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FOREWORD 

The paper entitled "General Equations for the Motions of Ice % 
Crystals and Water Drops in Gravitational and Electric Fields" has 

been submitted for publication in Annales Geophysicae. 

AVANT-PROPOS 

L'article intitulé "General Equations for the Notions of Ice 

Crystals and Water Drops in Gravitational and Electric Fields" a été 

soumis pour publication dans Annales Geophysicae. 

VOORWOORD 

Het artikel "General Equations for the Notions of Ice Crystals 

and Water Drops in Gravitational and Electric Fields" werd voorgelegd 

ter publikatie in Annales Geophysicae. 

VORWORT 

Der Artikel "General Equations for the Notions of Ice Crystals 

and Water Drops in Gravitational and Electric Fields" wurde 

vorgestellt zur Publikation in Annales Geophysicae. 
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ABSTRACT 

The technique of fitting with asymptotic functions has been used to 

develop simple equations relating the forces for a variety of types 

of ice crystals and water drops and droplets in terms of the Davies, 

Bond and Knudsen numbers to the Reynolds numbers and hence to the 

velocities. Equations are also given, in a common format suitable 

for incorporation in computer models, of the sedimentation velocity 

and mobility as functions of the atmospheric pressure level and an 

appropriate length parameter for each particle type. 

RÉSUMÉ 

La technique d'ajustement à l'aide de fonctions asymptotiques a 

été utilisée pour déduire des équations simples reliant les forces au 

nombre de Reynolds donc aux vitesses pour plusieurs types de cristaux 

de glace, des gouttes et des gouttelettes d'eau en termes des nombres 

de Davies, Bond, et Knudsen. Des équations de la vitesse de 

sédimentation et de la mobilité en fonction de la pression 

atmosphérique et d'une dimension caractéristique pour chaque type de 

particule sont également données dans un format utile pour 

l'incorporation dans des codes numériques. 



SAMENVATTING 

De aanpassingstechniek met behulp van asymptotische functies 

werd gebruikt om eenvoudige vergelijkingen af te leiden die een 

verband leggen tussen de krachten voor een aantal types 

ijskristallen, waterdruppels en druppeltjes in termen van de Davies, 

Bond, en Knudsen getallen tot de Reynolds getallen en daarom tot de 

snelheden. Vergelijkingen werden eveneens gegeven, in een algemeen 

formaat geschikt om opgenomen te worden in computer modellen, van de 

sedimentatiesnelheid en beweeglijkheid in functie van de 

atmosferische druk en een geschikte lengte-parameter voor elk soort 

deeltje. 

ZUSAMMENFASSUNG 

Die Anpassungstechnik mit der Hilfe von asymptotischer 

Funktionen wurde benutzt um Vergleichunggen ab zu leiten, die einen 

Zussammenhang machen zwischen den Kräften für mehrere Typen 

Eiskristallen, Wassertropfen und Wassertröpfchen nach dem Wortlaut 

der Davies, Bond und Knudsen Zahlen, und der Reynolds Zahlen, und 

folglich der Geschwindigkeiten. Vergleichungen sind auch gegeben, in 

einem geeigneten Format für nümerische Modellen, der 

Absetsgeschwindigkeit und der Beweglichkeit wie Funktionen des 

atmosphärischen Druckes und ein geeignete Längenparameter für jede 

Partikel. 
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1. INTRODUCTION 

The motions of hydrometeors in the gravity and electric fields 

of a thundercloud are of prime importance in understanding the 

generation, neutralization, accretion and transport processes. At 

the upper end of the mass spectrum are the hail and graupel particles 

with sizes of the order mm to cm, while at the lower end cloud 

conductivities are controlled by cloud droplets as small as a few 

microns in diameter. Because gravitational forces are proportional 

to the volume while the electrical forces may be more closely 

proportional to the surface area the size spectrum of interest when 

electrification is involved generally extends below that which must 

be considered when all the particles are neutral. 

For several processes it is the differences in velocities 

between different types and sizes of particles that are critical. 

Currents are produced when relative motion occurs between charged 

particles of opposite polarities. It is upon the differences in 

velocities that the collision rates depend which control charge 

transfer and accretion for example. Electrical forces are 

particularly important in controlling collisions between charged 

particles. Charge build up occurs wherever there is a divergence in 

the current density and so factors such as the altitude gradient of 

the velocities are important. 

The implications of transport to, for example, mass fluxes, 

current densities, or collision rates depend on integrals over the 

range of types and sizes of particles present and so it is necessary 

to have statistical parameters that can be used for such 

calculations. 

The number of different types and sizes of particles that needs 

to be considered in a cloud electrification model can be large and so 

it becomes important to have reasonably efficient subroutines for the 

calculation of the transport properties. In particular it is 

advisable not to have to check, the force for example, before 

choosing an appropriate formula for a calculation. The development 

of such equations is the aim of the present study. 
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2. GENERAL RELATIONS 

The momentum continuity equation may be written, 

F = - m (dU/dt + g) + q E = - D (1) 

where, 

D is the drag force, (N) 

m is the mass of the particle, (kg) 

U is the particle velocity, (m s"*) 

t is the time, (s) 

g is the gravitational acceleration (m s~ 2) 

q is the charge on the particle, (C) 

and E is the electric field, (V/m) 

The drag force on solid particles is a function of the relative 

velocity and the density and viscosity of the surrounding air. 

It is convenient to work in dimensionless parameters. The 

parameter, which is conventionally used, related to the force is the 

Davies or Best number, Davies [1945], Best [1950], 

N d = ( 8 p / * rj2 ) F (2) 

where r? is the dynamic viscosity of air (kg/m s) 

p is the air density (kg rtf^) 

The Reynolds number is, 

Nr = ( P d / r? ) ( U - U a ) (3) 

where U is the particle velocity (m/s) 

U a is the air velocity (m/s) 

and d is the particle diameter (m) 

The mean free path at cloud altitudes is of the order of 10~7 m 

and for cloud particles smaller than about 10"5 m the drag force 

becomes a function of the ratio of the mean free path to the particle 

diameter, the Knudsen number. 
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N K = 1 / d (4) 

where 1 is the mean free path 

The force on a particle can be calculated from the electric 

field strength and particle mass and charge. The calculation of the 

velocities of solid particles thus involves determining the 

functional relation of the Davies and Knudsen numbers to the Reynolds 

number. 

2.1. SPHERICAL PARTICLES 

Let us first examine the drag forces on spherical particles. 

The Reynolds number is related to the Davies number by the relation, 

Nr = [ N D / C d ] 1 / 2 ( 5 ) 

where C d is the drag coefficient. 

Terminal fall velocities for large graupel and hail have been 

given by Bilham and Relf [1937], List [1959], Macklin and Ludlam 

[1961], Auer [1972a] and Roos [1972]. In the range of Reynolds 

numbers between 1000 and 5000, corresponding to particles in the size 

range from about 1 to 5 mm depending on the altitude and particle 

density, the drag coefficient C d is not greatly dependent on Reynolds 

number and the relative velocity of the particle is given by, 

U - U a = [ 8 F / ( it p C d J]1/2 / d (m/s) (6) 

c p 
For the range of Reynolds numbers between 10"° and 10"' 

corresponding to particle diameters fn the range from 10"® m to 

2 10"^ the flow is laminar and the Knudsen number lies between 0.003 

and 0.015 over the range of densities normally encountered in clouds. 

