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GLOBAL PROPERTIES AND LOCAL STRUCTURE OF THE WEATHER ATTRACTOR 
OVER WESTERN EUROPE 

by 

Christian L. Keppenne and C. Nicolis 

Abstract 

An analysis of the West European climate over short time scales 
is performed by means of time series of the 500 mb geopotential height at 
nine different meteorological stations. The characterization of the 
dynamics is based on the computation of the dimensions of manifolds on 
which the systems evolve. For this purpose several embedding techniques 
are used and compared. All methods give similar results, namely, that the 
data in different stations seem to derive from a single deterministic 
dynamical system spanning a relatively low dimensional manifold embedded 
in a low dimensional phase space. The estimation of the most significant 
Lyapounov exponents of the global system gives evidence that the nature 
of the dynamics is chaotic. The average e-folding time scale of the 
"growth of errors" associated with divergence of nearby initial 
conditions is found to be a few weeks. A more involved analysis reveals 
that the western European weather attractor is highly nonuniform 
expressing the fact that the stability properties of the trajectories 
depend on their position on the manifold. It is found that the 
predictability time in the regions of the attractor which correspond to 
low geopotential heights is slightly above one month decreasing to about 
two weeks for high geopotential values. 

Résumé 

On analyse le climat de l'Europe occidentale sur des échelles 
courtes à l'aide des séries temporelles de géopotentiel de 500 mb 
prélevées à neuf stations météorologiques différentes. Afin d'identifier 
la nature de la dynamique, la dimension des variétés sur lesquelles le 
système évolue dans l'espace des phases est évaluée. Plusieurs techniques 
de reconstruction sont utilisées et leurs résultats comparés. Il en 
ressort que les données des 'différentes stations semblent dériver d'un 
seul et même système dynamique déterministe possédant un attracteur de 
faible dimension plongé dans un espace des phases à faible dimension. Les 
exposants de Lyapounov l'es plus significatifs sont estimés : leurs 
valeurs suggèrent que la nature de la dynamique est chaotique. 
L'évaluation du taux de croissance exponentielle des erreurs suite à la 
sensibilité aux conditions initiales conduit à un temps de prévisibilité 
moyenne de quelques semaines. Une analyse plus détaillée montre que 
1'attracteur du temps Européen est hautement non-uniforme en ce sens que 
les propriétés de stabilité des trajectoires sont différentes, suivant 
leur position sur la variété. Il apparaît que le temps de prévisibilité 
dans les régions de 1'attracteur correspondant à des faibles valeurs de 
géopotentiel est légèrement supérieur à un mois et diminue à environ deux 
semaines pour les valeurs élevées de géopotentiel. 



Samenvatting 

Het klimaat van West-Europa wordt geanalyseerd op korte 
tijdschalen met behulp van tijdreeksen van de geopotentiele hoogte van 
500 mb in negen verschillende meteorologische stations. Teneinde de aard 
van de dynamica te identificeren, wordt de dimensie der variëteiten 
waarop het systeem - in . de fase-ruimte evolueert, geschat. Meerdere 
reconstructietechnieken worden gebruikt en hun resultaten vergeleken. 
Hieruit blijkt dat de gegevens van de verschillende stations van één-
zelfde deterministisch dynamisch systeem afgeleid schijnen te zijn met 
een attractor met kleine dimensie, gedompeld in een faseruimte met kleine 
dimensie. De belangrijkste exponenten van Lyapounov worden gechat : hun 
waarden suggeren dat de aard van de dynamica chaotisch is. De evaluatie 
van het exponentiële groeipercentage der fouten als gevolg van de 
gevoeligheid bij de beginsituatie leidt tot een gemiddelde voorspelbaar-
heidstermijn van enkele weken. Een meer gedetailleerde analyse toont aan 
dat de attractor van het Europees klimaat in hoge mate niet uniform is, 
in die zin dat de stabiliteitseigenschappen van de banen verschillend 
zijn, volgens hun positie op de variëteit. Het blijkt dat de voorspel-
baarheidstermijn in de attractorgebieden, overeenstemmend met zwakke 
geopotentiële waarden, iets meer dan een maand bedraagt en tot ongeveer 
twee weken herleid wordt, voor hógê gêöpötêntiélê waarden. 

Zusammenfassung 

Das westeuropäische Klima wird auf kurze Zeitskalen mit Hilfe 
von Zeitreihen der 500 mb Geopotentialhöhe in neun verschiedenen 
Wetterstationen analysiert. Zur Identifikation der Natur der Dynamik wird 
die Dimension der Varietäten bestimmt, worauf das System im Phasenraum 
beruht. Mehrere Rekonstruktiontechniken werden verwendet und ihre 
Resultate verglichen. Daraus zeigt sich, dass die Daten der verschiedenen 
Stationen von einem gleichen deterministischen, dynamischen System 
abgeleitet zu sein scheinen, mit einem Attraktor von geringer Dimension 
in einem Phasenraum mit geringer Dimension. Die wichtigsten Exponenten 
von Lyapounov werden geschätzt die Werte suggerieren eine chaotische 
Natur der Dynamik. Die Evaluation der exponentiellen Steigerungsrate der 
Fehler infolge der Empfindlichkeit der Anfangssituation führt zu einem 
mittleren Vorhersagbarkeitstermin von einigen Wochen. Eine detaillierte 
Analyse zeigt, dass der europäische Klima - Attraktor nicht hochgradig 
uniform ist, im Sinne, dass die Stabilitätseigenschaften der Bahnen 
unterschiedlich sind. Es zeigt sich, dass der Vorhersagbarkeitstermin in 
den Attraktorgebieten, übereinstimmend mit schwachen Geopotenitalwerten, 
etwas mehr als ein Monat ist, und sich auf ungefähr zwei Wochen 
verringert für höhere geopotentielle Werte. 
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1. INTRODUCTION 

Since weather and climate apparently have a very complicated 
distribution in time and space, the usual approach for improving their 
predictability is to introduce increasingly more variables and equations 
in the very complex numerical models used to simulate atmospheric 
dynamics. A typical example is found in weather forecasting where the 
complexity of the models tends to grow commensurately with the capacity 
of supercomputers. Unfortunately, despite impressive progress in short 
term forecasting this has not resulted in commensurate improvements of 
the reliability of forecasts on a time scale exceeding a few days. 

Recent developments of the theory of dynamical systems have 
provided new techniques by which important qualitative information can be 
extracted from experimental time series. This suggests that it should now 
be possible to learn more about the underlying dynamics of weather and 
climate and to find to what extent they are predictable, independent of 
any modelling. The steps of such an analysis can be summarized as 
follows. 

