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FOREWORD 

The paper "An iterative method to solve the nonlinear Poisson's 
equation in the case of plasma tangential discontinuities" will be 
published in Journal of Computational Physics. 

AVANT-PROPOS 

L'article intitulé "An iterative method to solve the nonlinear 
Poisson's equation in the case of plasma tangential discontinuities" sera 
publié dana "Journal of Computational Physics". 

VOORWOORD 

Het artikel "An iterative method to solve the nonlinear Poisson's 
equation in the case of plasma tangential discontinuities" zal ge-
publiceerd worden in "Journal of Computational Physics". 

VORWORT 

Der Artikel "An iterative method to solve the nonlinear Poisson's 
equation in the case of plasma tangential discontinuities" wird heraus-
gegeben in "Journal of Computational Physics". 

01 



AN ITERATIVE METHOD TO SOLVE THE NONLINEAR POISSON'S EQUATION IN THE 

CASE OF PLASMA TANGENTIAL DISCONTINUITIES 

by 

M. ROTH^*^, J. LEMAIRE^ and A. MISSON^**) 

(*) Institute for Space Aeronomy, 3 avenue Circulaire, B-1180 
Brussels, Belgium. 

(**) Centre de Recherches en Physique des Plasmas - Ecole Polytechnique 
de Lausanne, 21, avenue des Bains, 1007 Lausanne, Switzerland. 

Subject Classification : 

31 : Potential theory (35 : Poisson's equation) 
65 : Numerical methods (60 : Ordinary differential equations, general) 
86 : Geophysics 

Key words 
Tangential discontinuity, quasi-neutrality approximation, characteristic 
thickness, Debye length, ion-dominated layer, electron-dominated layer. 

02 



Abstract 

In order to determine the electric potential in collisionless 
tangential discontinuities of a magnetized plasma, it is required to 
solve a non-linear Poisson's equation with sources of charge and current 
depending on the actual potential solution. This non-linear second order 
differential equation is solved by an iterative method. This leads to an 
ordered sequence of non-linear algebraic equations for each successive 
approximation of the actual electric potential. It is shown that the 
method holds for transitions with characteristic thicknesses (D) as thin 
as 5 Debye lengths (A). For smaller thicknesses, when D shrinks to 3 A 
or less, the method fails because in that case the iteration procedure 
does no longer converge. Numerical results are shown for an ion-

2 3 
dominated layer (D - 10 -10 A), as well as for two electron- dominated 
layers characterized by D = 5A and D = 2.5A, respectively. In all cases 
considered in this paper, the relative error on the electric potential 
obtained as a solution of the quasi-neutrality approximation is of the 
order of the relative charge density. When the method holds, each 
successive approximation reduces the relative error on the potential by 
roughly a factor of 10. For space plasma boundary layers, the quasi-
neutrality approximation can be used with much confidence since their 
thickness is always much larger than the local Debye length. 
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Résumé 

Afin de déterminer le potential électrique dans les discontinuités 

tangentielles sans collisions d'un plasma magnétisé, il faut résoudre 

une équation de Poisson non-linéaire, avec des termes sources (charge et 

courant) qui dépendent du potentiel à déterminer. Cette équation 

différentielle du second ordre, non-linéaire, est résolue par une 

méthode itérative. Cela conduit à une séquence ordonnée d'équations 

algébriques non-linéaires pour chaque approximation successive du 

potential vrai. On montre que la méthode est valable pour des 

transitions d'épaisseur caractéristique (D) aussi mince que 5 longueurs 

de Debye (A). Pour des épaisseurs plus petites, lorsque D atteint 3A ou 

moins, la méthode cesse d'être valable, car, dans c e c a s , le processus 

d'Itérations ne converge plus. Des résultats numériques illustrent le 
2 3 

cas d'une couche ionique (D - 10 - 10 A), ainsi que ceux de deux 

couches électroniques caractérisées respectivement par D ~ 5A et 

D = 2.5 A. Dans tous les cas considérés dans cet article, l'erreur 

relative sur le potentiel éléctrique, solution de l'équation de quasi-

neutralité, est de l'ordre de la densité relative de charge. Lorsque la 

méthode peut être appliquée, chaque approximation successive diminue 

l'erreur relative sur le potentiel d'un facteur proche de 10. Pour les 

couches frontières des plasmas de l'espace, l'approximation de quasi-

neutralité peut être utilisée en toute confiance, puisque l'épaisseur de 

ces couches est toujours beaucoup plus grande que la longueur de Debye 

locale. 
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Samenvatting 

Teneinde de electrische potentiaal te bepalen in de botsingloze 

tangentiële discontinuïteiten van een gemagnetiseerd plasma, dient in 

een oplossing gezocht te worden van een niet lineaire Poisson-

vergelijking, waarvan de brontermen (lading en stroom) afhangen van de 

te bepalen potentiaal. Deze niet lineaire differentiaalvergelijking van 

de tweede orde wordt geintegreerd door middel van een iteratieve 

methode. Dit leidt tot een geordende reeks van niet lineaire 

algebraïsche vergelijkingen voor elke successieve benadering van de 

werkelijke potentiaal. 

Er wordt aangetoond dat de methode geldig is voor overgangen met 

karakteristieke diktp.s (D) tot 5 Debye lengts (A) . Voor kleinere diktes, 

wanneer D krimpt tot 3A of minder, verliest de methode haar geldigheid, 

aangezien in dit geval het iteratieproces niet meer convergeert. 

De numerieke resultaten worden getoond voor een ion-gedomineerde 

2 3 

laag (D - 10 - 10 A) en voor een electron-gedomineerde laag, ge-

karakteriseerd respectievelijk door D = 5A en D » 2.5 A). 

In alle gevallen beschouwd in dit artikel is de relatieve fout op 

de electrische potentiaal, oplossing van de quasi-neutraliteits-

vergelijking, van de orde van de relatieve ladingsdichtheid. Daar waar 

de methode kan toegepast worden, wordt de relatieve fout op de 

potentiaal bij elke opeenvolgende iteratie gereduceerd met een factor 

van de orde van 10. Voor de grenslagen van ruimteplasmas, kan de 

benadering der quasi neutraliteit met vertrouwen gebruikt worden, daar 

de dikte van dergelijke lagen altijd veel groter is dan de locale Debye 

lengte. 
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Zusammenfassung 

Die elektrische Spannung für Tangentialle-diskontinuitäten in 
Plasmas, ist Solution des Poisson's Gleichung mit Kwellentermen (Ladung 
und Ströme) die von diese Spannung zelbst abhängen. Diese Differential 
Gleichung des zweitens Orderns ist bei einer iterativen Methode gelösst 
worden. Das gibt eine Reie algebraische Gleichungen für jede successive 
Approximation der Spannung. Wir zeigen dass diese Methode gültig ist für 
Transitionen die dicker als 5 Debyelänge (A) sind (D > 5A) . Für dünnerer 
Schikten (D < 3A) , ist diese Methode nicht mehr gültig, um dass die 
Iterationen nicht mehr konvergieren. 

