces are
particularly important in controlling collisions between charged
particles. Charge build up occurs wherever there is a divergence in
the current density and so factors such as the altitude gradient of
the velocities are important.

The -implications of transport to, for example, mass fluxes,
current densities, or collision rates depend on integrals over the
range of types and sizes of particles present and so it is necessary
to have statistical parameters that can be used for such
calculations. _ '

The number of different types and sizes of particles that needs
to be considered in a cloud electrification model can be large and so
it becomes important to have reasonably efficient subroutines for the
calculation of the transport properties. In particular it is
advisable not to have to check, the force for example, before
choosing an appropriate formula for a calculation. The development
.of such equations is the aim of the present study.
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2. GENERAL RELATIONS

The momentum continuity equation may be written,

F=-m(dU/dt +g) +qE=-D (1)

where,

D is the drag force, (N)

m is the mass of the particle, (kg)

U 1is the particle velocity, (m s'l)

t is the time, (s)

g 1is the gravitational acceleration (m s'z)

q is the charge on the particle, (C)
and E is the electric field, (V/m)

The drag force on so]id'particles is a function of the relative
velocity and the density and viscosity of the surrounding air.

It is convenient to work in dimensionless parameters. The
parameter, which is conventionally used, related to the force is the
Davies or Best number, Davies [1945], Best [1950],

Np=(8p/mn?)F (2)

where 1n is the dynamic viscosity of air (kg/m s)
p is the air density : (kg m'3)

The Reynolds number is,

Ng=(pd/n)(U-U,) (3)
where U 1is the particle velocity : (m/s)
U, is the air velocity (m/s)
and d is the particle diameter (m)

) The mean free path at cloud altitudes is of the order of 107 m
and for cloud particles smalier than about ‘1072 m the drag force
becomes a function of the ratio of the mean free path to the particle
diameter, the Knudsen number.
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Ng=1/4d (4)
where 1 is the mean free path

The force on a particle can be calculated from the electric
field strength and particle mass and charge. The calculation of the
velocities of solid particles thus involves determining the
functional relation of the Davies and Knudsen numbers to the Reynolds
number.

2.1. SPHERICAL PARTICLES

Let us first examine the drag forces on spherical particles.
The Reynolds number is related to the Davies number by the relation,

Np = [ Np/Cq1Y/2 (5)
where C4 is the drag coefficient.

Terminal fall velocities for large graupel and hail have been
given by Bilham and Relf [1937], List [1959], Macklin and Ludlam
[1961], Auer [1972a] and Roos [1972]. In the range of Reynolds
numbers between 1000 and 5000, corresponding to particles in the size
range from about 1 to 5 mm depending on the altitude and particle
density, the drag coefficient C4y is not greatly dependent on Reynolds
number and the relative velocity of the particle is given by,

U-U,=[8F/ (7o) 12 /d (ws) (6)

For the range of Reynolds numbers between 1078 and 1072
corresponding to particle diameters in the range from 10°® m to
2 1073 the flow is laminar and the Knudsen number lies between 0.003
and 0.015 over the range of densities normally encountered in clouds.
Drag forces on spherical particles in this regime have been treated
by Knudsen and Weber [1911], Epstein [1924], Davies [1945], Beard
[1976], and others.

The drag force in this region is given by first-order
correction to the Stokes equation, ‘
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Np = Np(1+2.5 No)/ 24 (7)

In this range of Reynolds numbers the relative velocity of the
particle is given by,

U-U;= F(1+251/d)/(3xnd) (m/s) (8)

The range of Reynolds numbers between these two regimes is of
considerable importance because it corresponds to diameters between 2
10°5 m and 1073 m and includes the major part of the precipitation
particles in the cloud. It is in this region however, that the flow
changes from laminar to turbulent and the relation between the drag
force and the velocity changes markedly. At Reynolds numbers below
10 the relative velocity is proportional to the Davies number and at
Reynolds numbers above 1000 proportional to the square root of the
Davies number. It is thus apparent that the drag coefficient and its
altitude variation are both functions of the Reynolds number in this
region. Theory as well as sea level measurements are thus necessary
to obtain altitude dependant drag coefficients.

LeClair et al. [1970] have presented equations for the drag
coefficient in terms of the Reynolds number for 0.01 < Np < 20, Beard
and Pruppacher [1969] for 20 < Np < 258, and Perry [1950] for 258 <
Ngp < 5000. Such equations are difficult to use when it is desired to
calculate the velocity from the force.

It has been common following Davies [1945] to make empirical
polynomial fits to the relationship of the logarithm of the Davies
number to the logarithm of the Reynolds number. This technique has
been used, for example, by Heymsfield [1972] for a variety of types
of ice crystals and by Beard [1976] for cloud and precipitation
drops. The method provides good fits to the sedimentation velocities
providing the range of Reynolds numbers is not too large, however,
the coefficients in the equations for adjacent ranges differ
considerably and the fits using higher order polynomials deteriorate
very rapidly outside their range. These probfems are aggravated when
electric forces are considered because the Reynolds number is no
Tonger a unique function of the particle diameter so that checks have
to be put into computer programs to ensure that the correct formula
is used. The fluctuations in the first derivative of the
relationship between the Reynolds number and the Davies number appear
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to be of the order of 15% over the range from 10 to 1000 in Reynolds
number due to the form of the function used for the fit alone. The
calculated mobilities depend on these derivitaves. Moreover, though
the formulas are continuous for the Reynolds number at the
boundaries, they are not for the first derivative, and so
discontinuities are introduced in the mobilities between ranges.

Abraham [1970] presented a model of a blunt body passing
through a viscous medium based on boundary layer theory which results
in a relation between the drag coefficient and the Reynolds number
that agrees well with experiment over a wide range of Reynolds
numbers.