First, one has to gain evidence that the system shows the 
typical signs of a dissipative deterministic dynamics, that is to say, 
that it evolves on an attracting manifold of zero volume in some finite-
dimensional phase space. Having ascertained this one may proceed with the 
determination of some of its qualitative properties such as the dimension 
of the manifold itself and of phase space in which it is embedded, and 
the Lyapounov exponents. Basically, the dimension of the attracting 
manifold measures to what extent its dynamics fills the embedding phase 
space, whe,reas the dimension of phase space provides an estimate of the 
smallest number of ordinary differential equations sufficient to describe 
the time evolution of the dynamical system. The Lyapounov exponents are 
related to the average rates of divergence of nearby trajectories in 
phase space and measure therefore how unpredictable the system's, 
evolution is. 
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Although the new developments and concepts mentioned above have 
found most of their applications in theoretical studies of iterative maps 
and abstract model systems, they have also provided important insights in 
the analysis of results of laboratory experiments. Recently, Nicolis and 
Nicolis (1984, 1985) applied these ideas in the context of Geophysics by 

18 
analyzing time series of SO isotope record of deep sea cores. They 
concluded in the existence of a low (about three) dimensional attractor 
and a predictability time of about 30 Kyrs. Subsequently, Fraedrich 
(1986, 1987), Essex et al. (1987), Hense (1987) and Tsonis and Eisner 
(1988) analyzed time series of medium and short time scales and have 
likewise concluded about the existence of low-dimensional attrators. 

Our goal in the present work is to carry out a dynamical 
systems analysis of atmospheric variability over the entire west European 
space. For this purpose we analyze geopotential time series using data 
from a number of stations. 

Since we only have a limited number of data points in our 
disposal, we take special care to control at each stage of the analysis 
the applicability of the various algorithms (Grassberger, 1986; Nicolis 
and Nicolis, 1987). For instance, we apply several phase space 
reconstruction techniques to compute the dimensions of attracting 
manifolds and of embedding spaces; we also test each of the techniques 
used on the time series generated by some known mathematical models, 
limited to a number of points comparable to our data points. We have 
obtained very similar results with all methods, although we found that 
the one based on the reconstruction of a phase space spanned by empirical 
orthogonal functions diminished the error margins of our dimension 
estimates. In addition, we have found it possible to estimate with 
relative accuracy the largest Lyapounov exponents for the west European 
system as a whole. These results, and their corrolaries emanating from 
the local study of the rates of divergence of nearby trajectories on the 
attractor, are entirely new in the context of atmospheric sciences. They 
have allowed us to extract additional information about the topology of 
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the weather attractor and to estimate a characteristic predictability 
time scale for the short term dynamics of our system. 

The work is organized as follows. In Section 2 we present the 
data, comment on the adequacy of the sampling time and of the total 
length of the series, and carry out traditional spectral analysis. The 
results show rather striking similarities between the different time 
series. In Section 3 we set up an appropriate phase' space within which 
the dynamics can be followed. In Section 4 we produce evidence that the 
phase space trajectories evolve on a low-dimensional manifold, the 
attractor. The dimensionality of the latter is evaluated and found to be 
similar for all locations. This corroborates the idea that individual 
time series are part of a single dynamical system. In Section 5 it is 
shown that the motion on the attractor displays sensitivity to initial 
conditions. The Lyapounov exponents describing this sensitivity are 
evaluated and found to be state-dependent, indicating that the 
predictability time should depend on the prevailing weather pattern. The 
implications of the results are briefly discussed in Section 6. 

2. THE DATA AND THEIR SPECTRAL PROPERTIES 

We were supplied with time series of the daily 500 mb 
geopotential record at 9 different European stations over a period of 24 
years beginning January 1st, 1961. The precision was the same for all 
series, the geopotential height being rounded to the nearest decameter. 
Two stations (Marseille and Rome), are situated in the Mediterranean sea, 
two (Lisbon and Bordeaux) are on the Atlantic coast, one (Stockholm) is 
in Scandinavia, another (Reykjavik) in Iceland, and the others (De Bilt, 
London and Paris) surround the Channel and the North sea area. Figure 1 
depicts the time dependence of the 500 mb geopotential height for the 
Marseille station. 
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Fig. 1,- Time evolution of the 500 mb geopotential height at Marseille. 



Before we proceed to the technical aspects of our work, we wish 
to comment on a number of qualitative issues concerning the very 
objective followed in the present paper, in connection with the data we 
have at our disposal. Two particularly important points need to be 
considered : the inherent discretization of the data with a sampling time 
of one day; and the total number of data points (about 9000 for each 
station) or alternatively, the number of annual cycles (24 in our case) 
retained. 

As stated in the Introduction, our objective is "to carry out a 
dynamical systems analysis of atmospheric variability over the entire 
west European space". Such a goal seems at first sight far too ambitious; 
some comments aiming to sharpen it somewhat.are therefore in order. 

Atmospheric and climate dynamics involve a bewildering variety 
of phenomena in a wide range of time and space scales (Hasselmann, 1976; 
Lorenz, 1987). In principle all these phenomena are included in the 
fundamental equations of conservation of macroscopic physics, 
supplemented with adequate thermodynamic relations and specific laws 
pertaining to the light-matter interaction. It is not our aim here to 
capture this entire dynamics in all its. details. On the one side such 
processes as the formation of a droplet of water or of a cumulus cloud, 
and the fine details of fully developed turbulence are below the one-day 
resolution of our data; and on the other side the effect of such 
phenomena as the dynamics of ice sheets or of the sun's 22-year cycle are 
beyond the 24-year range spanned by our data. What we want to see 
instead, is whether there exists an autonomous deterministic dynamics 
accounting for the main features of the record, in the intermediate range 
between a day and a few decades, which is largely independent of the 
phenomena occurring on both much shorter and much longer scales. 

the possibility of a drastic reduction of the description of a 
complex system envisioned by the above argument is by no means new. In 
Physics for instance, it is at the basis of the validity of such well-
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accepted laws as macroscopic hydrodynamics and chemical kinetics. As well 
known the passage between the dynamics at the molecular level and these 
macroscopic laws rests on the fact (Belescu, 1975) that the quantities 
obeying to macroscopic laws are averages of microscopic quantities; the 
averaging being taken over a statistical ensemble or over a time interval 
much longer than the characteristic times of the dynamics of a simple 
molecule, such as the duration of an intermolecular collision 

-13 
(10 sec). Typical hydrodynamic or chemical "sampling" times are there-
fore of the order of the millisecond. It has been pointed out (Caputo et 
al. , 1986; Atmanspacher et al., 1988) that a valuable criterion for 
choosing this time is to have about ten data points into a correlation 
period of the process, the latter being determined by an autocorrelation 
function analysis. Too few data points per correlation time yield a 
spurious uncorrelated (stochastic) process. As for the upper limit of 
resolution a practical indication is to avoid very small differences in 
successive signal amplitudes which could possibly be blurred by the 
counting statistics. Regarding the total length of the time series, noisy 
data sets of 500 points or so have been shown to be sufficient for the 
approximate estimate of the correlation dimension of chaotic attractors, 
if the latter is not very large (Abraham et al., 1986). For more detailed 
information such as the spectrum of the Lyapounov exponents or higher 
order dimensions more data are needed. 