Numerische Resultaten sind erhalten worden für eien Ionen Schicht 
2 3 

(D - ],0 - 1.0 A) , sowie für zwei Elektronen Schichten für D = 5A und 
D = 2.5A. In alle Fälle die wir hier studiert haben, ist der relative 
Rechenfehler des Spannung, den relativen Rechenfehler der Ladungsdichte 
gleich. When unsere Methode gültig ist, ist der relative Rechenfheler 
jeder Approximation, 10 Mahl kleiner als die frühere Approximation. Für 
Schichten die man im Weltraum findet can die Approximation der Quasi-
neutralität meistens benütz werden, dem diese Schichten sind viel 
breiter als die Debyelänge. 
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I. INTRODUCTION 

It is generally considered that in astrophysical and geophysical 
plasmas the electron density balances almost exactly the ion charge 
density, i.e. plasmas are quasi-neutral. Nobody questions that this is a 
very satisfactory approximation in uniform or nearly uniform plasma 
regions of space. 

However, it has sometimes be questioned whether this approximation 
is still a valid one at the earth's magnetopause [1] or at other sharp 
boundary layers where the physical properties of the plasma (density, 
temperature, bulk speed, magnetic field,...) change abruptly from one 
set of values to another one. The magnetospheric bow shock [2] is 
another type of boundary where a significantly large electric charge 
separation might be expected. 

The purpose of this work is to verify on a few case studies that 
the quasi-neutrality equation is indeed a valid zero-order approximation 
when the boundary layer has a thickness much larger than the 
characteristic Debye length. 

One of the simplest type of boundary layer or plasma discontinuity 
observed in space is the so-called planar "tangential discontinuity" (TD 
for short) . In the reference frame tied to a TD there is no plasma 
crossing the layer. In addition, the magnetic field component along the 
normal to the boundary vanishes. Furthermore, from conservation laws 
[3], the total plasma and field pressure across a TD does not vary. 
However, the plasma velocity distribution and the tangential magnetic 
field (intensity and direction) are both varying over short distances, 
as at the interface of ferromagnetic domains in solid-state plasmas. 
TD's have been found to be abundant in the solar wind [4] and observa-
tions indicate that the earth's magnetopause can sometimes be considered 
as a tangential discontinuity [5], 
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To make theoretical models of steady-state collisionless TD's, the 
plasma kinetic method has been used by a number of authors [6 to 13], 
Actually, the Maxwell's equations for the electric and magnetic fields 
are combined with the Vlasov equation for the particles. The result is a 
set of second order non-linear differential equations for the electric 
and magnetic vector potentials, with sources of charge and current 
depending on the actual potentials. 

The solution of the Vlasov equation is based on the standard 
methods of constructing distribution functions in terms of the conserved 
energy and generalized momenta of the particles. It is then a relatively 
straightforward task to produce solutions which mimic a number of 
observed steady-state boundary layers [6]. This method is preferable to 
particle simulation involving a time dependent problem which leads to 
the set-up of steady-state electric and magnetic structures, indeed, for 
typical space plasmas where the number of particles in a Debye sphere is 

9 
of the order of 10 , particle simulation involves a large number of 
particles whose trajectories can be determined with efficiency by only 
high speed, large scale computers. Although particle simulation is 
particularly useful whenever a limited number of analytic methods are 
available, this is not the case for the problem under consideration in 
this paper for which solutions of the Vlasov equation are straight-
forward. 

Numerical difficulties arise however when attempts are made to 
integrate Poisson's equation for the electric potential - a second order 
non-linear differential equation - by standard methods (e.g. Runge-Kutta 
or Hamin). These difficulties arise because the right-hand side of 
Poisson's equation is a difference between two very large numbers, the 
electron and ion densities, which are almost exactly equal to each 
other. A zero-order approximation of the actual electric potential (4>) 
can however be determined as a solution of the quasi-neutrality equation 
where the electron density is a very sensitive function of <t>. 

t 08 



Of course, this zero-order approximation holds whenever the total 
charge density which is proportional to the Laplacian of 4> is found a 
posteriori to be much smaller than the charge density associated with 
the positively (or negatively) charged particles. Each time this 
condition is fulfilled, a self-consistent potential is obtained. The aim 
of this paper is to study the small deviations from quasi-neutrality in 
TD's. In this case, Poisson's equation for the electric potential must 
be solved instead of the quasi-neutrality equation. The higher order 
approximations obtained this way are then compared to the zero-order 
approximation corresponding to the solution of the quasi-neutrality 
equation. 

In this paper, Poisson's equation has been solved by an iterative 
method. The procedure leads to successive approximations of the 
potential starting with the zero-order approximation <f>Q which is the 
solution of the algebraic quasi-neutrality equation. The potential in 
the approximation of order n(n > 0) is the solution <f> of a new 
algebraic equation obtained by replacing the right-hand side of the 
quasi-neutrality equation by "a charge density", i.e., a quantity 
proportional to the Laplacian of <£n It has been found that, after 
only a few iterations, the successive approximations do not differ by 
more than the precision of the computer (9 significant digits) , at least 
for broad layers (the so-called ion-dominated layers in [7]) whose 
characteristic thickness is the ion gyroradius. For these ion-dominated 
layers the zero-order approximation if>n does not differ significantly 

i - 6 from higher- order approximations (i. e. , - 4>Q / < 3 x 10 ) and 
in practice <f>̂  can be considered as very close to the actual potential. 
For thinner layers with thicknesses of the order of an electron gyro-
radius (the so-called electron-dominated layers in [7]), it is shown 
that the iterative process is convergent as long as the characteristic 
thickness (D) does not become smaller than 5 Debye lengths (A) . The 
iterative procedure fails however when D shrinks to about 3 A or less. 
In all cases we have considered so far, the relative error on <j>̂  (with 
respect to the. actual potential) has been found of the order of the 
relative charge density. 
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The model used for a collisionless TD will be briefly described in 
section 2. Although equilibrium configurations of TD's in collisionless 
plasmas under a wide variety of boundary conditions and assumptions have 
been discussed in the literature (see references [6] to [13]), the model 
considered in this paper is a simplified version based on the work of 
Sestero [7]. Section 3 outlines the iteration process used to solve 
Poisson's equation. In sections 4 and 5 are displayed the numerical 
results obtained for layers with various thicknesses, i.e., an ion-
dominated layer (section 4) and two electron-dominated layers with 
D = 5X and D = 2. 5A (section 5). Conclusions are summarized in section 
6 . 