Drag forces on spherical particles in this regime have been treated 

by Knudsen and Weber [1911], Epstein [1924], Davies [1945], Beard 

[1976], and others. 

The drag force in this region is given by first-order 

correction to the Stokes equation, 
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N
D
 ( 1 + 2.5 N

K
 ) / 24 (7) 

In this range of Reynolds numbers the relative velocity of the 

particle is given by, 

U - U
a
 = F ( 1 + 2.5 1/d ) / ( 3 * T) d ) (m/s) (8) 

The range of Reynolds numbers between these two regimes is of 

considerable importance because it corresponds to diameters between 2 

10"^ m and 10"^ m and includes the major part of the precipitation 

particles in the cloud. It is in this region however, that the flow 

changes from laminar to turbulent and the relation between the drag 

force and the velocity changes markedly. At Reynolds numbers below 

10 the relative velocity is proportional to the Davies number and at 

Reynolds numbers above 1000 proportional to the square root of the 

Davies number. It is thus apparent that the drag coefficient and its 

altitude variation are both functions of the Reynolds number in this 

region. Theory as well as sea level measurements are thus necessary 

to obtain altitude dependant drag coefficients. 

LeClair et al. [1970] have presented equations for the drag 

coefficient in terms of the Reynolds number for 0.01 < NR < 20, Beard 

and Pruppacher [1969] for 20 < N
R
 < 258, and Perry [1950] for 258 < 

NR < 5000. Such equations are difficult to use when it is desired to 

calculate the velocity from the force. 

It has been common following Davies [1945] to make empirical 

polynomial fits to the relationship of the logarithm of the Davies 

number to the logarithm of the Reynolds number. This technique has 

been used, for example, by Heymsfield [1972] for a variety of types 

of ice crystals and by Beard [1976] for cloud and precipitation 

drops. The method provides good fits to the sedimentation velocities 

providing the range of Reynolds numbers is not too large, however, 

the coefficients in the equations for adjacent ranges differ 

considerably and the fits using higher order polynomials deteriorate 

very rapidly outside their range. These problems are aggravated when 

electric forces are considered because the Reynolds number is no 

longer a unique function of the particle diameter so that checks have 

to be put into computer programs to ensure that the correct formula 

is used. The fluctuations in the first derivative of the 

relationship between the Reynolds number and the Davies number appear 



to be of the order of 15% over the range from 10 to 1000 in Reynolds 

number due to the form of the function used for the fit alone. The 

calculated mobilities depend on these derivitaves. Moreover, though 

the formulas are continuous for the Reynolds number at the 

boundaries, they are not for the first derivative, and so 

discontinuities are introduced in the mobilities between ranges. 

Abraham [1970] presented a model of a blunt body passing 

through a viscous medium based on boundary layer theory which results 

in a relation between the drag coefficient and the Reynolds number 

that agrees well with experiment over a wide range of Reynolds 

numbers. 
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Cj from equation (9) when used in equation (5) provides an 

asymptotic fit to the function in equation (7) after applying the 

Knudsen number correction term. It also provides good agreement with 

relations given by LeClair et al. [i970], Beard and Pruppacher 

[1969],and Perry [1950]. It is apparent that, despite the 

complexities of the transitions that occur in the flow 

patterns over this very extensive range of Reynolds numbers, the 

Abraham relation provides good agreement with empirical relationships 

expressed in polynomial expressions each applicable to a much more 

limited range. The Abraham [1970] relation is not convenient to use 

to calculate velocities from forces because it expresses the Davies 

number in terms of the Reynolds number and not vice versa. It did 

indicate, however, that the technique of using asymptotic matching 

functions might provide a simple relation of the Reynolds number to 

the Davies number in which the coefficients were related to physical 

parameters. 

It is apparent that a function of the form, 

N
r
 = ( 1 + 2.5 N

k
 ) / ( A N q - U F

m
 + C N

d
'

0

-
5

 ) (10) 

would provide an asymptotic fit to equations (5) and (7) as NQ tends 

to zero and infinity provided the matching function F
m
 is chosen 

appropriately. A suitable form for F
m
 is given by a series of terms 

of the form 



F m = 2 ( a i N D
n i ) -1 < n i < -0.5 (11) 

For most atmospheric modeling purposes a single term with n = -0.75 

appears to give an adequate fit. 

By fitting to the relations given by LeClair et al. [1970] for 

0.01 < N R < 20, Beard and Pruppacher [1969] for 20 < N R < 258, and by 

Perry [1950] for 258 < N R < 5000 the following expression was 

obtained, 

N r = (1+2.5 N K)/(b 1 N D
_ 1 + b 2 N D-°- 7 5+b 3 Nd-°-5) (12) 

2 1 . 7 8 6 

2 . 3 8 3 6 

0.5590 

From equation (2), 

N 0 = 8 p / n1 [ (g Ap / 6 ) d 3 + E C q d 2 ] (13) 

where Ap (kg/m 3) is the difference between the particle and air 

density 

and C q (C/m 2) is the charge per unit area on the particle 

From equation (3), 

U - U a = ( n / p d ) N R ( 1 4 ) 

Using the effective collision diameter of mean air from the US 

Standard Atmosphere [1976] in equation (4) gives, 

N K = 2 . 3 3 E - 1 0 T / ( p d ) ( 1 5 ) 

where T is the air temperature (K) 

and p is the atmospheric pressure (bar) 

Equations (12) to (15) above may be combined for the case of no 

electric field to give the terminal fall velocity to be, 

08 

where, 



u-u a = (1+2.5NK)/ S 3( ai Ap c i d d i p e i r?fi ) (m/s) (16) 

The values for the coefficients in this expression are given in 

Table 1 

TABLE 1 

i ai 
ci di ei '1 

1 1.6656 -1.0 -2 0 1.0 

2 0.3466 -0.75 -1.25 0.25 0.5 

3 0.1546 -0.5 -0.5 0.5 0.0 

Figure 1 shows a comparison between the sedimentation 

velocities in the absence of an electric field calculated using 

equation ( 1 6 ) with those given by the relation of Beard [ 1 9 7 6 ] for 

the range of diameters between 0.5 microns and 20 microns. Figure 2 

is a similar comparison with the relations given by LeClair et al. 

[ 1 9 7 0 ] , Beard and Pruppacher [ 1 9 6 9 ] , and Perry [ 1 9 5 0 ] from 2 0 microns 

to 6 mm. 