Cq from equation (9) when used in equation (5) provides an
asymptotic fit to the function in equation (7) after applying the
Knudsen number correction term. It also provides good agreement with
relations given by LeClair et al. [1970], Beard and Pruppacher
[1969],and Perry [1950]). It is apparent that, despite the
complexities of the transitions that occur in the fiow
patterns over this very extensive range of Reynolds numbers, the
Abraham relation provides good agreement with empirical relationships
expressed in polynomial expressions each applicable to a much more
limited range. The Abraham [1970] relation is not convenient to use
to calculate velocities from forces because it expresses the Davies
number in terms of the Reynolds number and not vice versa. It did
indicate, however, that the technique of using asymptotic matching
functions might provide a simple relation of the Reynolds number to
the Davies number in which the coefficients were related to physical
parameters.

[t is apparent that a function of the form,

Np=(1+25N)/(ANTF+CNg03) (10

would provide an asymptot{c fit to equations (5) and (7) as Np tends
to zero and infinity previded the matching function Fp is chosen
appropriately. A suitable form for F, is given by a series of terms
of the form
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Fm =2 (aj Np"') -1<ny<-0.5 (11)

For most atmospheric modeling purposes a single term with n = -0.75
appears to give an adequate fit.

By fitting to the relations given by LeClair et al. [1970] for
0.01 < Ngp < 20, Beard and Pruppacher [1969] for 20 < Np < 258, and by
Perry [1950] for 258 < Ng < 5000 the following expression was
obtained,

Ng = (1+2.5 Ng)/(by Npleby Ny 0-754b3 Np0-5)  (12)

where,
b; = 21.786
b, = 2.3836
by = 0.5590

From equation (2),

Np=8p/n2 [ (gh0/6)dd+ECqd?] (13)
where Ap (kg/m3) is the difference between the particle and air
density
and Cq (C/mz) is the charge per unit area on the particle
From equation (3),

U-U;=(n/pd) N (14)

Using the effective collision diameter of mean air from the US
Standard Atmosphere [1976] in equation (4) gives,

Ng = 2.33E-10T/ (pd) (15)
where T is the air temperature (K)
and p is the atmospheric pressure (bar)

Equations (12) to (15) above may be combined for the case of no
electric field to give the terminal fall velocity to be,
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U-U, = (142.5N¢)/ S3( a5 apS a4t g81 nfi ) (my/s) (16

The values for the coefficients in this expression are given in
Table 1

TABLE 1
i ai Ci d'i ei f‘i
1.6656 -1.0 -2 0 1.0
0.3466 -0.75 -1.25 0.25 0.5
3 0.1546 -0.5 -0.5 0.5 0.0

Figure 1 shows a comparison between the sedimentation
velocities in the absence of an electric field calculated using
equation (16) with those given by the relation of Beard [1976] for
the range of diameters between 0.5 microns and 20 microns. Figure 2
is a similar comparison with the relations giVen by LeClair et al.
[1970], Beard and Pruppacher [1969], and Perry [1950]_from 20 microns
to 6 mm.

2.2 PLANE FORM CRYSTALS

Jayaweera and Cottis [1969] studied the relationship between
the force and the drag on circular and hexagonal plates over a range
of Davies numbers from about 1 to 104. They concluded that for
plate-like forms the relationship between the Reynolds number and the
Davies number is almost independent of the ratio of the thickness t
to the width W. As was done with the spherical forms the data of
Jayaweera and Cottis [1969] were fitted by the expression,

Ng = (1 + 2.5 Ng)/(by Np~l+by Np 075 by Np=0-3)  (17)

which gave by = 11.71
b, = 3.654
by = 0.6586
where Np=(8p/2n%)F - (18)
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Figure 1. Comparison of the sedimentation velocity in the absence
of an electric field for spherical particles given by Equation (16)
with those given by the Beard (1) relation, p = 1000 mb, Ap = 1000
kg/m3. , '
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Figure 2. Comparisoh of the sedimentation velocity in the absence
of an electric field for spherical particles given by Equation (16)
with those given by LeClair et al. [1970], Beard and Pruppacher '
[1969], and Perry [1950], p = 1000 mb, 4p = 1000 kg/m3.
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Kajikawa [1971] and List and Schemenauer [1971] and Jayaweera [1972]
have given relations between the Davies and Reynolds numbers for
different shapes of plate-like ice crystals. List and Schemenauer
[1971] have given an equation for the drag coefficient Cq as a
function of the area of the crystal Ac to the area of a circular disc
Ap of the same width that allows equation (17) to be used for all
crystals of plane form.

This gives,

U-U, =1.38 Ng n/(p W (1+ 0.96 Ac/Ap)?-3) (m/s) (19)
Aq = (A/Ap ) m W/ 2 (m?) (20)
F o=mg+AgCqE (N) (21)

Table 2 gives values for the ratio of the area of various plane form
crystals to the area of a circular disk and of the ratio of the
velocities for the same force F and width W from the data of List and
Schemenauer [1971].

TABLE 2
CRYSTAL TYPE AC/AD Uc-Ua/UD-Ua
Thick Plates 0.834 1.04
Hexagonal Plates 0.834 1.04
Sectorlike Branches 0.736 1.07
Broad Branches 0.473 1.18
Stellar Forms , 0.277 1.24
Dendrites 0.182 1.29

Heymsfield [1972], Kajikawa [1972], Hobbs et al. [1974], and
Locatelli and Hobbs [1974] have made measurements of the dimensions
and masses for various types of plane crystals that can be used to
calculate general relations for transport velocities.

Magono and Lee [1966] have suggested a subjective
classification of snow crystals into eighty classes which has been
widely adopted. It is, however, useful to have a numerical
coordinate system in which the statistjca] properties appropriate to
transport of a group of crystals can be specified. It is desirable
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to have a single parameter which characterizes the crystal size and
another which corresponds as far as possible to a given type of
crystal. Figure 3 shows measurements of the equivalent diameters of
the drops formed on melting plane form crystals measured by Kajikawa
[1972]. Superimposed on these data are lines given by the equations,

3
L

my (W /dg) N (kg) (22)

where mg (7 dpy/ 6) do3 (kg) (23)

This expression tends to the mass of a sphere of density Ap, as
the diameter tends to d,. The values used for d, and Ap, are not
very critical as far as fitting the data in Figure 3 is concerned,
however, they do affect the values of N. A value of 1073 m for dy
and of 1000 (kg/m3) for Ap, have been adopted here because they
appear to organize the data reasonably well for the thinner and
lighter crystals. Kumai [1961] found the sizes of microspherule
central nuclei of ice crystals varied from 5 107 to 8 1078 m. Auer
[1971] found the average size of frozen cloud droplet embryos of
planar ice crystals to be 1.1 10°5 m and Auer [1972b] reported values
near 2.5 10'5 m. The va]ue'adopted appears to be reasonably
consistent with both these modes of nucleation. Heymsfield [1972]
presented data showing that measurements of the density of a variety
of plane form crystals tended to 1000 (kg/m3) as their diameters
decreased.