Let us now have a critical look at our data set in the light of 
the above remarks. We first comment on the resolution of one day. It has 
been pointed out (Ghil and Childress, 1987, Ghil, 1987) that the typical 
life cycle of a traveling cyclone in mid-latitudes is in the 5-7 days 
range, and that the characteristic relaxation time of vorticity at the 
equivalent barotropic level, in mid troposphere is of the order of 10 
days. Clearly the sampling time of the 500 mb geopotential, a quantity 
directly related to the above processes, should be significantly less. 
This brings us to the one day scale (the highest resolution of the 
geopotential record available is 1/2 day). For an additional confirmation 
of the adequacy of this sampling we must turn to the correlation function 
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and spectral analysis of our data. This will be reported in detail later 
on in this section. Suffice it to state here that a reasonable estimate 
of the correlation period appears to be 9 to 1'5 days (depending on the 
station considered), in view of which the one day sampling time appears 
again to be quite reasonable. 

Turning next to the total length of the time series, it should 
first be mentioned that no daily record of geopotential spanning an 
appreciably longer period of time is currently available. More to the 
point if, as pointed out earlier, A«500 points are sufficient to estimate 
low correlation dimensions (Abraham et al. , 1986) it is not unreasonable 
to expect that with 9000 data points that we have at our disposal we can 
go much further in the analysis of the subsequent sections. 

Despite the above rather reassuring remarks, in order to 
control as much as possible any spurious effects that might still subsist 
we will constantly compare all results of data analysis with those of 
mathematical models whose dynamics has been extensively studied. Those 
"reference" systems are (a), the Lorenz and Rossler systems (Lorenz, 
1963; Rossler, 1979), known to exhibit chaotic dynamics; (b) , simple 
periodic signals; and (c), a numerical pseudo-random number generator. In 
each case the time series extracted from these models is chosen to have 
the same number of points, the same accuracy and the same mean number of 
orbital periods on the attractor as the geopotential signal (for which 
the mean orbital period corresponds to the annual cycle). 

For subsequent reference we give below the evolution equations 
of the Rossler and Lorenz models and the corresponding parameter values 
for which both models give rise to a chaotic attractor : 

Rossler model 

x- - (y + z) 
y = x + y (1) 
z = b + z(x - c) 
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with a - 0.15, b=0.20, c - 10.0 

Lorenz model 

x = cr(y - x) 
y = x(r - z)- y 
z = xy - bz 

(2) 

with a = 16.0, r = 45.92, b = 4.0 

Let us come back to the geopotential signal. In order to get 
some feeling about some general features of the signals we shall perforin 
in this section traditional spectral and correlation function analysis, 
postponing a more dynamical approach until Section 3. 

A. Power spectra 

The most familiar method of data analysis is the spectral 
method. It is well known that spectral estimates obtained by the standard 
FFT algorithm fluctuate with an exponential distribution about the 
theoretical sample spectrum (square of the modulus of the Fourier 
transform). Therefore it is more difficult to observe frequency peaks in 
the corresponding spectra than in those obtained using a smoothing arte-
fact because peaks are masked by uncontrolled large amplitude 
oscillations. 

The computation of unsmoothed spectra involves consideration of 
all autocorrelation coefficients (Wax, 1954) 

N-k 

(X^) being the time series and N the total length. Smoothed spectra are 
deduced from the set of the first m covariances whereby the width m of 
the window satisfies m < N. As the bandwidth of the resulting spectrum is 
proportional to 1/m, the spectral estimates are reliable only over a 

N (3) 

frequency separation larger than the bandwidth. 
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We have computed the smoothed spectra using the Tukey window 
and a width of 6 months. In this procedure the correlation cefficients i/̂  
are weighted by 

1 k W k = - (1 + COS 7T - ) (4) 

As expected the spectra of the nine signals display a very 
clear peak corresponding to the annual cycle. All are predominently red 
and tend to become white beyond a cut off frequency of about 0.4 cycles 
per day. The spatial average of all signals has a power spectrum which is 
qualitatively similar (same peak and general shape) to that of a single 
time series (compare Fig. ~2a and 2b). 

Notice that from the above analysis alone one cannot have a 
clearcut information on the underlying dynamics. Namely, it is impossible 
to decide whether one deals with noisy periodic - or quasiperiodic-
signals or whether the dynamics are chaotic, experiencing sensitivity to 
initial conditions (Brock and Chamberlain, 1984). For instance, truncated 
to the same number of bits, the variable x of Rossler's model (eq. (1)) 
has a continuous spectrum similar to that desplayed in Fig. 2. In 
addition it is well known that second or higher order autoregressive 
models can also produce similar behavior. 

As a matter of fact a simple sinusoid of one year period will 
give the appearence of a continuous spectrum centered on a well-defined 
peak merely because of discretization. Naturally, on increasing the 
sampling precision this latter spectrum .will tend to a line spectrum, 
whereas the spectrum will remain continuous for deterministic chaos or 
random noise.. Nevertheless, these remarks show how cautious one has to be 
in treating data in which the sampling precision has been specified once 
for all. Clearly, in order to extract the dynamics from such data a 
confrontation of results of different methods of analysis becomes 
necessary. 
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Fig. 2.- (a) Smoothed power spectrum of the daily 500 mb geopotential at 
Marseille (b) smoothed spectrum obtained from spatial averaging 
of the signal at nine stations. 
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B. Time correlation functions 

The normalized time correlation ty of a discrete signal X, 
constituted of n samples X^ equally spaced in time, is defined as 

N-m 
N-m l l+m 

*k N~ ( 5 ) 
1 2 
N i=l 1 

It has the following properties. Except for a proportionality factor, it 
is the inverse Fourier transform of the sample spectrum of the signal 
itself. It oscillates indefinitely for a periodic or quasi-periodic 
signal whereas for a wide class of Markov processes and of deterministic 
chaotic attractors it goes through zero at some finite time or tends 
asymptotically to zero as t On the other hand, for Gaussian white 
noise the zero is immediately attained. We compared the time correlation 
function of our data sets with those obtained from the discretization of 
Rossler chaos, a sum of two sines and a pseudorandom signal. 