2.2 PLANE FORM CRYSTALS 

Jayaweera and Cottis [ 1 9 6 9 ] studied the relationship between 

the force and the drag on circular and hexagonal plates over a range 

of Davies numbers from about 1 to 10 4. They concluded that for 

plate-like forms the relationship between the Reynolds number and the 

Davies number is almost independent of the ratio of the thickness t 

to the width W. As was done with the spherical forms the data of 

Jayaweera and Cottis [ 1 9 6 9 ] were fitted by the expression, 

N R « (1 + 2.5 N K)/(bj N G - U b g N d-°' 7 5 + b 3 N D "
0 - 5 ) (17) 

which gave bj = 11.71 

b 2 = 3 . 6 5 4 

b 3 = 0 . 6 5 8 6 

where N 0 = ( 8 p / * r?2 ) F (18) 
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DIAMETER (misa m) 

Figure 1. Comparison of the sedimentation velocity in the absence 
of an electric field for spherical particles given by Equation (16) 
with those given by the Beard (1) relation, p - 1000 mb, Lp • 1000 
kg/m3. 

LOG OF DIAMETER (m) 

Figure 2. Comparison of the sedimentation velocity 1n the absence 
of an electric field for spherical particles given by Equation (16) 
with those given by LeClair et al. [1970], Beard and Pruppacher 
[1969], and Perry [1950], p = 1000 mb, Lp - 1000 kg/m3. 
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Kajikawa [1971] and List and Schemenauer [1971] and Jayaweera [1972] 

have given relations between the Davies and Reynolds numbers for 

different shapes of plate-like ice crystals. List and Schemenauer 

[1971] have given an equation for the drag coefficient C^ as a 

function of the area of the crystal AQ to the area of a circular disc 

AQ of the same width that allows equation (17) to be used for all 

crystals of plane form. 

This gives, 

U - U
a
 = 1 . 3 4 N

R
 r)/(p W ( 1 + 0 . 9 6 A

C
/ A

D
)

0

-
5

) ( m / s ) ( 1 9 ) 

A
S
 = ( A

C
/ A

D
 ) * W

2

 / 2 ( M
2

) ( 2 0 ) 

F = m g + A
s
 Cg E (N) (21) 

Table 2 gives values for the ratio of the area of various plane form 

crystals to the area of a circular disk and of the ratio of the 

velocities for the same force F and width W from the data of List and 

Schemenauer [1971]. 

TABLE 2 

CRYSTAL TYPE Ac/AD
 U

C ~
U

a /
U

D "
U

a 

Thick Plates 0.834 1.04 

Hexagonal Plates 0.834 1.04 

Sectorlike Branches 0.736 1.07 

Broad Branches 0.473 1.18 

Stellar Forms 0.277 1.24 

Dendrites 0.182 1.29 

Heymsfield [1972], Kajikawa [1972], Hobbs et al. [1974], and 

Locatelli and Hobbs [1974] have made measurements of the dimensions 

and masses for various types of plane crystals that can be used to 

calculate general relations for transport velocities. 

Magono and Lee [1966] have suggested a subjective 

classification of snow crystals into eighty classes which has been 

widely adopted. It is, however, useful to have a numerical 

coordinate system in which the statistical properties appropriate to 

transport of a group of crystals can be specified. It is desirable 
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to have a single parameter which characterizes the crystal size and 

another which corresponds as far as possible to a given type of 

crystal. Figure 3 shows measurements of the equivalent diameters of 

the drops formed on melting plane form crystals measured by Kajikawa 

[1972]. Superimposed on these data are lines given by the equations, 

m = m 0 ( U / d 0 ) N (kg) (22) 

where m 0 = ( * Lp0 / 6 ) d 0
3 (kg) (23) 

This expression tends to the mass of a sphere of density ApQ as 

the diameter tends to d 0. The values used for d 0 and hpQ are not 

very critical as far as fitting the data in Figure 3 is concerned, 

however, they do affect the values of N. A value of 10"^ m for d 0 

and of 1000 (kg/m3) for ApQ have been adopted here because they 

appear to organize the data reasonably well for the thinner and 

lighter crystals. Kumai [1961] found the sizes of microspherule 

central nuclei of ice crystals varied from 5 10"^ to 8 10"® m. Auer 

[1971] found the average size of frozen cloud droplet embryos of 

planar ice crystals to be 1.1 10"^ m and Auer [1972b] reported values 

near 2.5 10"^ m. The value adopted appears to be reasonably 

consistent with both these modes of nucleation. Heymsfield [1972] 

presented data showing that measurements of the density of a variety 

of plane form crystals tended to 1000 (kg/m3) as their diameters 

decreased. 

Table 3 gives values of N calculated from data given by a 

number of investigators. It may be seen from an examination of the 

data in Figure 3 that there is a large spread in the mass of crystals 

of each form for any given width. If ice physics were constraining 

crystal growth into a series of discretely different forms then a 

distribution of probability as a function of N with a strong central 

maximum would be expected for each type. Instead the distributions 

appear to be quite uniform in each category suggesting a more or less 

continuous range of crystal habits with the selection criteria 

controlling the limiting values. 
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WIDTH (mm) 

Figure 3. Measurements of the equivalent diameters of drops formed 

on melting plane form ice crystals measured by Kajikawa [1972] 

compared with values given by Equation (22) for six values of N. 
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TABLE 3 

CRYSTAL TYPE REFERENCE 

Thick Plates 2.4 -2.8 

Hexagonal 2.2 -2.4 

Plates 

Thin Plates 2.1 -2.3 

Plates with sector 2.1 -2.2 

like Branches 

Broad Branches 2.0 -2.1 

Stellar Forms 1.9 -2.0 

Dendrites 1.75-1.85 

Stellar Forms 1.7 -2.1 

Kajikawa [1972] 

Kajikawa [1972] 

Bashkirova and Pershina [1964] 

Kajikawa [1972] 

Kajikawa [1972] 

Kajikawa [1972] 

Kajikawa [1972] 

Bashkirova and Pershina [1964] 

Equations (17) to (23) above may be combined for the case of no 

electric field to give the terminal fall velocity to be, 

U - U a - 1.34(1 + 2.5 N K) ( m / s ) ( 2 4 ) 

(l+0.96Ac/AD)°-5)23( ai 10ci W d i />ei r?fi) 

The values for the coefficients in this expression are given in 

Table 4 

TABLE 4 

i ai ci di ei fl 
1 8, .953 11-5.0 N 1 - N 0 1.0 

2 5. .313 8-3.75N 1-0.75N 0.25 0.5 

3 1. .813 5-2.5 N 1-0.5 N 0.5 0.0 

Figure 4 shows the measured fall velocities of Kajikawa [1972] 

compared with predictions based on equation (24) for the range of 

values of N found for plane type ice crystals. 

There is much variation in estimates of fall velocities of 

smaller sized ice crystals. One of the problems that arises with 

fitting data with power series is that the fitted fall velocities 

frequently become negative for small crystal widths. Yagi [1970] 

presented data for the fall velocities of ice crystals whose mean 
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• THICK PLATES 
O HEXAGONAL PLATES 
a CRYSTALS WITH 

SECTORLIKE BRANCHES 

O CRYSTALS WITH 
BROAD BRANCHES 

X STELLAR CRYSTALS 
• DENDRITIC CRYSTALS 

O o O 

a — 

I . / / 

• * 

N = 1.°* 

I • 

N = 1.8 

WIDTH (mm) 

Figure 4. Measurements of the fall velocity of plane form ice 

crystals measured by Kajikawa [1972] compared with values given by 

Equation (24) for six values of N. 
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size was 103 microns drifting in supercooled fog. Figure 5 shows 

this statistical distribution of velocities compared with values 

calculated from equation (24) for N = 2.3 assuming the statistical 

size distribution measured by Yagi [1970]. 

