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Abstract 

A kinetic description of magnetized plasma flow with mass loading is devel-
oped and leads to a nonlinear wave equation for small scale dispersive magnetosonic 
plasma motions superimposed on large scale motions due to mass loading. The mass 
loading can drive quasistationary, finite-amplitude magnetosonic type waves in a su-
personic plasma flow, even though small amplitude linear disturbances are damped, 
but only when the magnetosonic Mach number drops to 2 during the slowing down 
of the mass ioaded plasma flow. Nonlinear motions with constant amplitude could be 
permanent features of a mass loaded plasma flow, as in the neighborhood of comets 
and planets \yith extended atmospheres but negligible magnetic fields. The relation 
between the wave amplitude and the local magnetosonic Mach number is computed 
and can easily be compared with in situ measurements in cometary plasma environ-
ments. 

Samenvatt ing 

Een kinetische beschrijving is ontwikkeld voor een gemagnetizeerd stromend 
plasma met massalading en leidt tot een niet-lineaire golfvergelijking voor klein-
schalige dispersieve magnetosonische plasmabewegingen, gesuperponeerd op groot-
schalige bewegingen te wijten aan de massalading. Deze massalading kan quasista-
tionaire magnetosonische golven met eindige amplitude opwekken in een supersonisch 
stromend plasma, zelfs al zijn lineaire golven met kleine amplitude gedempt, maar 
alleen als het magnetosonisch Machgetal naar 2 daalt gedurende de vertraging van 
het stromend plasma door de massalading. Niet-lineaire golven met konstante am-
plitude zouden dus blijvende kenmerken kunnen zijn van stromende plasma's met 
massalading, zoals in de omgeving van kometen en planeten met een uitgestrekte 
atmosfeer maar met verwaarloosbaar magneetveld. Het verband tussen de golfam-
plitude and het lokaal magnetosonisch Machgetal is berekend en kan gemakkelijk 
vergeleken worden met in situ metingen in kometaire plasma's. 
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Résumé 

On a développé une description cinétique du flux d'un plasma magnétisé 
avec chargement de masse, résultant en une équation nonlinéaire pour des mouve-
ments dispersifs et magnétosonores à petite échelle, superposés à des mouvements du 
plasma à grande échelle dûs au chargement de masse. Ce chargement de masse peut 
générer des ondes magnétosonores quasistationnaires d'amplitude finie dans un flux 
de plasma supersonique, bien que des perturbations de petite amplitude soient amor-
ties, mais seulement quand le nombre de Mach magnétosonore tombe à 2 pendant 
la décélération du flux de plasma avec chargement de masse. Ces ondes nonlinéaires 
à amplitude constante pourraient être des caractéristiques permanentes d'un flux de 
plasma avec chargement de masse, comme au voisinage des comètes et planètes avec 
une atmosphère étendue mais un champ magnétique négligeable. La relation entre 
l'amplitude de l'onde et le nombre de Mach magnétosonore local est calculée et peut 
facilement être comparée aux mesures faites in situ dans l'environnement des plasmas 
cométaires. 

Zusammenfassung 

Eine kinetische Beschreibung eines magnetisierten Plasmaflusses mit Massen-
ladung ist entwickelt und führt zu einer nichtlinearen Wellengleichung für disper-
sive, magnetosonore Plasmabewegungen auf kleinen Maßstab, superponiert auf Be-
wegungen mit großem Maßstab wegen der Massenladung. Diese Massenladung kann 
quasistationären, magnetosonoren Wellen mit konstanter Amplitude antreiben in 
einem Überschallfluß , eben wenn lineare, infinitesimale Störungen gedämpft wer-
den, aber nur wenn die magnetosonore Machzahl zu 2 senkt während der Plasmafluß 
mit Massenladung langsamer wird. Solche nichtlineare Bewegungen mit konstanter 
Amplitude könnten permanente Kennzeichen des Plasmaflusses mit Massenladung 
darstellen, wie in der Nähe von Kometen und Planeten mit ausgedehnter Atmo-
sphäre aber vernachlässigbarem Magnetfeld. Die Relation zwischen die Wellenampli-
tude und die lokale magnetosonore Machzahl ist berechnet worden und kann leicht 
mit in situ Meßwerten in kometaren Plasmen verglichen worden. 
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1. I N T R O D U C T I O N 

There are various astrophysical situations where a magnetized plasma flows 
through a neutral gas. One prominent example is the interaction of the solar wind 
with extended cometary atmospheres, studied in detail following the recent success-
ful cometary missions (see review by Galeev, 1987), or with planets having relatively 
extended atmospheres but small or no intrinsic magnetic fields. Among the more 
distant objects one could mention stellar winds, or astrophysical plasma jets from 
the nuclei of active galaxies, or again expanding shells of supernovae remnants pass-
ing through and interacting with the neutral component of the interstellar medium 
[Petelski et al., 1980; Petelski, 1981]. Inside the Jovian magnetosphere there is yet 
another example of such an interaction: the Io plasma torus resulting from the ion-
ization of material evaporating from the surface of Io [Galeev and Khabtbrakhmanov, 
1986; Horton and Smith, i988j. 