2. A KINETIC MODEL OF TANGENTIAL DISCONTINUITIES 

For the sake of simplicity, we study steady-state, unidimensional 
planar current layers which are parallel to the (y-z) plane of a 
cartesian coordinate system. All plasma and field variables are assumed 
to depend only on the x-coordinate, normal to the layer. The magnetic 
field B is oriented along the z-axis while the electric field E is 
parallel to the x-axis. In this model, the z-coordinate is an ignorable 
coordinate for the motion of a single plasma particle. Therefore, the 
so-called constants of motion are the energy (H) and the y-component of 
the generalized momentum (p) : 

H = ^ m (v 2 + v 2) + Ze (1) 2 x y 

-19 
where Ze is the charge (e = 1.6 x 10 C) of the particle of mass m and 
v its velocity, while <£(x) is the electric potential; 

p = mVy + Ze a(x) (2) 

where a(x) is the magnetic vector potential (parallel to the y-axis). 

Any function of H and p, F(H, p) , is a solution of the steady-
state Vlasov equation. Consider the following distribution function [7] 
for a given plasma species : 
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F(H, p) = 6 (p) r?(H) (3) 

with 

0] S(p) = C 2 if p in ] - (sign Z) «, v, 
= C^ if p in [ 0, + (sign Z) ® 
(sign Z = + 1, if 7 ^ n 

= - 1 
Z > 0 

if Z < 0) 

where C^, C^ are arbitrary (> 0) constants and rj(H) a Maxwellian 
distribution given by : 

rj(H) = a ( ) exp (- S- ) (4) 

where T is the asymptotic temperature of the particle species and a is a 
parameter which has the dimension of a number density. 

The distribution function (3) as a product of an exponential in H 
(the Maxwellian rj given by equation (4)) by a step function in p gives 
conceivably the simplest model describing a sharp transition layer. Note 
that other choices are possible since for any single-valued distribution 
function in the whole (H, p) plane the Vlasov equation a priori admits a 
solution. Thus the state of the plasma at both ends of a TD does not 
uniquely determine the transition profile. This is a peculiar feature of 
the nonlinear Vlasov equation [13], To remove the nonuniqueness of the 
distribution functions, consideration of particle accessibility in phase 
space must be met [14], This requires the knowledge of the 
characteristics of the plasma in the boundary source regions together 
with the transport mechanisms bringing the plasma to the transition 
itself. This problem being outside the scope of this paper we will be 
content with Sestero's distribution functions (3). Indeed, to illustrate 
the departure from charge neutrality in thin boundary layers the choice 
of the distribution functions is not crucial. Furthermore, the method 
for solving Poisson's equation developed in the next section would 
remain conceptually the same for any other choice than the distribution 
given by (3) and (4). 
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From (3) and (4), the number density (n) and the current density 

(j) - parallel to the y-axis - can be computed as a function of <j> and a. 

It is found : 

a / Ze<j> N 

n = - exp I -
2 \ kT . 

C . erfc / -t-tt + C erfc - -tt-t 
1

 I 2 R B . / ~ \ 2 R B„ 
\ a Q- ' N cl a.-

(5) 

2 k T \ 1 / 2 / Ze<f> 2 

j = - | Z| eor (C - C ) ) exp - exp , 
2 * \ nm J V kT / \ 2R^B il 4

 7 

(6) 

where erfc is the complementary error function 

2 + ® 2 
erfc (u) = — ƒ e" dx 

Jn u 

and R B„ is a constant given by 
CL <•*' 

m kT \i/2 

with R ^ and B ^ being some characteristic asymptotic Larmor radius and 

magnetic field, respectively, i.e., 

= = ( 8 ) 

In (8) , R„ and R are the characteristic Larmor radii at x = - <*> 
v ' 2 z 

(on the left-hand side) and x = + ® (on the right-hand side) , 

respectively; while B^ and B^ are the magnetic field intensities at 

x = - m and x = + °°, respectively. 

The Maxwell's equations to solve are 

,2 , 
d<p e s / \ / \ 
~ = - - X Z

(

"
}

 n
( u )

 (9) 
dx £Q w=l 
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d2a 

dx 
I J 
i/=l 

(10) 

where and /i' are the vacuum permittivity and permeability, 
-12 -7 respectively (CQ = 8.854 x 10 F/m, A»Q = x 10 H/m) and s, the 

number of particle species. 

The electric field (E, 0, 0) and the magnetic field (0, 0, B) are 
the derivatives of potentials, i.e., 

d 4> 
E = - — (11) 

dx 

da 
B = — (12) 

dx 

The magnetic and electric field distributions within the boundary 
layer are then determined by solving the system of differential 
equations (9) to (12) with n^"^ and j given by (5) and (6), 
respectively. Equations (10) and (12) will be solved using a Hamin's 
predictor-corrector scheme while (9) and (11) will be solved by using 
the iteration process described in the next section. The right- hand 
sides of equations (9) and (10) are non-linear functions of <t> and a. 
Furthermore, the right-hand side of (9) is a sum of terms which must 
remain much smaller than each individual term as a consequence of the 
tendency of plasmas to maintain electric neutrality. For these reasons 
standard numerical procedures to solve Poisson's equation generally fail 
to converge. 