2.3 COLUMNAR ICE CRYSTALS 

Column, bullet, and needle ice crystals have drag coefficients 

that depend on their length to diameter ratio. Jayaweera and Cottis 

[1969] made an extensive study of the drag on cylindrical ice 

crystals. They gave experimental values for the relationship between 

a modified Davies number X, and the Reynolds number for d/L = 1, 0.5, 

and 0.1 based on measurements with plastic and aluminum cylinders. 

For the limiting case as d/L tends to zero, theoretical values from 

Jayaweera and Mason [1965] were used. Their results are well fitted 

by the expression, 

N R - (1 + 2.5 N K)/(b 1 r h b 2 X ' 0 - 7 5 + b 3 X' 0- 5) (25) 

where bj = 3.684 + 13.59 d/L 

b 2 - 1.299 - 0.8678 d/L 

b 3 = 0.8311 -0.04911 d/L 

X = ( 2 p d /(L r?2) ) F (26) 

and N r = ( p d / n ) ( U - U a ) (27) 

Values obtained from equation (25) for the relation of N R to X 

are plotted in Figure 6 for four values of d/L. This relation was 

used for the subsequent analysis of columnar ice crystals. 

To calculate the force and the velocity it is necessary to have 

relationships of the mass and surface area to the crystal length, L. 

Nakaya and Terada [1935], Bashkirova and Pershina [1964], Ono [1969], 

Auer and Veal [1970], Heymsfield [1972], Kajikawa [1972], Hobbs et 

al. [1974], and Locatelli and Hobbs [1974] have studied the masses 

and dimensions of columnar ice crystals. The density and length to 

diameter ratio depend on the conditions under which the crystals have 

grown. Within a given type of crystal general relationships between 
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• PLANE FORM N = 2.3 
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Figure 5. Measurements of the statistical distribution of fall 

velocities of ice crystals of mean size 103 microns measured by Yagi 

[1970] compared with values given by Equations (24) and (31) for his 

size distribution and N = 2.7. 
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Figure 6. Relationship between the modified Davies number X and the Reynolds number 

for columns with d/L = 1, 0.5, 0.1 and 0 from Equation (25). 



the length, the diameter and the density have been measured but there 

appears to be considerable scatter. 

As with the crystals of plane form it is desirable to have a 

single parameter which characterizes the crystal size and another 

which corresponds as far as possible to a given type of crystal. 

Figure 7 shows measurements of the masses of various types of 

crystals of columnar form measured by Bashkirova and Pershina [1964]. 

Superimposed on their data are lines given by the equations, 

m = m 0 ( L / d 0 ) N (kg) (28) 

where m Q = ( w Ap0 / 6 ) d Q
3 (kg) (29) 

d/L = ( 2 * ApQ / 3 Ap) [_(N-3)/2d0(3-N)/2 (30) 

A value of 10"^ m for d 0 and of 1000 (kg/m3) for Ap 0 have been 

adopted here because they appear to organize the data well for the 

smaller diameter-to-length ratio columns in both mass and diameter. 

They are the same values used for the planar ice crystals. No 

appreciable improvement in fitting either mass or velocity data was 

obtained by varying Lp0/Lp from unity so this value was adopted in 

equation (30). Figure 8 shows the statistical distributions of 

values of the density exponent N in equation (28) calculated for 

needle crystals, columns and bullets from the data of Bashkirova and 

Pershina [1964], for columns for the data of Kajikawa [1972], and for 

densely rimed columns for the data of Locatelli and Hobbs [1974]. It 

appears that, as in the case of planar crystals, columnar crystals in 

the atmosphere have a fairly continuous distribution in N and in 

size. 

Three parameters of columnar ice crystals, the length, N, and 

Cq, the charge per unit area of surface, are sufficient to calculate 

the crystal velocities in gravitational and electric fields using 

equations (25) to (30) in terms of the atmospheric densities. The 

statistical properties of these parameters can be related to the 

transport properties of the ensemble of ice crystals. 
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LENGTH (mm) 

Figure 7. Measurements of the masss of columnar form ice crystals 

measured by Bashkirova and Pershina [1964] compared with values given 

by Equation (28) for six values of N. 
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columns as a function of the parameter N from Equation (28). 
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TABLE 5 

COLUMN TYPE N REFERENCE 

Short Columns 

Columns and 

Bullets K<2 

Sol id Columns 

Densely Rimed 

Columns 

Columns and 

Bullets K>2 

Hollow Columns 

Heavily Rimed 

Needles 

Rimed Needles 

Unrimed Needles 

2.75-2.95 Kajikawa [1972] 

2.5-2.85 Bashkirova and Pershina [1964] 

2.45-2.85 Kajikawa [1972] 

2.20-2.55 Locatel1i and Hobbs [1974] 

2.2 - 2.5 Bashkirova and Pershina [1964] 

2.0-2.55 Kajikawa [1972] 

2.0- 2.2 Bashkirova and Pershina [1961] 

1.88-2.0 Bashkirova and Pershina [1964] 

1.76-1.82 Bashkirova and Pershina [1964] 

Equations (25) to (30) above may be combined for the case of 

electric field to give the terminal fall velocity to be, 

U-Ua = (1 + 2.5 Nk)/23( ai 10ci Ldi />ei r?fi )(m/s) (31) 

The values for the coefficients in this expression are given in 

Table 6 

TABLE 6 

i ai ci ei 
1 3. .586 11-5.0 N (1-N) 0 1 

2 2. .908 6-3.125N 0.625(1-N) 0.25 0.5 

3 4, .278 1-1.25 N 0.25 (1-N) 0.5 0 

4 3. .600 4-2.5 N -0.5 -0.5 N 0 1 

5 -5. .287 -2-0.625N -0.875-0.125N 0.25 0.5 

6 -6, .880 -8+1.25 N -1.25 +0.25 N 0.5 0 

Figure 9 shows the measured fall velocities of Bashkirova and 

Pershina [1964], Zikmunda and Vali [1972], and Locatelli and Hobbs 
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Figure 9. Measurements of the fall velocity of columnar ice crystals measured by 

Bashkirova and Pershina [1964] Zikmundu and Vali [1972] and Locatelli and Hobbs [1974] 

compared with values given by Equation (31) for six values of N. 



[1974] compared with predictions based on Equation (31) for a range 

of values of N at a pressure level of 680 mb. 