Table 3 gives values of N calculated from data given by a
number of investigators. It may be seen from an examination of the
data in Figure 3 that there is a large spread in the mass of crystals
of each form for any given width. If ice physics were constraining
crystal growth into a series of discrete1y different forms then a
distribution of probability as a function of N with a strong central
maximum would be expected for each type. Instead the distributions
appear to be quite uniform in each category suggesting a more or less
continuous range of crystal habits with the selection criteria
controlling the limiting values.
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Figure 3. Measurements of the equivalent diameters of drops formed
on melting plane form ice crystals measured by Kajikawa [1972]
compared with values given by Equation (22) for six values of N.
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TABLE 3

CRYSTAL TYPE N REFERENCE

Thick Plates 2.4 -2.8 Kajikawa [1972]

Hexagonal 2.2 -2.4 Kajikawa [1972]

Plates

Thin Plates 2.1 -2.3 Bashkirova and Pershina [1964]

Plates with sector
1ike Branches

Kajikawa [1972]

N

C
]

N

Broad Branches 2.0 -2.1 Kajikawa [1972]
Stellar Forms 1.9 -2.0 Kajikawa [1972]
Dendrites 1.75-1.85 Kajikawa [1972]
Stellar Forms 1.7 -2.1 Bashkirova and Pershina [1964]

Equations (17) to (23) above may be combined for the case of no
electric field to give the terminal fall velocity to be,

1.34(1 + 2.5 Ng) (/s) (24)

(140.96Ac/Ap)0-5)Z5( a; 1061 wdi pei pfi)

U-u, =

The values for the coefficients in this expression are given in
Table 4

TABLE 4

3 Cj d; e f5
8.953 11-5.0N 1 - N O 1.0
5.313  8-3.75N 1-0.75N 0.25 0.5

1.813 5-2.5 N 1-0.5 N 0.5 0.0

W N = e

Figure 4 shows the measured fall velocities of Kajikawa [1972]
compared with predictions based on equatidn (24) for the range of
values of N found for plane type ice crystals.

There is much variation in estimates of fall velocities of
smaller sized ice crystals. One of the problems that arises with
fitting data with power series is that the fitted fall velocities
frequently become negative for small crystal widths. Yagi [1970]
presented data for the fall velocities of ice crystals whose mean
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Figure 4. Measurements of the fall velocity of plane form ice
crystals measured by Kajikawa [1972] compared with values given by
Equation (24) for six values of N.
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size was 103 microns drifting in supercooled fog. Figure 5 shows
this statistical distribution of velocities compared with values
calculated from equation (24) for N = 2.3 assuming the statistical
size distribution measured by Yagi [1970].

2.3 COLUMNAR ICE CRYSTALS

Column, bullet, and needle ice crystals have drag coefficients
that depend on their length to diameter ratio. Jayaweera and Cottis
[1969] made an extensive study of the drag on cylindrical ice
crystals. They gave experimental values for the relationship between
a modified Davies number X, and the Reynolds number for d/L =1, 0.5,
and 0.1 based on measurements with plastic and aluminum cylinders.
For the limiting case as d/L tends to zero, theoretical values from
Jayaweera and Mason [1965] were used. Their results are well fitted
by the expression,

N = (1 + 2.5 N)/(by X" by X075 4 by x70-3)  (25)

where bl = 3.684 + 13.59 d/L
b, = 1.299 - 0.8678 d/L
b3 = 0.8311 -0.04911 d/L
X=(2pd/(Ln%))F (26)
and Ng=(pd/n) (U-Uy) (27)

Values obtained from equation (25) for the relation of Np to X
are plotted in Figure 6 for four values of d/L. This relation was
used for the subsequent analysis of columnar ice crystals.

To calculate the force and the velocity it is necessary to have
relationships of the mass and surface area to_;he crystal length, L.
Nakaya and Terada [1935], Bashkirova and Pershina [1964], Ono [1969],
Auer and Veal [1970], Heymsfield [1972], Kajikawa [1972], Hobbs et
al. [1974], and Locatelli and Hobbs [1974] have studied the masses
and dimensions of columnar ice crystals. The density and length to
diameter ratio depend on the conditions under which the crystals have
grown. Within a given type of crystal general relationships between

16



| 1 |

+ PLANE FORM N = 23
T_ e COLUMNS N = 23

FREQUENCY (%)

-

-0.1 0 0.1 0.2 0.3
FALL VELOCITY (m/s)

Figure 5. Measurements of the statistical distribution of fall
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[1970] compared with values given by Equations’(24) and (31) for his
size distribution and N = 2.7.
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the Tength, the diameter and the density have been measured but there
appears to be considerable scatter.

As with the crystals of plane form it is desirable to have a
single parameter which characterizeé the crystal size and another
which corresponds as far as possible to a given type of crystal.
Figure 7 shows measurements of the masses of various types of
crystals of columnar form measured by Bashkirova and Pershina [1964].
Superimposed on their data are lines given by the equations,

mo= mg(L/dg)N (kg) ~ (28)
where my = (7 Ap, /6 ) dg3 (kg) (29)
d/L = (27 dpy / 3 bp) LIN-3)/2q (3-K)/2 (30

A value of 1072 m for d, and of 1000 (kg/m3) for Ap, have been
adopted here because they appear to organize the data well for the
smaller diameter-to-length ratio columns in both mass and diameter.
They are the same values used for the planar ice crystals. No
appreciable improvement in fitting either mass or velocity data was:
obtained by varying Ap,/Ap from unity so this value was adopted in
equation (30). Figure 8 shows the statistical distributions of
values of the density exponent N in equation (28) calculated for
needle crystals, columns and bullets from the data of Bashkirova and
Pershina [1964], for columns for the data of Kajikawa [1972], and for
densely rimed columns for the data of Locatelli and Hobbs [1974]. It
appears that, as in the case of planar crystals, columnar crystals in
the atmosphere have a fairly continuous distribution in N and in
size.