Note that, in this model, if the electron (/ion) velocity 
distribution remains Maxwellian from x = - ® t o x = + ® , only the ions 
(/electrons) can be accelerated inside the transition, on a 
characteristic scale length of the order of a few ion (/electron) Larmor 
gyroradii. Following Sestero [7], these transitions are called ion 
(/electron) - dominated layers, respectively. 
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3. AN ITERATION PROCESS TO SOLVE POISSON'S EQUATION 

2 2 
Plasmas being quasi-neutral, d <j>/dx = 0. Therefore, the zero-

order approximation of Poisson's equation (9) is the quasi-neutrality 
equation : A < V v • 0 <"> 

By introducing the quantity N r s t (with the summation extended over all 
species) defined by 

Nrst = £ Z Ki K2 K3 n ( 1 4 ) 

with 

Ze 

kT 
Kx - - — (15) 

1 1 / m V / 2 
K ~ (16) 

kT Z e R B a V kT y 

K = - -=—•= (17) 
R a B a 

eq. (13) can also be written as 

Nooo (a0- - 0 • ( 1 8 ) 

Coupled with the differential equations (10) and (12), (18) can be 
solved numerically. The potential 4>Q- and also the higher order approxi-
mations <j>2,... (see below)- is then obtained by the Brent's method 
of finding the root of a non-linear equation (this method combines root 
bracketing, bisection and inverse quadratic interpolation [15]). 

We also introduce the quantities 
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J = I Z K* K® j (19) rst u 1 2 3 

and 

-'rst = ^ K2 K3 j (20> 

By differentiating (18) twice with respect to x, it is possible to 
obtain algebraic expressions for the first and second derivatives of . 
It is found 

- - Bo Joic/Nioo ( 2 1 ) 

- NiJo Joio jooo + 2 Bo h l o J110 - Bo Nioo J010 N200> 

• ao Bo Joii NiJo = < V ' V ( 2 2 ) 

To carry out those derivatives, we have used the following 
differentiation rules 

3N 
rst 

d<f> 
3N 

rst 
da 

dJ _ rst 
d 4> 

dJ _ rst 

Nr+1,s,t ( 2 3 ) 

- J ^ „ (24) 

r+1,s,t 

= a J . (26) - r,s,t+l oa 

and for any quantity depending on <f>, a and B 

d 3 d d 
_ _ r _ + B _ . j _ (27) 
dx d<j> da dB 
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The next approximation for <j>, i.e., the first-order approximation 
41 is solution of the algebraic equation 

I Z n(a - - — 4>l (a r 4>v B ^ (28) 
e 

The right-hand side of this equation is given by (22) . Equation (28) is 
coupled with the differential equations (10) and (12) to obtain a^, <f>̂  
and B^. 

Higher order approximations for <f> are solutions of algebraic 
equations of the form : 

£0 X Zn (a., rf.) - - — ^ (a., B.) (29) 
e 

Although the right-hand side of (29) can in principle be obtained 
by differentiating twice the previous equation for <j>̂  the number of 
terms in the expression for <f>£ becomes rapidly large for i > 2. Yet 
expressions for <f>!̂  and have been obtained and can be found in the 
appendix. Fortunately, the determination of expressions for higher order 
second derivatives is unnecessary because numerical solutions for the 
second order approximation show that, even in thin electron-dominated 
layers, a2 and B^ do not differ significantly from a^ and B^. Therefore, 
for orders larger than 2 [i > 3 in (29)], (10) and (12) have been 
decoupled from (29) and the method used to determine <f>̂, • • • can be 
stated as follows : 

1) Coupled with the differential equations (10) and (12) , the 
following equation 

I Zn (a2, 4>2) = - — <f>l (a2, <f>2, B2) (30) 
e 

controls the second order approximation for • In this equation, <£^(a2, 
, B2) has been obtained by differentiating (28) twice with respect to 

x. Its mathematical formulation can be found in the appendix. The 
coupled equations (10), (12) and (30) are then solved numerically. Their 
solutions are a0, <j>n and B0 . 

i 
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2) From the set of values for ( x) , the derivatives <f>L and <f>'l are 
determined numerically by a Lagrangian method of interpolating poly-
nomial using 5 or 7 points. 

3) From (29) , third and higher order approximations for <f> are 
successively determined numerically by the Brent's method while keeping 
the second order approximation ( a I ^ ) for a and B. From these higher 
order approximations (i > 3), <f>'̂, are also determined numerically 
by a Lagrangian method of interpolating polynomial. 

This iterative method of solving Poisson's equation remains near 
to the physics sustaining the natural tendency of plasmas to maintain 
quasi-neutrality. Indeed, each iteration leads to a new potential 
resulting from the weak charge separation computed in the previous 
iteration. In a few iterations, the deviation from quasi-neutrality can 
therefore be easily deduced. When the iterative process is convergent 
(it is in fact rapidly convergent for broad layers) the solution 
requires only solving a few non-linear algebraic equations at each value 
x. As a constant x-spacing is not required in this process, the 
algebraic equation (29) for <j> can be added to a predictor-corrector 
scheme for solving the coupled differential equations (10) for the 
magnetic vector a. This is particularly interesting when mixed boundary 
layers (i.e, boundary layers with both electron and ion-gyroradii as 
characteristic scale lengths) are involved. 

Although other methods for solving boundary values differential 
equations could in principle be applied to this problem, as for 
instance, the conjugate gradient algorithm [16] or the strongly implicit 
procedure of Stone [17], these methods usually boil down, at least 
conceptually, to the solution of large numbers of simultaneous non-
linear equations solved by linearization and iteration. Another 
interesting approach could be the use of the simultaneous overrelaxation 
(SOR) method [18] for which an initial distribution <j>(t,x) relaxes to an 
equilibrium with time derivative vanishing as t-*». However, most of 
these alternative methods use a constant x-spacing. Therefore, for mixed 
transition layers, the simultaneous solution of equations (9) and (10) 
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by these methods should imply a sufficiently small (and constant) 

x-spacing to be able to describe the very thin electron layers embedded 

in a broader ion layer. The number of algebraic equations to be solved 

simultaneously would increase accordingly and the computer storage 

available to implement these methods should be large enough. 

However, the method we have introduced in this paper provides an 

interesting and completely . different numerical procedure which is 

conceptually simpler and is somewhat more physical. Furthermore, it does 

not require a large computer storage. 

4. SOLVING POISSON'S EQUATION IN AN ION-DOMINATED LAYER 

In this section, we consider a TD separating a hot hydrogen plasma 

from a cooler one. The velocity distribution function for the electrons 

as a whole is isotropic since an ion-dominated layer is assumed. This 

layer has plasma boundary conditions characterized by 8 plasma para-

meters as listed in table I. Across the transition region, the 

temperature and density of each plasma species are respectively 0(x) and 

n(x) . Asymptotically, 9 ( + « ) = • T, n(- ®) = N^ and n(+ «) = N
K
. The 

magnetic field at x = • » is assumed to be 40 nT. 