The correlation functions of our signals tend to zero in a 
finite time and the same tendency is exhibited by both the rounded off 
Rossler chaos (eq.(2)) and a truncated sinusoid though, as mentioned 
above, in the latter case the properties depend critically on the 
resolution adopted. In Figs. 3a and 3b the time correlation function 
corresponding to the station of Marseille is compared to the one obtained 
by the spatial average of all signals. Note that a qualitative difference 
of V between the individual signals is that the more southerly a station 
is situated, the faster the amplitude of the oscillations of the 
correlation function decrease. This suggests that the periodic part of 
the dynamics is less pronounced for the southern stations. 

As pointed out earlier in this section the correlation time -
the time that must elapse between two samplings to obtain statistical 
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independence - is an important characteristic of our system $ In a 
multivariate process likely to involve a variety of characteristic time 
scales, such as the process studied in the present work, it is not easy 
to estimate such a time unambiguously. Nevertheless one can argue that 
the time at which the first inflexion point is observed in the graph of 
the autocorrelation function versus time provides a valuable indication. 
Indeed, using the standard properties of correlation functions one easily 
sees that (Balescu, 1975) 

H> (r) = < X(0) X (r) > 

. - - < X (0) X (r) > (6) 

It follows that VKO vanishes (i.e. rp(r) has an inflexion point) when the 
rate of change of X becomes incorrelated from its initial value. 
Intuitively, this conclusion is appealing since the rate of change of a 
variable is a more significant indication of the dynamics that the 
variable itself. 

Inspection of the short time behavior of the autocorrelation 
function of our signal shows that the first zero of \}> occurs in 9 to 15 
days, depending on the station. This scale turns out to be in accordance 
with the characteristic time scales likely to be related to our variable 
alluded in the beginning of this section. We can therefore infer from 
these arguments that a reasonable value of the correlation time is in 
this same range. 

In summary, although it is premature to draw general 
conclusions about the nature of the underlying dynamics we are, 
nevertheless able to make the following two statements : 

- Neither of the series displays the signs of a completely 
random behavior, since none of the correlation functions falls to zero 
within a very short time. However, it is not clear as yet whether the 
dynamics is periodic, quasi periodic, first or higher order Markovian, or 
exhibits sensitivity to initial conditions. 
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- There seems to be a single overall dynamics for all stations, 
since results corresponding to individual signals are similar. 

3. PHASE SPACE RECONSTRUCTION : TIME DELAYS AND PRINCIPAL COMPONENT 
ANALYSIS 

Our next objective is to go beyond the limited view afforded by 
spectral analysis and reconstruct some of the salient features of the 
dynamics. To achieve this we need to embed the evolution of our system in 
phase space, the space spanned by the full set of its relevant variables. 
Ordinarily, in mathematical modelling or in laboratory experiments the 
state variables are known in advance since one deals with a well-defined 
set of evolution laws. However, in a natural system this full information 
io laoking : for inctanoo, in tho oyotom of intcrcot in the prcacnt paper 
all we have at our disposal is the geopotential time series at a given 
location, 

W ' W W (7) 

whe re t^, is the initial time (January 1, 1961) and A = t2"tl = 

t,,-t„ , is the sampling time (1 day). N N-l 

It has been shown by Takens (1981) that from a single time 
series one can actually reconstruct properly a phase space, by 
considering (7) as well as the hierarchy of lagged variables 

X2(t.): Xo(t1+r), Xo(t2+r) ...., X ^ + r ) 

Xn(ti): XQ(t1+(n-l) r), XQ(t2+(n-l)r) XQ(tN+(n-l)r) (8) 

Indeed if r is properly chosen the variables X^, . . . ,• X^ will typically 
be independent, and this is all one needs to define a phase space. 
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Owing to the limitations related to sampling, r will necessary 
be an integer multiple of A, r = mA, If the last measurement at our 
disposal is X (t„), then clearly, the variable X has at most N = o N J n T 
N-(n-l)m data points. In what follows therefore we shall limit all other 
variables to the same number of data. At this stage of development we 
have no means to specify the value of n. What is achieved is merely the 
possibility to' plot, for increasingly large n's thé phase space 
trajectory of the system and draw some preliminary conclusions about its 
complexity. This may also be useful for determining a range of values of 
the lag T allowing an optimal visualization of the dynamics. 

Fig. 4 gives a 3-dimensional view of the trajectory for the 
Marseille time series (Fig. 1). We see that the portrait fills the entire 
space suggesting that the system lives in a higher than three-
dimensional phase space. 

Another method of reconstruction of phase space is closely 
connected to a familiar question in geosciences, namely how to determine 
the directions of maximum variability. This is usually achieved by the 
so-called "principal component" or "empirical orthogonal function" (EOF) 
analysis (see for instance, North et al., 1982). More precisely EOFs are 
just the eigenvectors of the covariance matrix, i.e. of the matrix of 
quadratic averages (in the present context "averaging" is a mean over all 
data points). They therefore• describe variables that are statistically 
independent up to third or higher order correlations. Clearly the EOFs 
corresponding to the largest eigenvalues will correspond to the 
directions of maximum variability. 

If the variables are reconstituted from the time series of a 
single variable as in (7), the covariance matrix will be of the form 

NT 
*ij - S ; KF X

 xo ( tK + ^ * J O ( 9 ) 

. i,j = 0 n-1 
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In the following we will denote the eigenvalues of the 
covariance matrix as A^ > X^ >...> and the corresponding eigenvectors 
by c^.-.-.c^. The space spanned by these latter vectors will be referred 
to as singular space (Broomhead and King 1986). Embedding our data set 
into this space amounts therefore to switching from the state vector X = 
{X, X } to a state vector. 1 n 

Y = X.c (10) 

where c is an nxn matrix whose columns are the eigenvectors c.. 

