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CLIMATE PREDICTABILITY : A DYNAMICAL VIEW 

by 

C. NICOLIS and C.L. KEPPENNE 

Abstract 

Evidence is reported that the dynamics involved in the 500 mb 
geopotential record is associated to deterministic chaos. The fractal 
dimension of the attractor and the average time beyond which predictions 
on individual trajectories break down are estimated. The possibility of 
carrying out predictions beyond this limit on the basis of a statistical 
approach is discussed. 

Résumé 

On montre que la dynamique associée à l'évolution temporelle de 
géopotentiel de 500 mb est une dynamique déterministe possédant un 
attracteur chaotique. La dimension fractale de celui-ci ainsi que le 
temps moyen de prévisibilité sont estimés. Une approche statistique est 
développée permettant, dans certaines conditions, d'étendre les 
prévisions au delà de cette limite. 



S amenva11 ing 

Er wordt aangetoond dat de dynamica verbonden met de 
tijdsevolutie van de geopotentiële hoogte van 500 mb een deterministische 
dynamica is met een chaotische attractor. De fractale dimensie van deze 
laatste en de gemiddelde voorspelbaarheidstermijn worden geschat. Een 
statistische benadering wordt ontwikkeld die, in bepaalde gevallen, 
toelaat de voorspellingen uit te breiden buiten deze grens. 

Zus ammenfassung 

Es wird gezeigt dass die Dynamik verbunden mit der Zeit-
evolution der 500 mb Geopotentialhöhe eine deterministische Dynamik ist 
mit einem chaotischen Attraktor. Die fraktale Dimension dieses letzten 
und der mittleren Vorhersagbarkeitstermin werden geschätzt. Einer 
statistische Ansatz wird entwickelt der, auf manche Fälle, zulasst die 
Vorhersagen zu erweitern. 
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1. INTRODUCTION 

One of the basic reasons •• behind the well-known difficulty of 
long term predictions in the evolution of the atmosphere and climate, is 
in the fact that the principal variables undergo complex dynamics. 
typical features of which are aperiodicity in time and irregular 
patterning in space. According to the common wisdom, this is however only 
a temporary drawback : thanks to the availability of computational 
facilities, it is believed that a detailed description will eventually be 
achieved, leading to a theoretically unlimited predictive capability. 

Our purpose in this work is to present a rather different view. 
First, we shall report on some data analysis suggesting that the dynamics 
associated with low frequency atmospheric variability corresponds to 
deterministic chaos. As a consequence, the underlying system will turn 
out to be extremely sensitive to initial conditions, in the sense that 
initially nearby states diverge exponentially in the course of time 
(Guckenheimer and Holmes, 1983). Because of the inherent uncertainty 
related to the finite precision of measurements, this will entail that 
individual trajectories cannot be predicted beyond a certain interval of 
time (Lorenz, 1984). We shall show that this time is an intrinsic 
property of the system, and give an estimate for the particular set of 
atmospheric data we shall analyze. Finally, we shall suggest a 
possibility for carrying out predictions beyond this intrisic limit, 
based on the idea that a description in terms of individual trajectories 
must be abandoned in favor of a statistical approach. 

2. THE DATA SET 

In previous work we have analyzed the oxygen isotope record of 
a deep sea core of the last million years using the above described point 
of view,and produced evidence of chaotic dynamics on this long time scale 
(Nicolis and Nicolis, 1984; 1985). Here we shall deal with variability on 
a shorter time scale, associated with the 500 mb geopotential record 
(Keppenne and Nicolis, 1988; see also Freadrich, 1986; Essex et al., 
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1987). The particular data set we shall consider is the daily record over 
a period of 24 years starting from January 1st, 1961 of the following 
nine western European stations :. Bordeaux, De Bilt, Lisbon, London, 
Marseille, Paris, Reykjavik, Rome and Stockholm. Fig. 1 depicts a repre-
sentative time series drawn from the data at the Marseille station. 

We want to identify the salient features of the dynamical system 
associated with these data, independent of any modelling. To this end, we 
embed the evolution in phase space, the space spanned by a set of 
linearly independent variables taking the dominant part in the dynamics. 
We do not know offhand the number of these variables, but a result 
established in 1981 by Takens stipulates that they can be picked up from 
the initial time series and the hierarchy of variables obtained from it 
by applying successively higher shifts r, 2r, ... etc. 

x l ( t . ) 
V V w 

x 2 ( t . ) X (t. + r) 
o I 

. . . . . . x o ( t N + r ) 

(1) 

w 
X (t. + (n-1)r) 
O 1 

X o ( t N + (n-l)r) 

An alternative procedure is to combine Takens' method and the 
familiar empirical orthogonal function analysis. EOF s are just the 
eigenvectors of the covariance matrix i.e. the matrix of quadratic 
averages. They therefore describe variables that are statistically 
independent up to third order correlations. Using Takens' reconstruction, 
the covariance matrix takes the form : 

N_ 
1 T 

. - I X ( t , + ir) X (t + jr) ; i,j - 0,1 n-1 (2) 
i j N T k-1 

where N is the number of data points. 
Let A. > > ... \ be the eigenvalues of the covariance matrix and 

c ( , c the corresponding eigenvectors. The space spanned by these 
latter is referred to as singular space (Broomhead and King, 1986) . 
Embedding our data into this space amounts therefore to switching from 
the state vector X - ^ X } to a state vector Y - X.c, where c is 
an nxn matrix whose columns are tRe eigenvectors c^. 