Three parameters of columnar ice crystals, the length, N, and
Cq» the charge per unit area of surface, are sufficient to calculate
the crystal velocities in gravitational and electric fields using
equations (25) to (30) in terms of the atmospheric densities. The
statistical properties of these parameters can be related to the
transport properties of the ensemble of ice crystals.
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by Equation (28) for six values of N.
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COLUMN TYPE

Short Columns
Columns and
Bullets K<2
Solid Columns
Densely Rimed
Columns
Columns and
Bullets K>2
Hollow Column
Heavily Rimed
Needles

Rimed Needles
Unrimed Need]

S

es

TABLE 5

2.75-2.95
2.5-2.85

2.45-2.85
2.20-2.55

2.2 - 2.5

2.0-2.55
2.0- 2.2

1.88-2.0
1.76-1.82

REFERENCE

Kajikawa [1972]
Bashkirova and Pershina [1964]

Kajikawa [1972]
Locatelli and Hobbs [1974]

Bashkirova and Pershina [1964]
Kajikawa [1972]

Bashkirova and Pershina [1961]
Bashkirova and Pershina
Bashkirova and Pershina

[1964]
[1964]

Equations (25) to (30) above may be combined for the case of no
electric field to give the terminal fall velocity to be,

U-Uy = (1 + 2.5 Ng)/33( a; 1081 13T peT of1 ymys) (31

The values for the coefficients in this expression are given in

Table 6

3
3.586
2.908
4.278
3.600
5.287
6.880

TABLE 6

¢ i e f
11-5.0 N (1-N) 0 1
6-3.125N 0.625(1-N) 0.25 0.5
1-1.25 N 0.25 (1-N) 0.5 0
4-2.5 N -0.5 -0.5N 0 1
-2-0.625N -0.875-0.125N ~ 0.25 0.5
-8+1.25 N -1.25 +0.25 N 0.5 0

Figure 9 shows the measured fall velocities of Bashkirova and
Pershina [1964], Zikmunda and Vali [1972], and Locatelli and Hobbs
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BULLETS WITH PLATELIKE EXTENSIONS BASHKIROVA AND PERSHINA [1984)
BULLETS WITH K > 2 BASHKIROVA AND PERSHIMA [1964)

BULLETS WITH K < 2 BASHKIROVA AND PERSHINA [1964)
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RINED COLUMNS LOCATELLI AND HOBBS [1974)
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Figure 9. Measurements of the fall velocity of columnar ice crystals measured by
Bashkirova and Pershina [1964] Zikmundu and Vali [1972] and Locatelli and Hobbs [1974]
compared with values given by Equation (31) for six values of N.



[1974] compared with predictions based on Equation (31) for a range
of values of N at a pressure level of 680 mb.

The above treatment depends on the uniformity of the ice
crystals and the degree with which they correspond to the models used
by Jayaweera and Cottis [1969] so that dynamic similarity can be
applied. It is only applicable in the absence of oscillations,
rotations, or sideways slips. Crystals of columnar form are
particularly sensitive to deviation of the major axis from the
horizontal position. Laboratory studies of the fall patterns of
unevenly loaded cylinders have shown that these effects can occur,
Jayaweera and Mason [1966], Podzimek [1968]. Zikmunda and Vali
[1972] have made an extensive study of the fall velocities of rimed
ice crystals in natural clouds. Their studies showed that the
velocity increases rapidly with increasing angle of deviation and
that crystal orientation rapidly became the controlling factor. The
terminal velocity increased by about 16% for g = 20° and by 300-400%
for @ = 60-80%. While only a small fraction of the columns observed
had large deviations they concluded that as a general rule fall
velocities of heavily rimed columns increased by a factor of about
two over those of unrimed crystals. The scatter in the fall
velocities introduced by riming is evident in the data for 23 rimed
columnar crystals from Zikmunda and Vali [1972] shown in Figure 9.

As with other forms of ice crystals several of the published
empirical fits to observed velocity distributions give negative drag
coefficients for small size crystals. Some of the data for the fall
velocities of ice crystals whose mean size was 103 microns drifting
in supercoo]éd fog presented by Yagi [1970] concerned those of
columnar form. Figure 5 also shows velocities calculated from
equation (31) for N = 2.3 assuming the statistical size distribution
measured by Yagi [1970] compared with measured velocities.

Assemblages of planar and columnar ice crystals are more
difficult to treat in a systematic manner than their constituent
particles, however, it is important to be able to estimate the effect
of aggregation on transport properties. Locatelli and Hobbs [1974]
have summarized the range of fall speeds and maximum dimensions for
aggregrates and their component particles. Figure 10 has been
adapted from Figure 27 of this paper with the addition of the
velocities calculated for planar crystals for a range of mass
exponents N and a pressure of 680 mb.
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2.4 CONICAL PARTICLES

List and Schemenauer [1971] have described the sequence of
growth by accretion from a dendritic snow crystal to a graupel, then
a small hail particle and finally to a hailstone as follows. A
dendritic crystal fal]ing in a cloud of supercooled water droplets
catches them and becomes filled in, while the total thickness
increases. The drag coefficient drops to the disc-like equivalent.
Further accretion of cloud droplets will cause the conglomerate to
grow in the direction of the vertical axis and a transition is made
to the graupel stage with the drag coefficients behaving accordingly.
As the particle grows by accretion, heat transfer is less effective,
and the accreted water partially enters the ice framework of the
graupel, causing densification. This is the small hail stage where
tumbling may start; the drag'coefficient changes accordingly and
eventually the particle falls as a roughly spherical hailstone.