The above treatment depends on the uniformity of the ice 

crystals and the degree with which they correspond to the models used 

by Jayaweera and Cottis [1969] so that dynamic similarity can be 

applied. It is only applicable in the absence of oscillations, 

rotations, or sideways slips. Crystals of columnar form are 

particularly sensitive to deviation of the major axis from the 

horizontal position. Laboratory studies of the fall patterns of 

unevenly loaded cylinders have shown that these effects can occur, 

Jayaweera and Mason [1966], Podzimek [1968]. Zikmunda and Vali 

[1972] have made an extensive study of the fall velocities of rimed 

ice crystals in natural clouds. Their studies showed that the 

velocity increases rapidly with increasing angle of deviation and 

that crystal orientation rapidly became the controlling factor. The 

terminal velocity increased by about 16% for g = 20° and by 300-400% 

for a = 60-80°. While only a small fraction of the columns observed 

had large deviations they concluded that as a general rule fall 

velocities of heavily rimed columns increased by a factor of about 

two over those of unrimed crystals. The scatter in the fall 

velocities introduced by riming is evident in the data for 23 rimed 

columnar crystals from Zikmunda and Vali [1972] shown in Figure 9. 

As with other forms of ice crystals several of the published 

empirical fits to observed velocity distributions give negative drag 

coefficients for small size crystals. Some of the data for the fall 

velocities of ice crystals whose mean size was 103 microns drifting 

in supercooled fog presented by Yagi [1970] concerned those of 

columnar form. Figure 5 also shows velocities calculated from 

equation (31) for N = 2.3 assuming the statistical size distribution 

measured by Yagi [1970] compared with measured velocities. 

Assemblages of planar and columnar ice crystals are more 

difficult to treat in a systematic manner than their constituent 

particles, however, it is important to be able to estimate the effect 

of aggregation on transport properties. Locatelli and Hobbs [1974] 

have summarized the range of fall speeds and maximum dimensions for 

aggregrates and their component particles. Figure 10 has been 

adapted from Figure 27 of this paper with the addition of the 

velocities calculated for planar crystals for a range of mass 

exponents N and a pressure of 680 mb. 
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2.4 CONICAL PARTICLES 

List arid Schemenauer [1971] have described the sequence of 

growth by accretion from a dendritic snow crystal to a graupel, then 

a small hail particle and finally to a hailstone as follows. A 

dendritic crystal falling in a cloud of supercooled water droplets 

catches them and becomes filled in, while the total thickness 

increases. The drag coefficient drops to the disc-like equivalent. 

Further accretion of cloud droplets will cause the conglomerate to 

grow in the direction of the vertical axis and a transition is made 

to the graupel stage with the drag coefficients behaving accordingly. 

As the particle grows by accretion, heat transfer is less effective, 

and the accreted water partially enters the ice framework of the 

graupel, causing densification. This is the small hail stage where 

tumbling may start; the drag coefficient changes accordingly and 

eventually the particle falls as a roughly spherical hailstone. 

List and Schemenauer [1971] have studied the fall motions of 

plastic models of conical graupel. The Reynolds number is the sole 

independent dimensionless parameter to characterize the flow as long 

as the Navier-Stokes equation describing the situation does not 

contain a local time derivative, [List 1966]. As soon as the 

particles do not fall steadily, but oscillate, rotate or move 

horizontally, then Stroudhal numbers have to be considered. List and 

Schemenauer [1971] concluded that because such secondary motions were 

either non-existent or rather small in a majority of their 

experiments the effect of non-steadiness on their simulations was 

negligible. 

Values of drag coefficient for four conical models were 

measured by List and Schemenauer [1971]. The four models were, 

A a 90° cone-spherical sector, 

B a 70° cone-spherical sector, 

C a 90° cone-hemisphere, 

A a 90° teardrop. 

Values of drag coefficient for each of these forms measured when 

released apex down were used to calculate values of Davies and 

Reynolds numbers and these were then fitted to the expression, 

N r = 1 /(bx N D" 1+b 2 N D-°- 7 5+b 3 N d' 0- 5) (32) 



Values of these coefficients are listed in Table 7. 

TABLE 7 

TYPE H/d *>1 b 2 b 3 
k2 

A 0.71 37.04 -4, .453 1 .148 0.219 2.05 

B 0.86 64.52 -7 .519 1 .162 0.288 2.23 

C 0.97 51.88 -5, .302 1 .070 0.376 2.70 

D 1.16 42.66 -2 .080 0 .8309 0.625 4.36 

N d = ( 8 p /(* rt2) ) F (33) 

where F = kj Lp g d 3 + k 2 C q E d
2 (34) 

and N r = ( p d / T) ) ( U - U a ) (35) 

Values obtained from equation (32) for the relation of C^ to NR 
are plotted in Figure 11 for the four conical forms for comparison 

with the List and Schemenauer [1971] data. 

Equations (32) to (35) above may be combined for the case of no 

electric field to give the terminal fall velocity to be, 

U-U a = 1 / Z3( a i A/>ci d d i p e i rjfi ) (m/s) (36) 

The values for the coefficients in this expression are given in 

Table 8 

TABLE 8 

A B C 0 SPHERE 

i ai ai ai ai ai ci di ei fi 

1 6.771 8.968 5.523 2.732 1.666 - 1.00 -2.00 0.00 1.00 

2 -1.245 -1.712 -0.988 -0.265 0.347 - 0.75 -1.25 0.25 0.50 

3 0.491 0.433 0.349 0.210 0.155 - 0.50 -0.50 0.50 0.00 
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2.5 WATER DROPS AND DROPLETS 

Small water drops are spherical and the treatment given in 

Section 2.1 is applicable. Water drops above a diameter of about 0.5 

mm become nonspherical, and both the cross sectional area in the 

horizontal plane and the drag coefficient are greater than for 

spherical particles of the same mass and equivalent diameter. These 

effects have been experimentally studied by Lenard [1904], Flower 

[1928], Laws [1941], Gunn and Kinzer [1949], Blanchard [1950, 1955], 

Kumai and Itagaki [1954], Magono [1954], Jones [1959], Pruppacher and 

Beard [1970], and Pruppacher and Pitter [1971]. Empirical relations 

for the velocity as a function of drop size of various ranges of 

application and complexity have been given by Best [1950], Liu and 

Orvllle [1969], Ogura and Takahashi [1973], Berry and Pranger [1974], 

Beard [1976], Shiino [1983], and Liu [1986]. 

When fall velocities of only uncharged water drops are 

concerned it may be adequate to use a unique analytic relationship 

between d and the axial ratio of the drop b/a as was done by Beard 

[1976]. The temperature dependence of the surface tension is not 

very important and the pressure on the surface, because it is only 

controlled by the mass of the water drop, remains constant with 

height. This assumption is not valid for mobility calculations 

because the force, and hence the drop shape, depend on the electric 

field. 

Green [1975] has developed a simple analytic model which 

assumes that the drop shape approximates that of an oblate spheroid 

for all deformations and which determines the equilibrium shape by 

considering only the hydrostatic and surface tension stresses. This 

approximation appears to be justified by a more complete analysis by 

Pitter and Pruppacher [Pruppacher and Klett; 1978, p315] which showed 

that dynamic stresses cause only weak to moderate distortions in the 

shape of an oblate spheroid. The aspect ratios and maximum diameters 

given by Green [1975] agree well with the experimental results of 

Pruppacher and Pitter [1971]. 