These plasma parameters correspond to two interpenetrated hydrogen 

plasmas with different characteristics. They correspond to typical 

magnetospheric plasma populations. The values of the parameters C^ and 

Cr^ [see eq. (3)] are also given in this table. From (3), it can be seen 

that they are consistent with the fact that the plasma from x = - ® 

(/from x = + is absent at x = + « (/x = -<*>) . 

From table I and from (5), the number densities (n) for each 

plasma species can be written down : 

n (1) 
1 

2 
a (1) exp erfc (31) 

n 
(2) 

2 

1 
a 
(2) 

exp erfc 
(32) 
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TABLE I Plasma boundary conditions and parameters of velocity 
distribution functions for the ion-dominated layer 
illustrated in figure 1. 

V Z Species T N a S 
1 - 1 electrons 2500 0.5 0 1 0 
2 - 1 electrons 2500 0 0.15 0 1 
3 + 1 protons 12000 0.5 0 1 0 
4 + 1 protons 3000 0 0.15 0 1 

eV cm cm 
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n(3)=

 1
 a

°
)exp e r f c

{ 7 ^ 7
2

 1 (33) 

n
( 4 )

 = - a
( 4 )

 exp ( - - ^ erfc ( - - ^
 ( 3 4 ) 

2 ' V J { 2
1

/
2

 R<
4

> B 

where T" = T
( 1 )

 = T
( 2 )

 (= 2500 eV) 

n. n,/ 

m kT 1/2 

R . B . = R B = 
2 2 n, a 

Let us now choose the electric potential at x = • « equal to zero, i.e. 

<f>(- «) = 0 (35) 

then, the parameters a in (31) through (34) can be seen to be related to 

the asymptotic densities and to the value of <f> at x = + Taking the 

plasma neutrality at x = + ® into account, i.e., 

(1) (3) -3 
N

J
 = N

J = N

J>
 ( =

 °"
5 c m } 

4
2 )

 = N £
4 )

 = N^ ( = 0 . 1 5 cm"
3

) 

(36) 

(37) 

one obtains [assuming that B(x) > 0 , so that a(-<*>) = - ® and a(+ ®) = 

.+ 00 

Q

( 1 )

 =
 a

( 3 )

 = N^ (= 0.5 cm"
3

) (38) 

(2) 
a exp 

e 4>(/ oo) 

kT 

(4) 
= a exp 

e <j>( + oo) 

kT 
(4) 

N (= 0.15 cm"
3

) 
1 

(39) 
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As the electron velocity distribution as a whole is isotropic, eq. (3) 

implies that a 

(39) 

<f>(+ ® ) = 

a < 4 ) = N 

(2) 
must be identical to a 

(1) Therefore, from (38) and 

kT 
in 

T /T 

3 0 0 9 . 9 3 2 V ) 

(= 0.055 cm ) 

( 4 0 ) 

( 4 1 ) 
N, 

The electron density throughout the transition is then 

(1) (2)
 M

 [
 6

 *
( x ) 

n (x) = n + n = N . exp 
kT" 

(42) 

Of course, eq. (42) represents a Maxwellian distribution of 

electrons in the field of a conservative force (the electric field) 

acting on them. Consequently, the electrons do not contribute to the 

current density. This can be seen directly from (6) since = -

and j = 0 . Therefore, the current density inside the layer is only due 

to the protons and the characteristic thickness of this transition is 

the proton gyroradius [R^ 

64.70 nT]. 

, ( 3 ) 280 km, 86.5 km with B„ = 
n. 

Figure 1 illustrates the structure of the electric potential, 

electric field and charge density for different orders of approximation 

in solving Poisson's equation. The distance across the transition is 

given in unit of the ion gyroradius at x = - ® (i.e., R* =
 = 

280 km)-. The bottom panels demonstrate that, on and after the first 

order approximation, the electric potential is determined with an 

relative accuracy | (<^
3
 - i = 1 , 2 ) much less than 10

 7

. The 

quasi-neutrality approximation (<£Q) still remains a very good approxima-

tion, since | - 4>q)/ j
 i s

 less than 3 x 10 ^. It can also be seen 

that, on and after the first order approximation, the charge density 

(Q ) does not exhibit significant differences between successive 

approximations. This means that the iterations are converging in cases 

of ion- dominated layers. Note also that the relative error on <f>
Q 
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Fig. 1.- Electric structure of an ion-dominated layer. Plasma boundary 
conditions are given in table I. The magnetic field at x = 
- oo is 40 nT. The ion gyroradius ( R* = R^ = 280 km) is the 
characteristic scale length. The left-hand side panels 
display the electric potential (tf>) , while the electric field 
(E) and the charge density (Q) are represented in the middle 
and right-hand side panels, respectively. Approximations of 
the solution of Poisson's equation are displayed up to the 
third order. The bottom panels are enlargements of a tiny 
small section of the layer. It can be seen that the 
successive approximations are very rapidly converging to a 
solution. This solution still remains very close to the 
result obtained from the quasi-neutrality approximation ̂ or 
zero-order approximation (within a precision of 3 x 10 ). 
The relative error on can be seen to be of the order of 
Q^/e n~ (n~ being the total electron density). 
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considered as an approximate solution of Poisson's equation (i.e., 

- 6 

3 x 10 ) is of the order of the relative charge density Q^/en (n 

being the total electron density). 

5. SOLVING POISSON'S EQUATION IN AN ELECTRON-DOMINATED LAYER 

The plasma parameters in the case of an electron-dominated layer 

are given in table II. The magnetic field at x = - ® is 40 nT. In this 

example, T
( 1 )

 = T
( 2 )

 = T" = 2500 eV and T
( 3 )

 = T
( 4 )

 = T
+

 = 5000 eV. 

The expressions for the number densities (n) are similar to the 

ones given by eqs. (31) through (34) with T ^ = T ^ = T
+

 and 

4
3)

 », - \ -
+ + 0 / 2 

m kT \ 

Assuming (35) to hold and B(x) > 0, the plasma neutrality at x 

+ <= imposes 

Q
( l ) _

 q
( 3 )

 = ( = 0 5 c m
- 3

) (43) 

(2) 
a exp 

e <f>(+ «>) 

kT 

(4) 
= a exp 

e <j> (+ co) 

kT 

= N (= 0.4 cm ) ^ (44) 

As the ion velocity distribution as a whole is isotropic, (3) and (43) 

imply that 

q

( 4 )

 =
 a

( 3 )

 = n (= 0.5 c m "
3

) (45) 

Therefore, from (44) and (45) 

kT N_ 
4>{+ =o) = in I — J (= 1115.718 V) (46) 
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TABLE II Plasma boundary conditions and parameters of velocity 
distribution functions for the electron-dominated layer 
illustrated in figures 2 and 3. 