List and Schemenauer [1971] have studied the fall motions of
plastic models of conical graupel. The Reynolds number is the sole
independent dimensionless parameter to characterize the flow as long
as the Navier-Stokes equation describing the situation does not
contain a local time derivative, [List 1966]. As soon as the
particles do not fall steadily, but oscillate, rotate or move
horizontally, then Stroudhal numbers have to be considered. List and
Schemenauer {1971] concluded that because such secondary motions were
either non-existént or rather small in a majority of their
experiments the effect of non-steadiness on their simulations was
negligible.

Values of drag coefficient for four conical models were
measured by List and Schemenauer [1971]. The four models were,

A a 90° cone-spherical sector,

B a 70° cone-spherical sector,

C a 90° cone-hemisphere,

A a 90° teardrop.

Values of drag coefficient for each of these forms measured when
released apex down were used to calculate values of Davies and
Reynolds numbers and these were then fitted to the expression,

Ng = 1 /(by Np~Lleby Ny 0-754b5 Ny 0-3) (32)
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Values of these coefficients are listed in Table 7.
TABLE 7

TYPE Hd by b bs Ky k,
A 0.71 37.04 -4.453 1.148  0.213 - 2.05
B 0.8 64.52 -7.519 1.162 0.288  2.23
C 0.97 51.88 -5.302 1.070 0.376  2.70
D 1.16 42.66 -2.080 0.8309 0.625  4.36

Np=(8p/(nn?))F (33)
where Fo= kpdegddskycgE d? (34)
and Ng=(pd/n) (U-U,) (35)

Values obtained from equation (32) for the relation of Cq to N
are plotted in Figure 11 for the four conical forms for comparison
with the List and Schemenauer [1971] data.

Equations (32) to (35) above may be combined for the case of no
electric field to give the terminal fall velocity to be,

U-U, = 1/ 330 a5 8pCT d9T p81 pfT ) (wys) (36)

The values for the coefficients in this expression are given in
Table 8

TABLE 8
A B C D  SPHERE
i ai ai ai ai ai ci di eij fi

1 6.771 8.968 5.523 2.732 1.666 -1.00 -2.00 0.00 1.00
2 -1.245 -1.712 -0.988 -0.265 0.347 -0.75 -1.25 0.25 0.50
3 0.491 0.433 0.349 0.210 0.155 -0.50 -0.50 0.50 0.00
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2.5 WATER DROPS AND DROPLETS

Small water drops are spherical and the treatment given in
Section 2.1 is applicable. Water drops above a diameter of about 0.5
mm become nonspherical, and both the cross sectional area in the
horizontal plane and the drag coefficient are greater than for
spherita] particles of the same mass and equivalent diameter. These
effects have been experimentally studied by Lenard [1904], Flower
[1928], Laws [1941], Gunn and Kinzer [1949], Blanchard [1950, 1955],
Kumai and Itagaki [1954], Magono [1954], Jones [1959], Pruppacher and
Beard [1970], and Pruppacher and Pitter [1971]. Empirical relations
for the velocity as a function of drop size of various ranges of
application and complexity have been given by Best [1950], Liu and
Orville [1969], Ogura and Takahashi [1973], Berry and Pranger [1974],
Beard [1976], Shiino [1983], and Liu [1986].

When fall velocities of only uncharged water drops are
concerned it may be adequate to use a unique analytic relationship
between d and the axial ratio of the drop b/a as was done by Beard
[1976]. The temperature dependence of the surface tension is not
very important and the pressure on the surface, because it is only
controlled by the mass of the water drop, remains constant with
height. This assumption is not valid for mobility calculations
because the force, and hence the drop shape, depend on the electric
field.

Green [1975] has developed a simple analytic model which
assumes that the drop shape approximates that of an oblate spheroid
for all deformations and which determines the equilibrium shape by .
considering only the hydrostatic and surface tension stresses. This
approximation appears to be justified by a more complete analysis by
Pitter and Pruppacher [Pruppacher and Klett; 1978, p315] which showed
that dynamic stresses cause only weak to moderate distortions in the
shape of an oblate spheroid. The aspect ratios and maximum diameters
given by Green [1975] agree well with the experimental results of
Pruppacher and Pitter [1971]. '

-The analytic expression of Green [1975] may be written,

Ngo = 4 (a/b)}/3 [(asb)2 - 2 (a/b)!/3 + 11 (36)
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where the Bond number, a nondimensional parameter relating the
pressure on the surface to the surface tension is given by,

Ngo =6F/ (ndo) - - (37)

a/b = the ratio of the major diameter to the height

d a%/3 p1/3 s the equivalent drop diameter.
and o is the surface tension of water with respect to air.

Equation (36) is not in a convenient form for the calculation
of a/b from the Bond number. It may, however, be fitted by the
expression,

a/b = 1+ 0.1472 Ng 0-8 (38)

Values of b/a calculated from equation (38) are shown in Figure
12 compared with experimental values of Pruppacher and Pitter [1971].
This function can be used to relate the drop shape to the force on
the particle. 4

Two effects occur due to the deformation of the shape of the
drops. The cross sectional area normal to the flow direction
increases and the drag coefficient increases, Maklin and Ludlam
[1961]. It is apparent, howevef, that large departures from a
spherical form do not take place until the drop diameter has reached
about 0.5 mm. By this time the Reynolds numbers are already large
enough that the ratio of the drag coefficients of spherical to
ellipsoidal particles is not greatly dependent on Reynolds number.

It thus appears that a simple relation can be used to relate the drag
coefficient to the value of a/b.