3. THE WEATHER ATTRACTOR 

It is now clear that in the space spanned by the time lagged 
variables or by the EOFs the time evolution given by our data set will 
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lie on a curve, the phase space trajectory. Sooner or later this trajec-
tory will converge to a certain set (or manifold) , which will be referred 
to as the attractor (Fig. 2). An attractor describing chaotic motion with 

Fig. 2. Schematic representation of a phase space trajectory converging 

sensitivity to initial conditions is a very complex set, generally 
different from the familiar shapes of Euclidean geometry. A very impor-
tant quantity characterizing this difference is the correlation 
dimension, u, generally a noninteger number for a chaotic attractor (see 
for instance Mayer-Kress, 1986). To determine v one counts the number of 
pairs of data points which lie within a prescribed distance r 
(Grassberger and Procaccia, 1983). One can show that for small r, this 
number scales as 

z 

y 

to an attractor set. 

C(r) - r (3) 
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Obviously for v - 1, 2, .... one obtains the familiar Euclidean mani-
folds (lines, surfaces, etc) , but for f non-integer and greater than 2 
one deals with a fractal object. 

These considerations suggest the following algorithm : 

(i) Choose increasingly large values of embedding dimension n, and for 
each n plot the values of X - (X^ X ) for the N^ data points 
(cf. eq. (1)). 

(ii) For each n, determine the correlation dimension, v of the above 

plotted data set. 

(iii) Study the dependence of v for increasing n (Fig. 3). If this 
dependence saturates to some value v beyond a certain reasonably 
small n , we will conclude that our system is a deterministic 
dynamical, system. As for n , it will represent the minimum number 
uf variables needed to doccriba tha dynamics. 

Fig. 3. Dependence of dimensionality, v on the number of phase space 
variables n for a deterministic dynamical system. 
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Table 1 gives Che numbers obtained from five of our data sees. We see 
that the two methods of phase space reconstruction give comparable 
results for each time series as well as for computations involving the 
space average of all signals. All attractors analyzed have a correlation 

TABLE I : Correlation dimension. 

Signal Method of delays Singular phase space 

Lisbon 7.6 7.4 
Marseille 6.8 6.7 
Reykj avik 7.2 7.4 
Roma 8.3 8.2 
Stockholm 7.8 8.1 
Space averaged 7.7 8.0 

dimension in a narrow range with a mean value of - 7.5 and a dispersion 
of 10%, Consequently it is reasonable to ascertain that the individual 
time series refer to a well defined dynamical system describing the 
short term variability of the western European climate. Since the error 
bar associated to these calculations is not easy to estimate despite the 
relative abundance of the data, let us, however, be cautious and forget 
about the fractal nature of these numbers until we show that our 
dynamical system displays the most important property of fractal 
attractors, namely, sensitivity to initial conditions. We carry out this 
analysis in the following section. 

4. LYAP0UN0V EXPONENTS AND PREDICTABILITY 

Let us formulate the problem of sensitivity to initial conditions in 
a quantitative manner. We imagine at time t - 0 a set of data included 
in a small n-dimensional sphere, whose center is on the attractor (see 
Fig. 4). The long time evolution of this sphere is subsequently 
monitored. We order the principal axes of this object from most rapidly 
to least rapidly growing and compute the mean growth rate a^ of the ith 
principal axis p^ over a long period of time : 

rc a /Pi ( r ) \ 
J d r f in —^TT-r ) Jo dr I p.(0) I 

p.(0) being the radius of the initial sphere. The set of a is referred 
to as Lyapounov exponents of the underlying dynamical system. It can be 
shown that there exist as many Lyapounov exponents as phase space 
dimensions (Guckenheimer and Holmes, 1983). One of them is necessary 
equal to zero, expressing the fact that the relative distance of 

a. l lim 
t-wo 

lim 
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f = ' o t = t 1 

Fig. 4. Schematic representation of the exponential divergence of 
initially nearby states on a chaotic attractor. 

initially close states on a given trajectory varies slower than 
exponentially. Others are negative, expressing the exponential approach 
of initial states to the attractor. If the dynamical system at hand is 
chaotic the sphere will evolve to a complex ellipsoidlike form 
reflecting the exponential divergence of nearby initial conditions along 
at least one direction on the attractor. We will conclude in this case 
that there is at least one positive Lyapounov exponent. Note that in a 
well-behaved dissipative system the sum of all exponents must be 
strictly negative (Guckenheimer and Holmes, 1983). 