In addition to providing a natural way to visualize the 
dynamics, EOFS may also be of interest in the following respect. It may 
happen (as it will be the case in the problem under consideration) that 
among the n eigenvalues A^ there exists a limited number of distinct ones 
whose magnitude is appreciable, whereas the others are all close to zero. 
If so this would be a strong indication that the dynamics contains a 
"deterministic" part in the subspace of the distinct eigenmodes, whereas 
the other modes will play the role of "noise". It is, however, not 
possible to distinguish on this sole basis between noise of random origin 
or a noise related to an underlying chaotic dynamics. For instance, North 
et al. (1982) show that when the difference between two nearby eigen-
values of the covariance matrix is comparable to thte sampling error of 
the corresponding true EOFs, the sampled EOFs can form a degenerate 
multiplet. In such a case, the components of the multiplet's members will 
be some linear combination of those of the true EOFs associated to the 
geopotential field. This is what is referred to as mixing. The same 
authors also propose the following simple rule of thumb to determine 
whether effective degeneracy, is susceptible to occur. If the difference 

1/2 
is about or less than Aj(2/N^,) , the components of c^ and 

are likely to mix. Thus, if in this case we truncate the dynamics by 
retaining a j-dimensional projection of the trajectory onto the subspace 
spanned by the first j EOFs, we will loose some information over the time 
scale associated to A. and retain information over the time scale J corresponding to However, we may still truncate to the first j+1 
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EOFs if none of them mixes with some EOF of higher order. In short, it is 
generally impossible to estimate the dimension of the attractor on the 
sole basis of singular space analysis. 

Another problem arising in the use of EOF's for the 
reconstruction of phase space pertains to the choice of the width of the 
window (r x n) . If the latter is excessively small it can result in an 
underestimation of the number of singular values above the noise floor 
and a set of EOFs containing information solely on the dynamics over the 
shorter time scales. After several trials, we found that the best choice 
of the width was about 6 months for a 18 x 18 covariance matrix which 
corresponds to a lag r - 10 days. This is consistent with the requirement 
(see for instance, (Mayer-Kress, 1986) that the optimal range of lag r, 
both for visualization of the attractor and for the applicability of the 
various algorithms, is given by the correlation time of the signal. 

In Fig. 5 we represent the first 6 eigenvalues and the 
corresponding EOFs of a 18 by 18 covariance matrix for the 500 mb height 
at one station. We can see that mixing appears after the first 3 vectors. 
The signals corresponding to the other stations, the spatial average of 
all 9 time series as well as the signal obtained by concatenating the 
individual series give comparable results. For comparison we show in Fig. 
6 the first 6 eigenvalues and eigenvectors of a pseudo-random signal. The 
difference with Fig. 5 is striking : mixing is immediate as the eigen-
values are all of comparable size. This indicates that all space 
directions spanned by the EOFs are explored to the same extent by the 
dynamics. 

The preliminary analysis performed in the preceding section 
suggests that all nine data sets describe the same kind of dynamics, and 
in the next section we shall produce further evidence corroborating this 
idea. Assuming then that this view is legitimate, we may use a third 
alternative for the phase space reconstruction of our system based on the 
"multichannel" variables corresponding to the different % spatial 
locations, instead of the time lag variables of a single location. In the 
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Fig. 5.- Eigenvalues (white blocks) and eigenvectors (hatched blocks) of 
a 18 by 18 covariance matrix for the signal at Marseille. The 
vertical axis has been shifted upwards by 0.5. 

23 



Fig. 6.- As in Fig. 5 but for a pseudo-random signal. 
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present case the number of different space locations is limited to 9. 
Since we do not know offhand the phase space dimensionality we will use a 
"mixed" representation in which each spatial channel is enlarged to a 
number of lagged variables obtained from the original time series. As it 
will turn out these approaches will yield similar results. 

4. DIMENSIONS OF WEATHER ATTRACTOR AND OF EMBEDDING PHASE SPACE 

A. Methods 

Having identified the variables that will span the phase space 
and the way they can be obtained from the original time series, we shall 
now proceed to characterize the nature of the trajectories of our 
dynamical system in this space. To this end we shall proceed as follows : 

(i) choose increasingly large values of embedding dimension n, and for 
each n plot the values of JC =» (X^,...,Xn) for the N^ data points (cf. eq. 
(8)) 

(ii) For each n, determine the dimension, u of the above plotted data set 

(iii) study the dependence of u for increasing n. If this dependence 
saturates to some value u^ beyond a.certain reasonably small ng, we will 
conclude that our system is a deterministic dynamical system possessing a 
dimension . As for ng, if will represent the minimum number of 
variables needed to describe the dynamics. 

In dynamical systems theory one defines a whole hierarchy of 
dimensions, but for our purposes it will suffice to focus on the 
correlation dimension v (see for instance Mayer-Kress, 1986). The idea is 
to choose at random a point X^ of our data set in phase space and count 
the number of other data points X. in a ball of radius r around X. . This 
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number is equal to the sum EH(r-| X.-X.l where H . is the Heaviside 
function. Summing over all i's ind normalizing one obtains the integral 
correlation function (Grassberger and Procaccia, 1983). 

C(r) = ^ ZH(r-|X-X|) (11) 
N t

z ij 

For values of r which are much smaller than the linear size of the 
attracting manifold and yet larger than scales in which sampling errors 
or noise may be important, one can show that C depends on r as 

C(r) - r" (12) 

It follows that in each embedding space, v can be estimated from the 
slope of the linear part of the plot of ii'i C(r) versus inr. 

We have carried out the above algorithm using the time delay 
and the principal component representation, as well as using multichannel 
variables referring to different stations. We estimated the dimensions of 
manifolds and of phase spaces of the individual geopotential time series, 
as well as of the series obtained from their spatial average using both 
time lagged and multi-channel variables. In phase space representation 
the effects of the transformation from principal to delay space is 
reflected by the fact that in the former the trajectory is significantly 
smoother than in the latter.. 

The calculation of the integral correlation function, eq. (11), 
for both phase space reconstructions revealed that a lower limit of the 
time lag r needed for v to saturate to was of the order of 10 days 
(approximately the 1st zero of tf) . We increased the embedding dimensions 
step by step from 2 to 12. We did not increase it beyond this value in 
order to avoid spurious effects due to the scarcity of data points. 
Indeed, if the systems were embedded in higher-dimensional spaces, the 
interval in r for which the scaling relation of the integral correlation 
function holds becomes insufficient for the method to hold. Actually this 
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interval begins to shrink as soon as the embedding dimension becomes 

larger than two, mainly because the number of pairs of points available 
2 

to compute the correlation function is proportional to N^, while it 

should increase as , where n is the embedding dimension, for the 

scaling interval to remain unchanged. Moreover, in excessively high-

dimensional embeddings, the correlation exponent will converge for any 

dynamical system whatsoever, including cases of infinite-dimensional, 

stochastic dynamics (Caputo et al., 1986). 