The relation given in equation (12) for spherical particles can
thus be used to relate the Davies number to the force and the effects
of drop defofmation included by modifying the relation between the
calculated Reynolds number and the velocity. }

Ng = (1 + 2.5 N)/(by Np~leby Np=@-75 4by Np70-5)  (39)
where, by = 21.786
by = 2.3836
by = 0.5590
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Np = 8 o/ n? [ (g 8p/6)d3 + E Cq 7] (40)
and U - Uy = (n/ pd) Ng (a/b) 073 (41)
with a/b =1+ 0.1472 Ngo0-8 (38)
where Ngo = [gapd? +6EC dl /0o (42)

Figure 13 shows the fall velocities for water drops given by
Equation (41) compared with the measurements of Gunn and Kinzer
[1949] and the empirical models of Liu and Orville [1969], Manton and
Cotton [1979], Shiino [1983], and Liu [1986]. The agreement between
equation (41) and the experimental results is quite satisfactory at
the larger drop sizes where the effects of drop shape become
important. Differences with the Gunn and Kinzer [1949] data are
evident for the smaller particles, however, Beard and Pruppacher
[1969] concluded that their results were in error in this region due
to evaporation. In this size range the drops are spherical and
equation (41) gives essentially the same results as equation (16)
which has been compared with the relations given by Beard [1976] for
the size range up to 20 micro m in Figure 1 and the relations of
LeClair et al. [1970], Beard and Pruppacher [1969], and Perry [1950]
in Figure 2. Beard [1976] gives three relationships for water drop
velocities according to size range. His relationship for the size
range 19 micro m and 1.07 mm is essentially identical to those of
LeClair et al. [1970], Beard and Pruppacher [1969], and Perry [1950]
and between 1.07 mm and 7 mm is essentially identical to the Gunn and
Kinzer [1949] data. Equation (41) should thus give adequéte values
for water drop velocities in gravitational and electric fields for
any atmospheric conditions over the size range from 0.5 microm to 7
mm.

3. SEDIMENTATION VELOCITIES AND MOBILITIES

While the relations given in Section 2 are quite simple they
involve the calculation of the Davies numbers from the diameters,
densities, viscosities, and electric fields, and the velocities from
the Reynolds numbers, densities and viscosities. It is convenient to
have simple expressions for the sedimentation velocity and@mobility
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in terms of the particle diameter, particle density, and the ambient
atmospheric pressure. Such relations are useful, for example, when
making estimates of the relative importance of electric fields,
crystal size or habit. The simplicity of the expressions can also
provide important savings in large computer programs. ’
Before using mobilities to relate the velocity to the electric
field for drop sized particles it is important to determine the
validity of the concept. For particles in the Stokes’ drag regime
the velocity is proportional to the force and hence to the electric
field. For larger particles, however, the velocity is proportional
to the square root of the total force on the particle. The linearity
of the process thus depends on the fraction of the force provided by
the electric field. Takahashi [1973] has summarized measured values
of charge on cloud drops up through precipitation particles. These
data show that larger values of the charge per unit surface area in
thunderstorm clouds can be approximately represented by Cq =5107 ¢
m 2. Gunn [1949] using aircraft measured mean maximum electric field
strengths of 1.3 10° V m"! and on once an electric field of 3.4 109 v
m-1 just before the aircraft was struck. Fitzgerald and Byers [1962]
measured fields as large as 2.3 105 v m'l, and Holitza and Kasemir
[1974] as large as 3 10> V m2. Winn et al. [1974] measured peak
values in excess of 1 10° V m ! 10% of the time and once observed a
field as large as 4 105 v ml. It would thus appear that a typical
targe value for Cq E, the product of the charge per unit surface area
and the electric field, might be about 5 10’2 Jm3 with maximum
values as large as 2 107! g w3, Figure (14) shows the normalized
mobilities for spherical partic]es.calculated using Equation (12) for
three values of Cq E. Figure (15) shows the mobilities for planar
ice crystals with N = 2 calculated using Equation (24) and Figure
(16) the values for columnar ice crystals using Equation (25) again
for the same three values of Cq E. It would thus appear that for
reasonable values of Cq E the use of estimates based on the
assumption of an electric field independent mobility should provide a
good estimate of the velocity components produced by the electric
fields. In cases where the electric and gravitational forces are
approximately equal and opposite the use of the expressions given in
Section 2 in terms of the Davies numbers is, of course, advisable.
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3.1 SPHERES

The expression for the velocity obtained by fitting equation
(16) is,

U- Uy =1/35 (a5 830 pki gVl ) (mys) (43)

The values for the coefficients in this expression are given in
Table 9

TABLE 9
i 3 3 Ky 1

1 3.079E-5  -1.000 0.1522  -2.00
2 1.548E-3  -0.750 0.2790  -1.25
3 1.668E-1 -0.500 0.4057  -0.50

and for the mobility is,
B =Cq/ 33 (b ao™ pMi o1 ) (m2yv s) (44)

The values for .the coefficients in this expression are given in
Table 10 .

TABLE 10

j b1 mi ni O.i

1 3.440E-5 0.0670 0.1522 -1.0

2 2.810E-3 0.1606 0.2790 -0.25

3 5.234E-1 0.5051 0.4057 +0.5
| where Ap is the particle density (kg/m3)

and p is the pressure (bar) , 1 N/m2 = 1072 bar

The US Standard Atmosphere [1976] was used to relate the
temperature.and viscosity to the pressure. The calculated
sedimentation velocity of a 1 mm diameter particle with a density of
1000 kg/m3 at the 0.4 bar level changed by only 2% between using the
30 N July and the 75 N January (Cold) US Standard Atmosphere [1966]
models.
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Figure (17) shows values of the velocity as a function of the
particle diameter for six different altitudes and Figure (18) shows
the corresponding mobility normalized by dividing by Cq. Figures
(19) and (20) show the corresponding relations at three values of
particle density.

3.2 PLANE FORM CRYSTALS

Using the relationships given in Section 2.2 equations can been
derived for the velocities and mobilities as functions of N, the
crystal width, and the pressure.