The analytic expression of Green [1975] may be written, 

N B o = 4 (a/b)1/3 [(a/b)2 - 2 (a/b)1/3 + 1 ] (36) 



where the Bond number, a nondimensional parameter relating the 

pressure on the surface to the surface tension is given by, 

N B o = 6 F / ( K d a) (37) 

a/b = the ratio of the major diameter to the height 

d = a 2/ 3 b 1/ 3 is the equivalent drop diameter, 

and a is the surface tension of water with respect to air. 

Equation (36) is not in a convenient form for the calculation 

of a/b from the Bond number. It may, however, be fitted by the 

expression, 

a/b = 1 + 0.1472 N B o
0 ' 8 (38) 

Values of b/a calculated from equation (38) are shown in Figure 

12 compared with experimental values of Pruppacher and Pitter [1971]. 

This function can be used to relate the drop shape to the force on 

the particle. 

Two effects occur due to the deformation of the shape of the 

drops. The cross sectional area normal to the flow direction 

increases and the drag coefficient increases, Maklin and Ludlam 

[1961]. It is apparent, however, that large departures from a 

spherical form do not take place until the drop diameter has reached 

about 0.5 mm. By this time the Reynolds numbers are already large 

enough that the ratio of the drag coefficients of spherical to 

ellipsoidal particles is not greatly dependent on Reynolds number. 

It thus appears that a simple relation can be used to relate the drag 

coefficient to the value of a/b. 

The relation given in equation (12) for spherical particles can 

thus be used to relate the Davies number to the force and the effects 

of drop deformation included by modifying the relation between the 

calculated Reynolds number and the velocity. 

N r = (1 + 2.5 N K ) / ( b ! UQL+B2 N d'
0- 7 5 +b3 HQ0-5) (39) 

where, bj = 21.786 

b 2 = 2.3836 

bo = 0.5590 
* 31 



DIAMETER ( m ) 

Figure 12. Values of b/a, the ratio of the height to the diameter in the horisontal 

plane from Equation (38) compared with theoretical and experimental values from 

Pruppacher and Pltter [1971]. 



N D = 8 p / r?2 [ (g Ap/6)d3 + E C q d 2] (40) 

and U - U a = ( r? / p d ) N R (a/b) -0.75 (41) 

with a/b = 1 + 0.1472 N B o
u -° 

where N B o = [ g Ap d 2 + 6 E C q d] / a 

0.8 (38) 

(42) 

Figure 13 shows the fall velocities for water drops given by 

Equation (41) compared with the measurements of Gunn and Kinzer 

[1949] and the empirical models of Liu and Orville [1969], Manton and 

Cotton [1979], Shiino [1983], and Liu [1986]. The agreement between 

equation (41) and the experimental results is quite satisfactory at 

the larger drop sizes where the effects of drop shape become 

important. Differences with the Gunn and Kinzer [1949] data are 

evident for the smaller particles, however, Beard and Pruppacher 

[1969] concluded that their results were in error in this region due 

to evaporation. In this size range the drops are spherical and 

equation (41) gives essentially the same results as equation (16) 

which has been compared with the relations given by Beard [1976] for 

the size range up to 20 micro m in Figure 1 and the relations of 

LeClair et al. [1970], Beard and Pruppacher [1969], and Perry [1950] 

in Figure 2. Beard [1976] gives three relationships for water drop 

velocities according to size range. His relationship for the size 

range 19 micro m and 1.07 mm is essentially identical to those of 

LeClair et al. [1970], Beard and Pruppacher [1969], and Perry [1950] 

and between 1.07 mm and 7 mm is essentially identical to the Gunn and 

Kinzer [1949] data. Equation (41) should thus give adequate values 

for water drop velocities in gravitational and electric fields for 

any atmospheric conditions over the size range from 0.5 micro m to 7 

mm. 

3. SEDIMENTATION VELOCITIES AND MOBILITIES 

While the relations given in Section 2 are quite simple they 

involve the calculation of the Davies numbers from the diameters, 

densities, viscosities, and electric fields, and the velocities from 

the Reynolds numbers, densities and viscosities. It is convenient to 

have simple expressions for the sedimentation velocity and mobility 
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Figure 13. Fall velocities for water drops given by Equation (41) compared with the 
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in terms of the particle diameter, particle density, and the ambient 

atmospheric pressure. Such relations are useful, for example, when 

making estimates of the relative importance of electric fields, 

crystal size or habit. The simplicity of the expressions can also 

provide important savings in large computer programs. 

Before using mobilities to relate the velocity to the electric 

field for drop sized particles it is important to determine the 

validity of the concept. For particles in the Stokes' drag regime 

the velocity is proportional to the force and hence to the electric 

field. For larger particles, however, the velocity is proportional 

to the square root of the total force on the particle. The linearity 

of the process thus depends on the fraction of the force provided by 

the electric field. Takahashi [1973] has summarized measured values 

of charge on cloud drops up through precipitation particles. These 

data show that larger values of the charge per unit surface area in 

thunderstorm clouds can be approximately represented by C
a
 = 5 10"

7

 C 
? 

m"'. Gunn [1949] using aircraft measured mean maximum electric field 

strengths of 1.3 10^ V and on once an electric field of 3.4 10^ V 

nf
1

 just before the aircraft was struck. Fitzgerald and Byers [1962] 

measured fields as large as 2.3 10
5

* V m"*, and Holitza and Kasemir 

[1974] as large as 3 10
5

 V m ~
2

. Winn et al. [1974] measured peak 

values in excess of 1 10
5

 V m"
1

 10% of the time and once observed a 

field as large as 4 10^ V m"^. It would thus appear that a typical 

large value for C
q
 E, the product of the charge per unit surface area 

and the electric field, might be about 5 10"^ J m"^ with maximum 

values as large as 2 10"* J m"^. Figure (14) shows the normalized 

mobilities for spherical particles calculated using Equation (12) for 

three values of Cq E. Figure (15) shows the mobilities for planar 

ice crystals with N = 2 calculated using Equation (24) and Figure 

(16) the values for columnar ice crystals using Equation (25) again 

for the same three values of Cq E. It would thus appear that for 

reasonable values of Cq E the use of estimates based on the 

assumption of an electric field independent mobility should provide a 

good estimate of the velocity components produced by the electric 

fields. In cases where the electric and gravitational forces are 

approximately equal and opposite the use of the expressions given in 

Section 2 in terms of the Davies numbers is, of course, advisable. 
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3.1 SPHERES 

The expression for the velocity obtained by fitting equation 

(16) is, 

U - U a = 1 / Z 3 ( ai ApJ1 p k i d 1 1 ) (m/s) (43) 

The values for the coefficients in this expression are given in 

Table 9 

TABLE 9 

i ai Ji "1 ll 
1 3.079E-5 -1.000 0.1522 -2.00 

2 1.548E-3 -0.750 0.2790 -1.25 

3 1.668E-1 -0.500 0.4057 -0.50 

and for the mobility is, 

B = C q / 2 3 ( bi Ap m i p n i d o i ) (m2/V s) (44) 

The values for the coefficients in this expression are given in 

Table 10 . 