The distances between data points were calculated using the 

norm 

n 

" i 1 1 = , s | x i k ' xjiJ : k = 1 n ; ( 1 3 ) 

Finally, for all the computations mentioned above, the correlation 

exponents were estimated using third order finite difference formulas 

involving between 10 and 20 points depending on the size of the interval 

in r over which the scaling relation is valid 

B. Results 

We found that the two methods of phase space recontruction gave 

almost identical results for each time series as well as for the 

computations involving the space average of all signals and a multi-

channel approach. Some representative results are given in Table 1 and 

illustrated in Figs. 7a and 7b where inC is plotted against inr for the 

two methods and different embeddings for a single geopotential record. It 

is clear from the comparison of the two figures that the singular space 

representation reduces the effects of noise which tends to give rise to 

small oscillations in the plot. In Fig. 8 we represent a 3-dimensional 

graph of the correlation exponents of the records of five different 

stations in spaces of increasing dimensions. Black blocks show the 

results using a singular phase space reconstruction whereas hatched ones 

are obtained using the method of delays. The upper left blocks correspond 

to correlation exponents of a pseudo-random signal. 
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TABLE 1. -

Signal 

Lisbon 

Marseille 

Reykyavik 

Roma 

Stockholm 

Space averaged 

Mult i-channe1 

torus - two 

Correllation exponent 

Method of delays singular phase space 

7.6 

6.8 

7.2 

8.3 

7.8 

7.7 

8.4 

2.1 

7.4 

6.7 

7.4 

8.2 

8.1 

8.0 

8.3 

2.0 
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In r 

Fig. 7. - Plots of inC against inr for embedding dimensions n = 1 to 
n = 12 for Lisbon using method of time delays (a), and singular 
space (b). 
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Correlation exponents obtained successively by the method of 
time delays (hatched blocks) and by the singular space 
construction (black blocks) for 6 signals. From left to right : 
pseudo-random signal, 500 mb geopotential height at Marseille, 
Stockholm, Rome, Reykjavik and Lisbon. 



Interestingly, when comparing the black and hatched blocks one notes that 
convergence of u toward its final value comes for about the same 
dimension of embedding space. Presumably this is due to the important 
amount of mixing occurring between EOFs corresponding to all but a few 
eigenvalues, thus counteracting the effects of the "optimal orthogonal 
set property" of the singular vectors. This corroborates the statement 
made in Section 3, that dimensionality cannot be estimated reliably from 
the number of unmixed modes as suggested by Fraedrich (1986). 

To have an idea of the error bar associated to our calculations 
we computed the dimension when the original time series is the product of 
two sines which as known evolves on a two-dimensional torus. The number 
was correctly found from both methods with an error of . 0.1 or less (see 
also Table 1) . We do not expect so small an error for our geopotential 
series, even though they involve the same sumber of samples and the same 
round-off error as the reference signal, mainly because the underlying 
dynamics seems to be much more involved. However, since the difference 
between the results obtained for a same attractor by the two methods 
never exceeds 0.3, it is likely that this gives a good idea of the error 
bar. 

In summary, we see that the dimensionalities of all attractors 
analyzed are in a narrow range with a mean value of about 7.5 and a 
dispersion of 10%. Consequently, it is reasonable to ascertain that the 
individual time series refer to a well defined dynamical system 
describing the short term variability of the western European weather. 

5. LYAPOUNOV EXPONENTS, PREDICTABILITY AND NONUNIFORMITY 

The results reported so far suggest strongly that short term 
weather variability over western Europe corresponds to a low-dimensional 
aperiodic attractor. In view of the inaccuracies in dimensionality 
estimates we cannot ascertain that the attractor dimension is fractal 
rather than integer, although the evidence for a fractal dimension is 
very suggestive. In this section therefore we examine this question from 
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an alternative point of view, and show that the dynamics on the attractor 
displays sensitivity to initial conditions. Together with our previous 
results, this will entitle us to conclude that we are in the presence of 
low-dimensional chaos. 

Let us formulate the problem of sensitivity to initial 
conditions in a quantitative manner. We imagine at time t =» 0 a set of 
data included in a small n-dimensional sphere, whose center is on the 
attractor. The long time evolution of this sphere is subsequently 
monitored. We order the principal axes of this object from most rapidly 

th 
to least rapidly growing and compute the mean growth rate a o f the i 
principal axis p^ over a long period of time : 

t 1 T A d 
T. = lim — J dr — 1 t J dr 

t"KO 

- £ < ( 1 4 > 

p(0) being the radius of the initial sphere. The set of a^ are referred 
to as Lyapounov exponents of the underlying dynamical system. There exist 
as many Lyapounov exponents as phase space dimensions (Guckenheimer and 
Holmes, 1983). One of them is necessarilly equal to zero, expressing the 
fact that the relative distance of initially close states on a given 
trajectory varies slower than exponentially. Others are negative, 
expressing the exponential approach of initial states to the attractor. 
If the dynamical system at hand is chaotic there will be at least one 
positive Lyapounov exponent, and the sphere will evolve to a complex 
ellipsoidlike form reflecting the exponential divergence of nearby 
initial conditions along at least one direction on the attractor. This 
property will be interpreted by the observer as the inability to predict 
the future state of the system on the basis of past knowledge of its 
trajectory, beyond a certain interval of time of the order of the inverse 
of the divergence rate. Note that in a well-behaved dissipative system 
the sum of all exponents must be striktly negative (Guckenheimer and 
Holmes, 1983). 
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Hitherto, most analyses have provided only the largest positive 

Lyapounov exponent of a chaotic system. Besides, in most of the 

mathematical models and laboratory experiments studied so far the 

dimension of the chaotic attractor was between 2 and 3, meaning that not 

more than one such exponent could be expected. In the problem under 

consideration, however, one typically deals with hyperchaos, manifested 

by attractors in the form of folded multidimensional fractal structures. 

In principle there is no reason to expect that unstable motion will only 

occur along one direction on such complex manifolds. One should therefore 

aim at computing as large a part of the entire spectrum of Lyapounov 

exponents as possible. We will use to that effect some algorithms 

developped recently in the framework of dynamical systems theory which 

allow one to compute the large amplitude exponents with reasonable 

accuracy (Sano and Sawada (1985), Eckmann et al., (1986)). 

Our analyses are mainly based on the work by Eckmann et al. 