V Z Species T NJ> CJ 

1 - 1 electrons 2500 0.5 0 1 0 
2 - 1 electrons 2500 0 0.4 0 1 
3 + 1 protons 5000 0.5 0 1 0 
4 + 1 protons 5000 0 0.4 0 1 

eV -3 cm -3 cm 
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/ N \
 T + / T

" 
a
( 2 ) = N ( — ) (= 0.256 cm"

3

) (47) 

" V » J 
The proton density troughout the transition is then 

+ , ^ (3) (4) 
n (x) = n + n = N^ exp 

As expected, (48) represents a Maxwellian distribution of protons 

in the field of a conservative force (the electric field) acting on 

them. Consequently, the protons do not contribute to the current 

density. 

Indeed, from (6), = - and j
+

 = 0. Therefore, the current 

density inside the layer is only due to the electrons and the 

characteristic thickness is the electron gyroradius
 =

 2.98 km, 

R ^ = 2.73 km with B^ = 43.61 nT] . 

Figure 2 illustrates the structure of the electric potential, 

electric field and charge density up to the 4th order in solving 

Poisson's equation by the iteration method explained in section 3. The 

distance across the transition is given in unit of the electron gyro-

radius at x — -oo (i.e.,
 = =

 2.98 km). It can be seen that 

j (<f>^ - 4>Q)/4>A is of the order of 6 x 10 while | (<f>^ - <j>^)/<f>^ | is of 
- 4 

the order of 5 x 10 . It can also be seen that each successive 

approximation ^ (i = 0 3) reduces the relative error on <f>, 

| - " ^ V ^ l " by roughly a factor of 10. These successive approxima-

tions converge to an single solution, since the differences between them 

decrease as the order of approximation increases. This is illustrated in 

the lower panels : the successive charge densities = 0 4) 

converge to an asymptotic solution located between the Q^ and Q^ curves. 

As previously noted, the relative error on <j>
n
, considered as an -3 

approximate solution of Poisson's equation (i.e., 6 x 10 ) is again of 

the order of Q
n
/ e n . 

e<Mx) 

kT 
(48) 
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E L E C T R I C F I E L D (mV/m) 

Fig. 2.- Electric structure of an electron-dominated layer. Plasma 
boundary conditions are given in table II. The magnetic field 
at x = - <*> is 40 nT. The electron gyroradius ( R^ = R^ = 
2.98 km) is the characteristic scale length. The above panels 
display the electric potential (<j>) while the electric field 
(E) and the charge density (Q) are represented in the middle 
and bottom panels, respectively. Approximations of the 
solution of Poisson's equation are displayed up to the fourth 
order. Panels in the second and third columns are 
enlargements of small or tiny sections of the layer. It can 
be seen that the successive approximations are converging to 
a solution. In this example, the characteristic thickness (D) 
is of the order of 5 Debye lengths (A) . Note that each 
successive approximation reduces the relative error on <j> by 
roughly a factor of 10. The relative error on <f>̂  is still of 
the order of Qg/en (n being the total electron density). In 
this example, the solution <j>Q obtained from the 
quasi-neutrality approximation holds within a precision of 
6 x 10"3. 26 



The maximum error in the electric field intensity using the 
quasi-neutrality approximation can be seen to be less than 3%. This 
maximum error occurs at the center of the transition region, where the 
gradient of the potential is maximum. Note also that the charge density 

3 
in this electron-dominated layer is about 10 times larger than the 
corresponding charge density computed in the ion-dominated layer 
illustrated in figure 1. In figures 1 and 2, the Debye length at 
x = - oo is 526 m. In the electron-dominated layer shown in figure 2, the 
Debye length at x = + <*> (Aa) is 588 m while the characteristic thickness 
D lies between R^ = 2.98 km and R^ = 2.73 km, i.e., D/A = 4.65 - 5.67. 
For such thicknesses (D > 5 A), the method of successive approximations 
remains a convergent one and, furthermore, the quasi-neutrality 
approximation is still a reasonable approximation which can be used for 
all practical purposes. 

In figures 1 and 2, E^ and Qj have been calculated numerically by 
a Lagrangian method of interpolating polynomial. Third order (figures 1 
and 2) and fourth order (figure 2) approximations have been successively 
determined as solutions of (29) while keeping the second order 
approximation (a.̂ , a anc* Pl a s m a boundary conditions 
given in table II, figure 3 indicates that a and B are not very 
sensitive to the order of approximation in solving Poisson's equation. 
Indeed, it can be seen that a^, and J^ (the total current density) do 
not differ significantly from a^, B^ and J^ (the differences are even 
much less in ion-dominated layers such as the one illustrated in figure 
1) . Therefore, on and after the third order, it is quite justified to 
decouple (29) from equations (10) and (12) as done in this paper. 

At this stage, it can be asked whether convergence is still 
achieved when the thickness D shrinks to a few Debye lengths A. The 
results presented in figure 4 illustrate such a case of a sharper 
boundary layer. The plasma and magnetic field data are just the same as 
those presented in table II, except that the number density at x = + « 

- 3 - 3 (tL ) is now 0.15 cm instead of 0.4 cm . We also assumed that the 
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Fig. 3.- An illustration showing that a, B and J (the total current 
— density, J = Sj) are not very sensitive to the order of 

approximation in solving Poisson's equation. For the 
electron-dominated layer considered in this example (same as 
figure 2) , this result is more specifically true on and after 
the first order approximation. Because a, B and J do not 
change significantly when the order of approximation becomes 
larger than 2, (29) can be decoupled from equations (10) and 
(12) when considering approximations with order equal to (or 
larger than) 3. 
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Fig. 4.- Electric structure of an electron-dominated layer. The plasma 
and magnetic field boundary conditions are identical to those 
pertaining to figure 2, except that, at x = + «>, the number 
density of the. particles of either sign has been lowered 
(Na = 0.15 cm' ). The electron gyroradius (R = R^ 
2.98 km) is the characteristic scale length. In this example, 
the Debye length on the right-hand side of the transition is 
960 m, i.e., a small fraction of the electron gyroradius 
(R^ = 2.31 km). It can be seen that, for positive values of x 
(x - 1.5 - 3 R~), the successive approximations for Q^ do not 
converge to a solution, since higher order approximations 
differ more and more from lower ones. Note that the charge 
density in this example is 10 times larger than the one 
illustrated in figure 2. 