TABLE 10 

i bi mi ni °i 
1 3.440E-5 0.0670 0.1522 -1.0 

2 2.810E-3 0.1606 0.2790 -0.25 

3 5.234E-1 0.5051 0.4057 +0.5 

where bp is the particle density (kg/nr*) 

and p is the pressure (bar) , 1 N/m2 = 10'5 bar 

The US Standard Atmosphere [1976] was used to relate the 

temperature and viscosity to the pressure. The calculated 

sedimentation velocity of a 1 mm diameter particle with a density of 

1000 kg/m3 at the 0.4 bar level changed by only 2% between using the 

30 N July and the 75 N January (Cold) US Standard Atmosphere [1966] 

models. 
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Figure (17) shows values of the velocity as a function of the 

particle diameter for six different altitudes and Figure (18) shows 

the corresponding mobility normalized by dividing by C q. Figures 

(19) and (20) show the corresponding relations at three values of 

particle density. 

3.2 PLANE FORM CRYSTALS 

Using the relationships given in Section 2.2 equations can been 

derived for the velocities and mobilities as functions of N, the 

crystal width, and the pressure. 

U - Ua = 1 / Z 3 ( ai 10J
1 W k i p 1 1 ) (m/s) (45) 

The values for the coefficients in this expression are given in 

Table 11 
TABLE 11 

i 

1 

2 
3 

B = C q / Z 3 ( bi 10
mi W n i p o i ) (m2/V s) (46) 

The values for the coefficients in this expression are given in 

Table 12 

TABLE 12 

i 

1 

2 
3 

Plots of the sedimentation velocities of plane form ice 

crystals at the 400 mb level for a range of values of N.are given in 

Figure 21 and the corresponding normalized mobilities are shown in 

Figure 22. Plots of the fall velocities at several different 

uo 

ai Ji 
9.016 6-4.905 N 

1.291 6-3.655 N 

1.064 5-2.405 N 

k, li 

1 - N 0.1522 

1-0.75N 0.2790 

1-0.5 N 0.4057 

0.5944+192.2 N" 7 , 2 

0.4421+151.4 N"7'7 

-585.0+0.9020 N + 7- 7 

-4 -1.0 0.1522 

0 0 0.2790 

-2 +0.5 0.4057 
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Figure 19. Fall velocities of spherical particles at the 400 mb level 
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Figure 21. Fall velocities of plane form ice crystals at the 400 mb 
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Figure 22. Mobilities of plane form ice crystals at the 400 mb level 

for values of density exponent N of 1.8, 2, 2.2, 2.4 and 2.8. 
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altitudes of plane form ice crystals with a density exponent N of 2.2 

are shown in Figure 23 and the corresponding normalized mobilities 

are shown in Figure 24. 

3.3 COLUMNAR ICE CRYSTALS 

Using the relationships given in Section 2.3 equations can be 

derived for the velocities and mobilities as functions of the 

pressure and crystal length as was done for the spherical ice 

particles. 

U - U a = 1 / 2 6 ( a i lOJ1 L k i p 1 1 ) (m/s) (47) 

The values for the coefficients in this expression are given in 

Table 13 

TABLE 13 

i ai Ji *1 h 
1 6 .630 6-5.0 N (1-N) 0. .1522 

2 1 .299 4-3.125N 0.625(1-N) 0. .2790 

3 4 .616 1-1.25 N 0.25 (1-N) 0. .4057 

4 6 .656 -1-2.5 N -0.5 -0.5 N 0. .1522 

5 -2 .361 -4-0.625N -0.875-0.125N 0. ,2790 

6 -7 .423 -8+1.25 N -1.25 +0.25 N 0. ,4057 

B = C q / Z 3 ( bi 10mi L n i p o i ) (m2/V s) (48) 

The values for the coefficients in this expression are given in 

Table 14 

TABLE 14 

i bi mi ni °i 
1 -3, .55+2. .38 N°- 5 -4 -1.0 0.1522 

2 7, .09-4. .13 N°-5 -2 -0.5 0.2790 

3 3, .22+0. .111 N 5 0 +0.5 0.4057 

Plots of the sedimentation velocities of columnar ice crystals 

at the 400 mb level for a range of values of N are given in Figure 25 
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Figure 23. Fall velocities of plane form ice crystals with values of 

density exponent N of 2.2 at 0, 2.5, 5, 7.5, 10, and 14 km. 
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Figure 24. Mobilities of plane form ice crystals with values of 

density exponent N of 2.2 at 0, 2.5, 5, 7.5, 10, and 14 km. 
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Figure 25. Fall velocities of columnar ice crystals at the 400 mb 
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Figure 26. Mobilities of columnar ice crystals at the 400 mb level 

for values of density exponent N of 1.9, 2.1, 2.3, 2.5, 2,7, and 2.9. 
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and the corresponding normalized mobilities are shown in Figure 26. 

Plots of the fall velocities at several different altitudes of 

columnar ice crystals with a density exponent N of 2.2 are shown in 

Figure 27 and the corresponding normalized mobilities are shown in 

Figure 28. 

3.4 CONICAL FORM PARTICLES 

Using the relationships given in Section 2.4 equations for the 

velocities and mobilities can be obtained for the conical form 

particles as functons of the diameter, particle density and 

atmospheric pressure. 

The expression for the velocity obtained from Equation (32) is, 

The values for the coefficients in this expression are given in 

Table 15 

U - U a = 1 / Z 3 ( 8 i A/jJi p k i d 1 1 ) (m/s) (49) 

TABLE 15 

A. 90° CONE-SPHERICAL SEGMENT 

Ji 

-1.00 

ki li 

1 1.252E-04 -1.00 0.1522 -2.00 

2 -5.561E-03 -0.75 0.2790 -1.25 

3 5.522E-01 -0.50 0.4507 -0.50 

B. 70° CONE-SPHERICAL SEGMENT 

1 1.658E-04 -1.00 0.1522 -2.00 

2 -7.647E-03 -0.75 0.2790 -1.25 

3 4.870E-01 -0.50 0.4507 -0.50 

C. 90° CONE-HEMISPHERE 

1 1.021E-04 -1.00 0.1522 -2.00 

2 -4.413E-03 -0.75 0.2790 -1.25 

3 3.925E-01 -0.50 0.4507 -0.50 

D. 90° TEARDROP 

1 5.051E-05 -1.00 0.1522 -2.00 

2 -1.184E-03 -0.75 0.2790 -1.25 

3 2.362E-01 -0.50 0.4507 -0.50 
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density exponent N of 2.3 at 0, 2.5, 5, 7.5, 10, and 14 km. 
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and for the mobility is, 

B = C q / Z 3 ( bi Ap m i p n i d o i ) (m2/V s) (50) 

The values for the coefficients in this expression are given in 

Table 16 

TABLE 16 

A. 90° CONE -SPHERICAL SEGMENT 

i bi mi ni oi 

1 1.331E-04 0.0252 0.1473 -1.00 

2 -1.122E-02 0.2716 0.2544 -0.25 

3 1,256E+00 0,4909 0.3980 0.50 

B. 70' CONE -SPHERICAL SEGMENT 

1 1.733E-04 0.0595 0.1702 -1.00 

2 -1.353E-02 0.3155 0.2885 -0.25 

3 1.286E+00 0.5010 0.4019 0.50 

C. 90' CONE-HEMISPHERE 

1 1.328E-04 0.0365 0.1566 -1.00 

2 -1.081E-02 0.2844 0.2682 -0.25 

3 1.150E+00 0.4938 0.3990 0.50 

D. 90° TEARDROP 

1 7.417E-05 0.0185 0.1517 -1.00 

2 -3.915E-03 0.2836 0.2591 -0.25 

3 6.883E-01 0.4955 0.4005 0.50 

Plots of the sedimentation velocities of four conical forms of 

particles at a pressure of 400 mb with a density of 800 kg/m 3 are 

given in Figure 29 and the corresponding normalized mobilities are 

shown in Figure 30. 