(1986). The interested reader will find in the Appendix the main features 

of the method and some key technical details. The algorithm was first 

applied to one of our reference systems, the Lorenz equations, eqs.(2). 

We found in this case that the number of samples needed (truncated to the 

accuracy of data) to extract all three exponents with a reasonable error 

bar was of the order of 30,000 ! Therefore taking into account the 

results reported in the previous sections, namely, that the 9 stations 

behaved more or less as being parts of a single dynamics encompassing the 

whole west European weather, we reassembled the data into a single series 

of about 80,000 samples (see also, Essex et al., 1987). We verified that 

the discontinuities of the signal at the connections between the 

different series would influence the neighbourhoods of about 0.1% of the 

samples of the resultant concatenated time series. This would probably 

make the error in the estimation of the Lyapounov exponents 0.1% bigger 

than what we would have obtained from an uninterrupted series of a single 

variable of the system. Using the same amount of data for the Lorenz 

system, we found it possible to extract the positive and zero exponents 

within 0.03 t \ and the negative one within 25 % of its true value from 

a time series of the variable x. This last result is promising 

34 



because the negative exponent of the Lorenz system is one order of 
magnitude larger than the positive one and a 25 % error on its value 
consequently does not influence much the ratio of these two exponents 
which is an important qualitative property of the dynamics. 

We repeated the algorithm using the concatenated series 
corresponding to the geopotential signal. The convergence of the 
algorithm to relatively sharp Lyapounov exponents was fair. Table 2 (1st 
column) summarizes the result on the large amplitude Several 
interesting conclusions can be drawn. 

a. Considering the accuracy of the method one can assert that two 
exponents are unmistakingly positive. Therefore, one deals here with a 
hyperchaotic attractor. The fact that the two positive a^ are comparable 
in magnitude suggests _ that the chaotic dynamics arises from the 
interference of two independent mechanisms of instability of comparable 
importance. 

b. There are at least three negative exponents. The absolute value of the 
largest among them is not significantly larger than the largest positive 
a „ This suggests that there is no single time scale dominating the 
system in the range considered. 

c. The existence of several practically vanishing aimplies that the 
corresponding directions belong to a low-dimensional torus. It is 
therefore legitimate to advance the idea that the chaotic dynamics of the 
system arises from the fractalization of this torus. 

d. The sum of the two largest positive exponents, equal to 0.037 days"''". 
It gives an estimate of the metric (Kolmogorov) entropy K. Its inverse, 
which is about 27 days, is therefore an estimate of the mean 
predictability time for the geopotential signal. It is comparable, but 
clearly larger than the 12-17 days inferred by Fraedrich (1987) from 
series of about 5500 samples. 
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TABLE 2.-

Mean divergence rate Variance 
a^ (days Aa^ (days 

0.023 0.028 
0.014 0.022 

- 0.017 0.034 
- 0.032 0.050 
- 0.079 0.101 
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We will now discuss a way for exploring the structure of the 
attractor in a more detailed manner. By definition, eq. (14), the 
Lyapounov exponents are time averages over a long interval. Hence, since 
a typical motion on a chaotic attractor satisfies strong ergodic 
properties, a a r e effectively (ensemble) averages over the entire 
attractor. We now introduce a finer motion on the attractor, namely the 
local rate of divergence. For this purpose we discretize time, letting r\ 
be a reasonably small step, and define 

x f Pt<kl) 

^i(k> - 7 ^.((k-i)„) j <15> 

Clearly 

1 N 

<7 - lim - S /J (lc) (16) 
• N-® k-1 

The point is that starting from (15) , one can compute numerically 
deviations from the averages a^ (variances Aa^ and higher moments) or, as 
a matter of fact, the probability distribution for having a given local 
rate of divergence. Obviously the larger A a ̂ (or the flatter the 
probability distribution), the more non-uniform the attractor will be 
(Nicolis, 1986). The variances of the five Lyapounov exponents are given 

r 

in Table 2 (second column). We see that all exponents are subjected to a 
very strong variability. This shows that the attractor is highly 
non-uniform. It is important to note that the high values of ACT̂ 's do not 
compromize the sign of a . Indeed, in Figs. 9a, and b we show the 
histogram of the largest positive and of the most negative one. We 
observe in all cases a rather broad distribution, which is markedly 
asymmetric (toward positive and negative values respectively). 
Interestingly, in these two figures the mean a is rather different from 
the most probable value, which is close to zero. Similar trends are found for the other 8. s' as well, l 

In summary, as time varies, the system will continuously switch 
along the unstable directions from states of low fi (large predictability) 
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to states of high /3 (small predictability). We will now attempt to 
identify these states. To this end we follow numerically on the attractor 
the motion along the unstable directions corresponding to a positive rate 
of divergence. Since the attractor is constructed from the original time 
series and from a number of additional variables generated by it, this 
motion will necessarily run over different values of the geopotential. We 
will thus be able to identify the rate of divergence prevailing for 
different values of the geopotential. 

Fig. 10 summarizes the result. We consider the sum of the posi-
tive local rates, known as (local) Kolmogorov entropy (Lichtenberg and 
Lieberman, 1983). Its inverse gives the limit of predictability of states 
with different geopotential values. We observe that for values 
corresponding to low geopotential heights the predictability is of the 
order of 30 days. It decreases to about 2 weeks for high geopotential 
values. One verifies that the mean value of these two extremes is close 
to the inverse of the metric entropy estimated earlier in this section. 

One rather obvious consequence of the above results is that 
winter predictions are generally more satisfactory that summer ones. A 
less obvious and somewhat speculative conjecture is to associate a 
cyclonic weather pattern over western Europe to the Atlantic blocking 
(see for instance, Benzi et al. , 1986). The high persistence of the 
latter appears therefore as the consequence of the high predictability of 
the low geopotenital part of the attractor. 

Throughout this section we have related the predictability of 
the atmosphere to the existence of an inherently nonlinear dynamics 
described by a chaotic attractor and displaying sensitivity to initial 
conditions. A comment on the connnection between this point of view and 
the current use of the concept of predictability in atmospheric sciences 
is therefore in order. 

Ordinarily, the difficulty to carry out long term predictions 
of the evolution of the atmosphere is traced back to two major elements 
(Lorenz, 1984; 1987) : 

40 



500.0 510.0 520.0 530.0 540.0 550.0 560.0 

G E O P O T E N T I A L ( D A M I 

570.0 580.0 590.0 600.0 

Fig. 10.- Limit of predictability time expressed by the inverse 
Kolmogorov entropy as a function of the 500 mb geopotential 
height. Heavy line shows the best fit. 