U-Uy=1/ 33 (a; 1030 wkipliy o (nys) (45)

The values for the coefficients in this expression are given in
Table 11

TABLE 11
3 3 Ky Y
9.016 6-4.905 N 1 - N 0.1522
1.291 6-3.655 N 1-0.75N 0.2790
1.064 5-2.405 N 1-0.5 N 0.4057

W N e =

B = Cq/ 33 ( by 10 WM p0 ) (m¥/vs)  (46)

The values for the coefficients in this expression are given in
Table 12

TABLE 12

i bi mi ni Oi

1 0.5944+192.2 N°7-2 -4 -1.0 0.1522
2 0.4421415.4 N°7-7 0 0 0.2790
3

.585.0+0.9020 N*7-7 -2 +0.5 0.4057

Plots of the sedimentation velocities of plane form ice
crystals at the 400 mb level for a range of values of N _are given in
Figure 21 and the corresponding normalized mobilities are shown in
Figure 22. Plots of the fall velocities at several different
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Figure 21. Fall velocities of plane form ice crystals at the 400 mb

level for values of density exponent N of 1.8, 2, 2.2, 2.4 and 2.8.
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Figure 22. Mobilities of plane form ice-crystals at the 400 mb level
for values of density exponent N of 1.8, 2, 2.2, 2.4 and 2.8.
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altitudes of plane form ice crystals with a density exponent N of 2.2
are shown in Figure 23 and the corresponding normalized mobilities
are shown in Figure 24.

3.3 COLUMNAR ICE CRYSTALS

Using the relationships given in Section 2.3 equations can be
derived for the velocities and mobilities as functions of the
pressure and crystal length as was done for the spherical ice
particles.

U-U,=1/ 35 (a5 1037 LK pliy o (uys) (47)

The values for the coefficients in this expression are given in
Table 13 '
TABLE 13

a; Jj ;i 1
6.630  6-5.0 N (1-N) 0.1522
1.299  4-3.125N  0.625(1-N) 0.2790
4.616 1-1.25 N  0.25 (1-N) 0.4057
6.656 -1-2.5 N -0.5 -0.5 N 0.1522

-2.361 -4-0.625N -0.875-0.125N 0.2790
-7.423  -8+1.25 N -1.25 40.25 N 0.4057

D O W N

B =Cq/ 33 (b 10M (M p01 M2y s)  (48)

The values for the coefficients in this expression are given in
Table 14

TABLE 14
b; mp Ny 0
-3.55+2.38 NO-5 .4 .1.0 0.1522

7.09-4.13 N9-5 .2 0.5 0.2790
3.2240.111 N° 0 +0.5 0.4057

W N

Plots of the sedimentation velocities of columnar ice crystals
at the 400 mb level for a range of values of N are given in Figure 25
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Figure 23. Fall velocities of plane form ice crystals with values of
density exponent N.of 2.2 at 0, 2.5, 5, 7.5, 10, and 14 km.
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Figure 24. Mobilities of plane form ice crystals with values of

density exponent N of 2.2 at 0, 2.5, 5, 7.5, 10, and 14 km.
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Figure 25. Fall velocities of columnar ice crystals at the 400 mb
level for values of density exponent N of 1.9, 2.1, 2.3, 2.5, 2.7,

and 2.9.
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Figure 26. Mobilities of columnar ice crystals at the 400 mb level
for values of density exponent N of 1.9, 2.1, 2.3, 2.5, 2.7, and 2.9.
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and the corresponding normalized mobilities are shown in Figure 26.
Plots of the fall velocities at several different altitudes of
columnar ice crystals with a density exponent N of 2.2 are shown in
Figure 27 and the corresponding normalized mobilities are shown in
Figure 28.

3.4 CONICAL FORM PARTICLES

Using the relationships given in Section 2.4 equations for the
velocities and mobilities can be obtained for the conical form
particles as functons of the diameter, particle density and
atmospheric pressure.

The expression for the velocity obtained from Equation (32) is,

U-Uy=1/%3;(a; a3t pki gli) (ays) (49)
The values for the coefficients in this expression are given in
Table 15

TABLE 15

A. 90° CONE-SPHERICAL SEGMENT

i ai Ji ki 1i
1 1.252E-04 -1.00 0.1522 -2.00
2 -5.561E-03 -0.75 0.2790 -1.25
3 5.522E-01 -0.50 0.4507 -0.50
B. 70° CONE-SPHERICAL SEGMENT
1 1.658E-04 -1.00 0.1522 -2.00
2 -7.647E-03 -0.75 0.2790 -1.25
3 4.870E-01 -0.50 0.4507 -0.50
C. 50° CONE-HEMISPHERE
1 1.021E-04 -1.00 0.1522 -2.00
2 -4.413E-03 -0.75 0.2790 -1.25
3 3.925E-01 -0.50 0.4507 -0.50
D. 90° TEARDROP
1 5.051E-05 -1.00 0.1522 -2.00
2 -1.184E-03 -0.75 0.2790 -1.25
3 2.362E-01 -0.50 0.4507 -0.50
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Figure 27. Fall velocities of columnar ice crystals with values of
density exponent N of 2.3 at 0, 2.5, 5, 7.5, 10, and 14 km.
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Figure 28. Mobilities of columnar ice crystals particles with values

of density exponent N of 2.3 at 0, 2.5, 5, 7.5, 10, and 14 km.
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and for the mobility is,

B = Cq/ 33 ( by ap™ p"l d®T ) (m?/v )

(50)

The values for the coefficients in this expression are given in

Table 16

TABLE 16

A. 90° CONE-SPHERICAL SEGMENT

bi
1.331E-04
-1.122E-02
1.256E+00

WO =

B. 70° CONE-SPHERICAL SEGMENT

—

1.733E-04
2 -1.353E-02
3 1.286E+00

1 1.328E-04
2 -1.081E-02
3 1.150E+00

1 7.417E-05
-3.915E-03
6.883E-01

mi ni
0.0252 0.1473
0.2716 0.2544
0.4909 0.3980
0.0595 0.1702 .
0.3155 0.2885
0.5010 0.4019
C. 90° CONE-HEMISPHERE
0.0365 0.1566
0.2844 0.2682
0.4938 0.3990
D. 90° TEARDROP
0.0185 0.1517
0.2836 0.2591
0.4955 0.4005

Plots of the sedimentation velocities of four
particles at a pressure of 400 mb with a density of
given in Figure 29 and the corresponding normalized

shown in Figure 30.