3.5 WATER DROPS AND DROPLETS 

Using the relationships given in Section 2.5 equations have 

been derived for the velocities and mobilities of water drops as a 

function of the equivalent diameter and the atmospheric pressure. It 

was found necessary to use a four term series for each parameter 
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because of the large changes in drag coefficient caused by drop 

distortion for drops larger than about 0.5 mm. 

U - U a « 1 / Z 4 ( a i lOJ1 L k i p 1 1 ) (m/s) (51) 

The values for the coefficients in this expression are given in 

Table 17 

TABLE 17 

i ai Ji h 
1 3, .056 -8 -2.00 0. .1323 

2 8. .493 -6 -1.25 0 . .2699 

3 5. .462 -3 -0.50 0. .4137 

4 5. .284 0 +1.00 0 . .4760 

B = C q / S 4 ( b1 i0mi d n i p o i ) (m2/V s) (52) 

The values for the coefficients in this expression are given in 

Table 18 

TABLE 18 

i »1 mi ni °i 
1 5.746 -5 -1.0 0.1522 

2 7.160 -3 -0.25 0.1604 

3 1.806 +1 +0.5 0.4199 

4 1.664 +4 +2.0 0.4733 

Plots of the sedimentation velocities of water drops are given 

in Figure 31 and the corresponding normalized mobilities are shown in 

Figure 32. 

4. CONCLUSIONS 

Section 2 of this paper gives general equations for the 

Reynolds number of a variety of types of ice crystals and water drops 

in terms of the Davies, Bond, and Knudsen numbers. The equations are 

in terms of the basic physical parameters of the system and are valid 

for calculating velocities in gravitational and electric fields over 
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a very wide range of sizes and atmospheric conditions. The equations 

are asymptotically matched at the bottom and top of the size 

spectrum, a useful attribute when checking large computer codes. 

A numerical system for specifying the dimensional properties of 

ice crystals has been introduced as an adjunct to more subjective 

classification schemes. This allows the observed dimensional 

statistical properties of an ensemble of particles to be related to 

the statistical properties dependent on transport. 

It is important to realize that particles in the atmosphere 

come in a broad spectrum of sizes, forms, and densities. Riming and 

aggregation greatly increase the variability in the transport 

velocities. When one is dealing with properties of the ensemble such 

as the mass density, the conductivity, or the energy, for example, it 

is necessary to integrate over statistical distributions because the 

variation about a mean value is usually so large. The expressions in 

this paper have been developed with this in mind. 

Within the limits imposed by such variables as particle 

density, which have large deviations, the accuracy of velocities 

appear to be within about 10% over the entire range of sizes of 

interest when compared with such data as are available. Particular 

attention has been given to ensuring that at the lower end of the 

size distribution values tend to reasonable limits. Because of the 

behavior of the drag coefficient as size decreases negative 

velocities are a common feature of empirical expressions for particle 

velocities expressed as power series in a length parameter. Such an 

artifact can have serious consequences in a computer code. 

Conical form ice crystals present special problems for the 

development of simple equations of motion because of the varying 

aspects they present and the oscillatory motions they exhibit. The 

relations given here should at least allow reasonable estimates to be 

made of the range of variability likely to be produced by shape 

variations 

Section 3 gives simple equations in a uniform format for the 

terminal velocity and normalized mobility for a wide range of sizes 

and habits of ice srystals, and water drops in terms of the 

atmospheric pressure and an appropriate size parameter. These 

equations are simpler to use for many purposes and have comparable 

accuracies and ranges of application with the more basic formulas 

given in Section 2. 
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APPENDIX 

LIST OF SYMBOLS. 

a/b = the ratio of the major diameter to the height of a water drop. 

AQ is the cross sectional area of a crystal in a plane normal to the 

motion, (nr) 

AQ is the cross sectional area of a circular disc of diameter W, 

An = 7T W 2 / 4 (m 2) 

A s is the total surface area of a crystal (nr) 

B is the mobility of a particle = AU / E (m V" 1 s~ 2) 

Cj is the drag coefficient. 

C d = N D / N R 2 

Cq is the charge per unit area on a particle (C/nr) 

C q = q / A s (C/m 2) 

d is the particle diameter (m) 

For crystals of columnar form d is the length along the a-axis. 

For water drops of ellipsoidal shape with major diameter a and height 

b the equivalent drop diameter is, 

d = a 2 / 3 b 1 / 3 (m) 

d 0 is the diameter of a sphere of mass m 0 and density b.pQ. c 

The value assumed here is, d 0 = 1 10" 3 (m) 

D is the drag force, (N) 

E is the electric field. (V/m) 

F is the force on the particle (N) p 

g is the gravitational acceleration (m s~') 

1 is the mean free path (m) 

Using the effective collision diameter of mean air from the US 

Standard Atmosphere [1976] gives, 

1 = 2.33E-10 T / p (m) 

L is the length of a columnar form crystal along the c-axis. (m) 

m is the mass of a particle, (kg) 

m ( jt Ap 0 / 6 ) d 0
3
 (kg) o 

with the values adopted here for Ap Q and d 0 

m 0 = 5.236 10'
1 3
 (kg) 

N is the exponent of the density 

for particles of plane form N = log(m d 0)/log(m 0 W) 

for particles of columnar form N = log(m d 0)/log(m 0 L) 

Ng 0 the Bond number is a nondimensional parameter relating the 

pressure on the surface to the surface tension, 

N ß 0 = 6 F / ( * d a) 
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Nq is the Davies or Best number, a nondimensional parameter related 

to the force on the parti cle, N n = ( 8 p / * r?2 ) F 

N« is the Knudsen number, the ratio of the mean free path to the 

particle diameter, N« = 1 / d 

N r is the Reynolds number N R = ( p d / 77 ) ( U - U a ) 

p is the atmospheric pressure (bar) 

1 N/m2 = 10"5 bar 

q is the charge on the particle, (C) 

t is the time, (s) 

T is the air temperature (K) 

U is the particle velocity (m/s) 

U a is the air velocity (m/s) 

W is the maximum width of a plane form crystal (m) 

X is the modified Davies number for a column X = ( 2 p d /(L r?2) ) F 

r\ is the dynamic viscosity of air (kg/m s) 
•j 

p is the air density (kg nf J) 

hp is the difference between the particle and air density (kg/m3) 

a is the surface tension of water against air (N/m) 

a = 0.1165-1.492 10"4 T for 265 K < T < 303 K (N/m) 
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