(i) Operationally, in defining the state of the atmosphere a number of 
errors are involved. For instance, due to the finite resolution of a 
measurement or of a numerical experiment small scale "subgrid" processes 
are discarded. 
(ii) The principal atmospheric and climatic variables undergo complex 
dynamics, as a result of which small errors of the kind mentioned above 
are .rapidly amplified. Present estimates from models of weather 
prediction give error growth (doubling) times of a few days. It is this 
time that is usually identified as the predictability time. Significantly 
the growth rate seems to depend very litte on the detailed nature of the 
error, provided that the amplitude of the latter is small enough (Lorenz, 
1984). 

This view of atmospheric predictability is entirely compatible 
with the one advocated in the present paper. Indeed, whatever their 
detailed nature might be, subgrid processes will be perceived by the 
large scale processes as a "forcing" perturbing their evolution 
continuously. Assuming that the forcing amplitude is small, it is then 
clear that the response of the large scale, processes will depend on the 
nature of their own dynamics, i.e. of the dynamics one is trying to 
predict. If the dynamics is stable the forcing will be damped : even 
though errors of all sorts will be arising continuously, there will be no 
error growth. But if on the contrary the dynamics is unstable the forcing 
will be amplified and the slightest error will grow. In short, "error 
growth" is above all a manifestation of a system's intrinsic instability 
rather than of the initial error itself, the latter acting merely as a 
trigger. This is also what happens in deterministic chaos : to probe the 
sensitivity to initial conditions one has to deviate from some basic 
trajectory through some initial error; but the fact that this error will 
be amplified and, equally importantly perhaps, the rate of its 
amplification, depend entirely on the dynamics. 

We close this discussion with a remark on the error growth time 
of a few days estimated by Lorenz versus the predictability time of a few 
weeks deduced in the present paper. In our view this difference comes 
above all from the fact that in the former case one deals with a 
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numerical experiment performed on a mathematical model, whereas in the 
latter case one deals directly with the data. Our result therefore 
suggests that there is considerable room for improving predictions of the 
500 mb geopotential values, even though these values are inevitably 
affected by smaller scale processes whose predictability times might be 
substantially smaller. 

6. DISCUSSION 

We have produced strong evidence that weather variability over 
western Europe, as reflected by the 500 mb geopotential values, can be 
accounted for by a single dynamical system of a few degrees of freedom 
possessing a low-dimensional attractor. We have estimated some average 
properties of the attractor such as its dimension and the dominant 
Lyapounov exponents. Furthermore, we explored its local structure and 
found a relation between the rate of divergence on it and the 
corresponding heights of geopotential. 

The very possibility to describe the global dynamics by a 
single attractor implies the existence of long range spatial correlations 
in the atmosphere, of the order of several hundreds of kilometers. The 
mean predictability time of three to four weeks that we found suggests 
that there is considerable room for improving weather predictions for 
phenomena belonging to this time scale. Of more interest is, perhaps, the 
result that predictability is actually variable and may depend on the 
state of the atmosphere (Lorenz, 1965). This conclusion seems to be 
supported by meteorological experience as discussed, for instance, by 
Gilchrist (1986). It should be of practical value in helping to choose 
the adequate level of description and the degree of detail to be included 
in the model, when tackling a given problem. 

It would be 'interesting to analyze from a similar point of view 
variability over other extended regions of the globe, as well as over 
time scales shorter than the one day sampling interval considered in the 
present work. We also believe that a dynamical systems analysis of the 
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output of general circulation models would shed some light on the kind of 
variability described by these models. It should also clarify the 
connection between what is to be regarded as a purely statistical element 
or as an element reducible to some well-defined deterministic dynamics. 

From a more fundamental point of view, it is our belief that 
the existence of intrinsically imposed limits of predictability, whatever 
the quality of a model might be, should have a lasting effect on the very 
way to model or even monitor our natural environment. 

/ 
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APPENDIX 

The basic steps of the algorithm used for the computation of 
the Lyapounov exponents may be summarized as follows (Eckmann et al., 
1986; Sano and Sawada, 1985) 

(i) One first embeds the data set in a d -dimensional space and 
constructs therein by the time delay method (cf. eqs. (7) and (8)) an 
orbit representing the time evolution of the system. In this space one 
determines the neighbors of all JL, i.e. the set S^ of data points (X.) 
within a prescribed distance p from X^. Note that ,p must be sufficiantly 
large for the results to be statistically significant and yet. small 
enough to ensure the validity of the subsequent analysis (see step (ii)), 
based on successive linearizations of the full dynamics. 

(ii) Since the Lyapounov exponents describe the mean rate of amplifica-
tion of a small initial deviation from a reference trajectory (cf. eq. 
,(14)) we seek to construct a linear operator describing the time 
evolution of such deviations. Specifically, we inquire whether there 
exists a matrix T\ relating some initial displacement Jt - X^ to its 
value one unit of time later, X. , - X. , j+1 l+l 

X. . - X. . = T.(X. - X.) (Al) 
J+1 l+l l V J -O 

In principle the rank of this matrix, d^ need not be equal to d^, the 
latter being sometimes chosen to have a rather high value. Assuming that 
there is an integer ra > 1 such that 

d E - 1 - (djj - 1) m (A2) 

one may then associate to the d_ - dimensional vector X. = (X., X. c< 1 1+1 
X ) a d. -dimensional vector Y. defined as 
i+d -1 ^ E 

Yi " < V Xi+m ^ ( ^ l ) , » <A3> 
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Eq. (Al) is thus replaced by 

Y. 1 - Y. = T. (Y. - Y.) 

or equivalently : 

X. - X. = T.(X. - X.) ^J+m ^i+m 1VJ (A4) 

Projecting both sides of eq. (A4) successively on the 
coordinate vectors of the delay space allows one to fix the d -1 first m 
rows of T\ by equating the coefficients of identical components of the 
distance vectors appearing on both sides. For the last line the above 
identification does not work and one has to fix the elements by a least 
squares fit, requiring the difference between left and right hand sides 
of (A4) to be minimum. This finally yields : 

(A5) 

with 

J l 

-1 "M 
s 

k=0 *k+l (Xj+km " Xi+km) " ^j+d^m " Xi+dMm) m m (A6) 

(iii) Finally, by taking the logarithmic average of the eigenvalues of T\ 
over a large number of one obtains the average exponential rates of 
divergence of X. - X. in phase space, which are nothing but the Lyapounov •V J 
exponents we are looking for. 
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