(2) transition is an electron-dominated layer [<£(+ 00) = 6020V, a = 0.0135 
-3. cm ] . 

Because the number density at x = + « (N^) has been reduced, the 
Debye length at the right-hand side of this transition increases (A^ = 
960 m) . In this example, the Debye length (A^) is a small fraction 
(Ra/-Vj_= 2.41) of the electron gyroradius at x = + <*> (R^ = 2.31 km) and 
it can be seen from figure 4, that for positive values of x (x ~ 
1.5 - 3 R^), the successive approximations do not converge to an 
asymptotic solution, since higher order approximations for Q^ differ 
more and more from lower ones. It can therefore be concluded that when D 
is of the order of 1-3 A, the method of successive approximations for 
solving Poisson's equation breaks down. Note also that the charge 
density in this example is 10 times larger than the one illustrated in 
figure 2. 

It can also be concluded that in the case where the plasma density 
approaches zero on one side (i.e. plasma-free magnetic field on one side 
of the TD and field-free plasma on the other) the iterative method 
proposed above will fail to converge, since when the plasma density 
approaches zero the Debye length grows indefinitely and the quasi-
neutrality approximation always fails to be valid at the outermost edge 
of the plasma region. This is the case of the classical Ferraro [19] 
cold plasma sheath model : an early attempt to describe the solar wind-
magnetosphere interaction region as a TD between a vacuum geomagnetic 
field on one side and a cold streaming solar wind on the other. The 
basic feature of this model was that the random thermal speed of the 
solar wind was assumed to be small compared to the organized streaming 
velocity. 

An attempt to improve the quasi-neutrality approximation in the 
case of the cold plasma sheath model was made by Sestero [20] . For that 
model, which shows large charge separation effects, Sestero found that 
Poisson's equation could be solved by a Runge-Kutta integration scheme. 
This result seems to indicate that Runge-Kutta or Hamin's integration 
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methods could be used when the thickness of the transition becomes 
smaller than a few Debye lengths, i.e., when charge separation effects 
cease to be negligible. It can therefore be expected that when the 
method of successive approximations fails to converge, i.e., when the 
electric charge density becomes large, usual integration methods such as 
Runge-Kutta or Hamin's predictor-corrector scheme could successfully be 
used instead. 

6. CONCLUSIONS 

From this study of Poisson's equation in collisionless TD, it can 
be concluded that the difficulty in solving this second order 
differential equation by standard computational methods, such as 
Runge-Kutta or Hamin schemes, can be avoided in many practical problems 
by using the so-called quasi-neutrality approximation. For the broad 

2 3 
ion-dominated layer illustrated in figure 1 (D ~ 10 -10 A), the 
relative error of the quasi-neutral solution is of the order of 
10 ^ - 10 ^ for the electric potential. 

For the thin electron-dominated layer illustrated in figure 2 
(D = 5A), the quasi- neutrality approximation holds to a relative 

- 2 - 3 
precision of the order of 10 - 10 In this electron-dominated layer, 
the error on <j> can be reduced by considering higher order approxima-
tions. Each successive approximation reduces the relative error on <f> 
roughly by a factor of 10. However, as illustrated in figure 4, when the 
characteristic thickness of an electron-dominated layer shrinks to a 
value less than 3 A, the method of successive approximations for solving 
Poisson's equation fails. In these sharp transitions layers, the - 2 

relative charge density is generally larger than 10 . In that case, it 
is expected that Runge-Kutta or Hamin's schemes could be stable 
integration methods. 

In all cases illustrated in this paper, the relative error on < 
is of the order of Qg/en (the relative charge density). This means 
that, even in very sharp transitions with D = 3A, the potential obtained 
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by solving the quasi-neutrality approximation does not differ from the 
true solution by more than a few percent. 

Since, in space plasmas, the Debye length is generally much larger 
than the characteristic scale lengths of density and field variations, 
the quasi-neutrality approximation can be used with much confidence in 
all cases, even in sharp transitions like those involved in the 
mechanism of generation of discrete auroral arcs as proposed by Evans et 
al. [21] and Roth et al. [22], Although the charge-neutrality approxima-
tion were used in these studies, the conclusions that were deduced 
therein remain unaltered, in light of the present study. 

The iterative method of successive approximations, that has been 
developed in this paper to solve Poisson's equation in the case of TD's, 
is suitable when an iiiipj.uveineiiL in the electric potential accuracy is 
desirable, particularly when the thickness of the transition region 
shrinks to D ~ 5 A. But, even in this case, the correction on the quasi-
neutral solution does not exceed 1%. 

It has also be shown that the modifications of the electrostatics 
resulting from the consideration of higher order approximations leave 
the magnetic field distribution virtually unchanged (see figure 3) . 
Therefore, early in the process of iteration, Poisson's equation can be 
decoupled from the equation governing the magnetic field. In particular, 
when the magnetic field coupling is weak, manipulation of the turgid <f>£ 
function in the Appendix can probably be avoided by already ignoring the 
magnetic field coupling from the second order approximation. In that 
case, computation of can be made directly by a Lagrangian method of 
interpolating polynomial. 

When applied to purely electrostatic problems involving solely a 
non-linear Poisson's equation with source of charge depending on the 
electrostatic potential, the application of the iteration process is 
then straightforward. Indeed, as a consequence of the absence of 
magnetic field coupling, the Laplacian of each <f> can then be computed 
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directly by the usual Lagrangian method without resorting to explicit 
expressions for the second derivatives of lower order solutions. 

Generally speaking, the iterative method of successive approxima-
tions developed in this paper can be easily extended to any problems 
involving a non-linear Poisson's equation with a right-hand side member 
depending on the actual potential solution. Compared to other numerical 
methods, this one is conceptually simpler, has a more physical ground, 
does not require a constant x-spacing and need no large computer 
storage. 
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APPENDIX 

The first order approximation <f>̂  is solution of (28), i.e., 

I Z n(a^, = - — ^ (alf B]_) (28) 
e 

where <f>Q is given by (22) . 