3.5 WATER DROPS AND DROPLETS

0i
-1.00
-0.25
0.50

-1.00
-0.25
0.50

-1.00
-0.25
0.50

-1.00
-0.25
0.50

conical forms of
800 kg/m3 are
mobilities are

Using the relationships given in Section 2.5 equations have
been derived for the velocities and mobilities of water drops as a
function of the equivalent diameter and the atmospheric pressure. It

was found necessary to use a four term series for each parameter
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Figure 29. Fall velocities of conical form and spherical particles

with a density of 800 kg/m3 at a pressure of 400 mb.
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because of the large changes in drag coefficient caused by drop
distortion for drops larger than about 0.5 mm.

U-Uy,=1/ 34 (a5 1037 (K pli ) (pys) (51)

The values for the coefficients in this expression are given in
Table 17
TABLE 17

ai ji k’i . ]i
3.056 -8  -2.00  0.1323
8.493 © -6  -1.25  0.2699
5.462 -3 -0.50  0.4137
5.284 0 +1.00 0.4760

W N - -

B=Cq/ 3 (by 10M d" 0T ) (m2/vis)  (52)

The values for the coefficients in this expression are given in
Table 18

TABLE 18
bj n; 0
5.746 -5  -1.0 0.1522
7.160 - -3 -0.25  0.1604

1.806 +1 +0.5 0.4199
1.664 +4 +2.0 0.4733

W N =

Plots of the sedimentation velocities of water drops are given
in Figure 31 and the corresponding normalized mobilities are shown in
Figure 32.

4. CONCLUSIONS

Section 2 of this paper gives general equations for the
Reynolds number of a variety of types of ice crystals and water drops
in terms of the Davies, Bond, and Knudsen numbers. The equations are
in terms of the basic physical parameters of the system and are valid
for calculating velocities in gravitational and electric fields over
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Figure 31. Fall velocities of water drops at 0, 2.5, 5, 7.5, and 10 km.
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a very wide range of sizes and atmospheric conditions. The equations
are asymptotically matched at the bottom and top of the size
spectrum, a useful attribute when checking large computer codes.

A numerical syétem for specifying the dimensional properties of
ice crystals has been introduced as an adjunct to more subjective
classification schemes. This allows the observed dimensional
statistical properties of an ensemble of particles to be related to
the statistical properties dependent on transport.

It is important to realize that particles in the atmosphere
come in a broad spectrum of sizes, forms, and densities. Riming and
aggregation greatly increase the variability in the transport
velocities. When one is dealing with properties of the ensemble such
as the mass density, the conductivity, or the energy, for example, it
is necessary to integrate over statistical distributions because the
variation about a mean value is usually so large. The expressions in
this paper have been developed with this in mind.

Within the limits imposed by such variables as particle
density, which have large deviations, the accuracy of velocities
appear to be within about 10% over the entire range of sizes of
interest when compared with such data as are available. Particular
attention has been given to ensuring that at the lower end of the
size distribution values tend to reasonable limits. Because of the
behavior of the drag coefficient as size decreases negative
velocities are a common feature of empirical expressions for particle
velocities expressed as power series in a length parameter. Such an
artifact can have serious consequences in a computer code.

Conical form ice crystals present special problems for the
development of éimp]e equations of motion because of the varying
aspects they present and the oscillatory motions they exhibit. The
relations given here should at least allow reasonable estimates to be
made of the range of variability likely to be produced by shape
variations

Section 3 gives simple equations in a uniform format for the
terminal velocity and normalized mobility for a wide range of sizes
and habits of ice srystals, and water drops in terms of the
atmospheric pressure and an appropriate size parameter. These
equations are simpler to use for many purposes and have comparable
accuracies and ranges of application with the more basic formulas
given in Section 2.
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APPENDIX _

LIST OF SYMBOLS.
a/b = the ratio of the major diameter to the height of a water drop.
Ac is the cross sectional area of a crystal in a plane normal to the
motion. (mz)
Ap is the cross sectional area of a circular disc of diameter W,
Ap = 1 W/ 4 (n?)
Ag is the total surface area of a crystal (mz)
B is the mobility of a particle = AU / E (m v-1 5-2)
Cq is the drag coefficient.

] 2
Cq = Np/ Ng

Cq is the charge per unit area on a particle (C/mz)
Cq=a/ A (¢/n?)
d is the particle diameter (m)

For crysté]s of columnar form d is the length along the a-axis.
For water drops of ellipsoidal shape with major diameter a and height
b the equivalent drop diameter is,

d = aé/3 b1/3 (m)

d, is the diameter of a sphere of mass m, and density Ap,.
The value assumed here is, d, =1 1073 (m)

D is the drag force, (N)

E is the electric field. A (V/m)

F is the force on the particle | (N)

g 1is the gravitational acceleration (m s'2)
1 is the mean free path (m)

Using the effective collision diameter of mean air from the US
Standard Atmosphere [1976] gives,

1= 2.33-10T / p (m)

L is the length of a columnar form crystal along the c-axis. (m)

m is the mass of a particle, (kg)
m = (Ao /6 ) dg (k)
with the values adopted here for Ap, and d,

m, =5.236 10713 3 (kg)

N is the exponent of the density

for particles of plane form N = Tog(m d,)/1og(m, W)

for particles of columnar form N = log(m dj)/Tog(m, L)

Ngo the Bond number is a nondimensional parameter relating the
pressure on the surface to the surface tension,

Ngo =6F/ (ndo)
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Np is the Davies or Best number, a nondimensional parameter related
to the force on the particle, Np=(8p/x nz ) F

Ng is the Knudsen number, the ratio of the mean free path to the
particle diameter, N¢ =1/ d

NgR is the Reynolds number Np = (pd/n) (VU-Y, )

p is the atmospheric pressure (bar)
1 N/m = 1075 bar -

q is the charge on the particle, A ()

t is the time, (s)

T is the air temperature AX)

U s the particle velocity (m/s)
U, is the air velocity (m/s)

W is the maximum width of a plane form crystal (m)
X is the modified Davies number for a column X = ( 2 p d /(L hz) ) F

n is the dynamic viscosity of air (kg/m s)

p is the air density (kg m'3)
Ap is the difference between the particle and air density (kg/m3)
o is the surface tension of water against air (N/m)

o = 0.1165-1.492 1074 T for 265 K < T < 303 K (N/m)
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