Our analysis is mainly based on the. work of Eckmann et al. (1986). 
The algorithm developed by these authors allows the estimation of large 
magnitude exponents with a relatively good accuracy. Since we are 
interested in the predictability problem of chaotic attractors we will 
focus only on the largest positive a.'s. We found two such positive 
Lyapounov exponents of comparable magnitude. Therefore one deals here 
with a hyperchaotic attractor. The sum of the positive Lyapounov 
exponents gives an estimate of the Kolmogorov entropy K, whose inverse 
is the mean predictability time of our variable (Schuster, 1984) . As it 
turns out 
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K - 3 weeks (5) 

meaning that this is as far as we can go to predict the 500 mb geo-
potential height over western Europe using the most elaborate weather 
prediction model. 

5. PREDICTABILITY BEYOND THE LYAP0UN0V TIME 

Obviously, there is an imperative need to extend our prediction 
capabilities beyond such limits. But how to reconcile this need with the 
intrinsic limitations imposed by chaotic dynamics ? We shall here 
suggest briefly a modest step toward a systematic method, based on a 
statistical approach. 

The most familiar examples of statistical approach are linear 
regression or the use of Markov chain models (see for instance, Spekat 
et al. , 1983; De Swart and Grasman, 1987; Mo and Ghil, 1987). Despite 
their usefulness they suffer from a fundamental flaw : the inability to 
select in a systematic manner those variables that are indeed likely to 
give rise to a well-defined stochastic dynamics, for instance of the 
Markov type (Feller, 1968). In contrast, in our method statistical 
properties emerge as the consequence of the complexity of the underlying 
dynamics. 

The basic idea is as follows. Operationally, because of the 
inherently limited precision of measurements, atmospheric or climatic 
states are defined in a non-local fashion (Lorenz, 1984). This "coarse-
graining" or "lumping" maps the evolution based on the full set of the 
primitive equations into a complex sequence of transitions between cells 
C , C- in the phase space (see Fig. 5). Among the large number of 
ways to monitor the variables is there, then, one that leads to a 
clearcut stochastic process like for instance a first order Markov 
chain ? We have given a partial answer to this question by finding out 
conditions on the dynamics and on the partitioning of the state space, 
for which a Markov evolution is an exact image of the full dynamics 
described by the primitive equations (Nicolis and Nicolis, 1988). 

Our method is based on the concept of Markov partitions (C.) for 
which the boundaries between cells are preserved by the dynamics.We have 
identified some classes of dynamical systems, which include low order 
atmospheric circulation models, for which the probabilities (p

n(j)). f o r 
being in cell C. of such a partition at time n evolve according to the 
Markovian master^ equation (Nicolis, 1988) 

P n U ) - I W y Pn.i(i) (6) 

The conditional probability matrix W is a positive matrix, whose row 
sums are equal to unity. Its structure can be explicitly determined from 
the dynamical system, once a Markov partition has been determined. 

Eq. (6) allows us to estimate the statistical state of the system at 
time n on the sole basis of the time series (assumed stationary) and of 
the initial data. Now, eq. (6) is a linear equation possessing a unique 
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Fig. 5. Time evolution of a phase space trajectory viewed as a sequence 
of transitions between the cells of a "coarse-graining" 
partition. 

stationary solution. It can be shown that starting from any initial 
condition, the system converges to this unique stationary solution as 
n-*®. Put differently, small changes in the (probabilistic) initial 
conditions will give rise to only slight differences in the time evolu-
tion of the variable of interest. This fact, to be contrasted with the 
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sensitivity to initial conditions of the underlying dynamical system, 
guarantees the fiability of the statistical forecasting. Notice that 
sensitivity to initial conditions has been instrumental in allowing us 
to cast the dynamics in a Markovian form. 

It should be realized that the increased fiability of the statistical 
description is obtained at the cost of a partial loss of information, 
arising from the coarseness of the cells C. . In this view an "optimal" 
forecasting would therefore amount to reconciling, in a judicious 
manner, these opposing trends. 

6. CONCLUSIONS 

Let us summarize our main results. 

(i) The dynamics involved in the 500 mb geopotential record stems from 
a deterministic dynamical system of few degrees of freedom. 

(ii) This system shares two essential features of deterministic chaos : 
fractal attractor dimension and at least two positive Lyapounov 
exponents. 

(iii) Despite the limited number of variables involved the system is 
intrinsically unpredictable beyond a time of the order of a few 
weeks. 

(iv) It is possible to set up a systematic statistical description, 
which is an exact image of the dynamics. This description allows 
one to extend our predictive capabilities beyond the limits 
imposed by chaotic dynamics. 

We believe that these approaches are likely to shed some new light 
into the basic problem of prediction in meteorology and climatology. 
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