By deriving (28) once and twice with respect to x, one obtain 
expressions for a^, <f>B^) and <j>B^) respectively (note 
that the derivative rules for i _ are similar to those given for J Jrst & rst 
use j instead of J in (25) and (26)). It is found 

J01Q + IT [Mo Nioo (jooo Y + al jooi Joio) + Bi G ] a , „ <j>l = - : B (A.l) 
0 

(N10q + - W) 
e 

with 

Y - 3ax J o n - 5 N"J0 J n o J 0 1 Q + 2 N ^ J 2 ^ ( A. 2) 

G - " N W 0 (J011 + 4 J012) 

+ ai Nioo (3 J110 J011 + 2 J010 Jlll> 
- 3 2 

" N100 J010 ( 4 J110 + 2 al J011 N200 + J010 J210} 

+ 3 N 1 0 0 J 0 1 0 J 1 1 0 N 2 0 0 ( A ' 3 ) 

34 



w ~ M0 N100 (j000 j110 " j000 N100 N200 jOIO + j100 Joio) 

2 -1 
" al B1 N100 Jlll 

+ Ni00 ( 2 Jïl0 + 2 J010 J210 + al j011 N200>' 

2 -3 
" B1 N100 J010 (J010 N300 + 6 J110 N200) 

+ 3 B? h t o N200 J010 ( A- 4 ) 

and 

'ï ^ x 
( N i o o + r w ) 

t- - s - *i N200 - 2 BÎ *ï J110 + "o ^000 Joio - ai B? W ( A- 5 ) 
e 

with 

S = 

Û1 + q2 B1 + a3 (M0 j000)2 + 2 q4 B1 - 2 < V o j000 

• 2q6 ^0 ^000 B1 * ßl "0 ^000 * ß2 "0 ^100 + j001 al V ( A' 6 ) 

where 
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al = j000 N100 (- 2 N100 N200 j110 + J210 + 2 Ninn N ™ n Jr 100 200 010 

• N100 n300 jOIO} + 2 mO jioo N100 (J110 • N100 N200 jOIO ) 

- 1 2 - 2 
+ M0 j200 N100 J010 + B1 N100 ( 2 al N200 Jlll " al N100 J211 

-1 2 -1 
" 1 0 N100 N200 J110 + 6 J110 J210 " 1 0 N100 N200 J010 J210 + 2 J010 J310 

- 1 2 -2 2 
" 2 al N100 N200 J011 + al J011 N300 + 9 N100 N200 J010 N300 

-1 - 1 2 -2 2 - 8 N I J N - N J N + 2 4 N N 
100 010 110 300 100 010 400 100 200 

-3 3 2 * T T - 1 ? N N J ) 010 110 100 200 010; (A.7) 

a2 " Mo Nioo (jooo J o n " 2 ai N100 J110 j000 J011 

+ 2 al j001 j011 + al j000 J012 + 2 Nioo J110 j000 Joio 

2 al N100 j001 J n o Joio " al N100 j000 Jlll J010 + ^001 J010 

+ 4 j002 J010) • al B1 N100 (3 J012 + aï j013} + B1 N100 (4 *ï X 

2 2 
J110 J012 + 4 J110 J011 + 5 al Jlll J011 + 2 J010 Jlll + 2 al J010 J112) 

••Bl N100 ( 1° al jïl0 J011 + 1 2 al j110 J010 Jlll + 2 J010 J011 N200 

2 2 2 + 2 J Q 1 1 N 2 0 0 + 2al J Q 1 0 J Q 1 2 N 2 Q 0 + J Q 1 0 J Q 1 1 J 2 1 Q 

+ al J010 J211} + B1 N100 ( 1 2 J110 J010 + 1 2 al J110 J010 J011 N200 

2 2 
+ 6 J110 J010 J210 + 3 al J010 Jlll N200} 

2 - 5 2 2 
" 1 2 B 1 N100 J110 J010 N200 

(A.8) 
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-1 -2 -3 2 = - 9a N T + 4 N J J - 9 N T N 3 1 100 Oil 100 010 J110 100 010 200 (A.9) 

4 " M0 N100 al N100 N200 j000 J011 + al j100 J011 

- 2 . - 1 
al j000 Jlll + 2 N100 N200 j000 J110 J010 " N100 j100 J110 Joio 

-1 - 1 . 2 -1 
N100 j000 J210 J010 " N100 ^000 J110 " al N100 N200 j001 Joio 

al j101 Joio + ai j001 J110) 

Bî hlo (J111 + aï J112} + Bï N100 (N200 joii + aï N200 J012 

3 al J210 J011 + b al J110 Jlll + 2 al J010 J211} 

N100 ( 8 ai n200 J110 J011 + 6 ai n200 joio Jlll + 4 J110 

1 0 J010 J110 J210 + 2 al j010 J011 N300 + J010 J310} 

2 ^ 2 2 2 
B1 N100 ( 1 8 N200 J010 J110 + 6 al N200 J010 J011 + 6 N200 J010 J210 

2 2 - 5 2 2 
3 J010 J110 N300) " 1 2 B1 N100 N200 J010 J110 (A.10) 

5 = 2 B1 Ni00 (al N200 J011 * al N100 Jlll 

-1 ' 2 
6 N100 N200 J010 J110 + 2 J110 + 2 J010 J210 

-2 2 2 - 1 2 3 N N T - N J N 1 100 200 010 100 010 300 (A.ll) 
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2 B1 Nlio (J011 + al J012 } 

al B1 NÏ00 ( 6 J110 J011 + 4 J010 Jlll> 

- 3 2 2 
B1 N100 ( 8 J010 J110 + 4 ai JoiO J011 N200 + 2 J010 J210 } 

-4 2 
6 B 1 N100 J010 J110 N200 (A.12) 

1 M0 ai N100 j000 J011 

- 2 
ßo Nioo jooo J n o Joio 

àl Nioo J001 Joio 

2 -1 
Bi Nioo J o n 

2 2 -1 
al B1 N100 J012 

2 -2 
3 al B1 N100 J110 J011 

2 -2 
2 al B1 N100 J010 Jlll 

2 - 3 2 A R M J T Ö1 Nioo Joio J110 

2 - 3 
2 al B1 N100 J010 J011 N200 

2 - 3 2 
B1 N100 J010 J210 

2 - 4 2 
3 B1 N100 J010 J110 N200 

(A.13) 

2 - - 2 ai B1 NiJo J011 + 4 B1 h l o Joio J n o 

-3 2 
? R N J N L 1 100 J010 200 (A.14) 
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