The interaction of a plasma flow with a neutral gas gives rise to a so-called 
mass loading. By this one means that newly ionized particles, created by several 
ionization processes such as photoionization, electron impact or dissociative ioniza-
tion, are incorporated into the main plasma flow. The relative motions between the 
original plasma and the newly ionized particles induce electric fields, which accelerate 
the new ions and give them drift .velocities Vp = E x B / B2. There is, of course, the 
feedback effect on the original plasma flow, which is decelerated so as to conserve 
momentum and energy in the combined system. In the case of slow electromagnetic 
field variations (adiabatic motions of the particles), the new plasma particles acquire 
a thermal velocity equal to the drift velocity, due to their motion transverse to the 
magnetic field. 

So the main effect of the mass loading on the plasma flow is its deceleration, 
although the accompanying pressure gradients can in some cases compensate the 
inertial forces and ensure a steady state situation. This was e.g. in the case of the 
solar wind interaction with comets originally considered by Walks [1973] and Wallis 
and Ong [1975] and more recently by Galeev, Cravens and Gombosi [1985]. They 
found that smooth deceleration of the supersonic solar wind flow is possible until the 
mass flux of the flow reaches a critical value (pu)c = 4/3, corresponding to a local 
Mach number M = 1. This means that a stationary picture cannot be the whole 
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story and that a shock transition has to occur somewhere before the sonic point of 

the flow. 

In the case of planets with intrinsic magnetic fields the interaction region 
between the solar wind and the magnetosphere is usually very small compared to the 
size of planet. This means that the braking of the solar wind flow occurs in a short 
distance and the characteristics of the stationary bow shock are determined almost 
exclusively by the properties of the solar wind far upstream. In the case of comets, 
however, having no magnetic field of any significance, no rigid obstacle is present to 
play the role of a piston generating a shock. Physically this means that the interaction 
region is very wide and its size is determined by the coma. Nevertheless the solar 
wind flow possesses another intrinsic spatial scale, the dispersive length scale, which 
was the only important one in the case of a magnetized planet. It is precisely the 
interaction of these two very different scales which determines the bow shock in the 
case of comets. 

The ratio of the dispersive scale to the characteristic size of the coma intro-
duces in a natural way a small parameter and one can then exploit the weak inter-
action between plasma motions on such vastly different scales. Tha t is, small scale 
motions, on scales much shorter than the ionization scalelengths, have to influence 
the plasma flow. In a hot collisionless plasma the low frequency magnetosonic type 
wave motions exert a major influence, higher frequency disturbances being globally 
of much less of importance. 

« Galeev and Khabibrakhmanov [1989] considered the collisonless interaction 
of small scale dispersive motions with large scale motions induced by mass loading, 
in the case of solar wind interaction with cometary atmospheres. This interaction 
leads to finite amplitude magnetosonic modes in the region of mass loaded plasma 
flow with magnetosonic Mach numbers less than 2. This Mach number is defined by 
characteristics of the large scale motions. It is thus natural to suppose that the real 
cometary shock must be somewhere in this region, that is, the interaction of large 
and small scale motions is indeed responsible for the bowshock formation. 

Numerical simulations [Galeev, Lipatov and Sagdeev, 1985; Omidi and Win-
ske, 1986] show that the cometary bowshock Mach number is close to 1.7 ~ 2 and 
is only weakly dependent on the supply rate of neutral material from the cometary 
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nucleus. Another consequence of this interaction between motions on different scales 
is the damping or growth of nonlinear waves. As a result, there are quasistationary 
nonlinear waves, propagating with almost constant amplitudes. 

In the present paper we will analyze quas is tat ion ary nonlinear motions in 
general, following the approach outlined by Galeev and Khabibrakhmanov [1989]. 
Both that paper and the present one run along similar lines, but here we fully take all 
nonlinear and mass loading effects into account, contrary to previous treatments. We 
expand the solution of the Vlasov equation for the plasma flow particles (Appendix 
C) in appropriate variables // and <f>, where (J. = v\/2B is the magnetic moment 
and 4> the modified gyrophase angle of a particle (Appendix B). The right hand side 
of this Vlasov equation is determined by the ionization rate of the neutral particles 
(Appendix A). The expansion of the solution allows us to calculate the total current. 
Upon substitution of the resulting currents for each plasma species into Maxwell's 
equations we get a set of equations describing the motion of the magnetized plasma 
flow. The analytical analysis is then straightforward, as the equations are already 
conveniently expanded in the derivatives of the electromagnetic fields. So in Section 2 
we present the kinetic description of slow motions of the mass loaded plasma flow. In 
Section 3 we consider the ionization scale motions of the flow and in Section 4 motions 
on a much shorter dispersive scale. Such a division is convenient and justified here 
because of the very large differences between these scales. Finally in Section 5, the 
interaction between motions on these two different scales determines the evolution of 
the quasistationary nonlinear waves. 

2. K I N E T I C D E S C R I P T I O N OF M A G N E T I Z E D , M A S S LOADED 
P L A S M A FLOW 

For simplicity we will consider the motion of a mass loaded plasma flow only 
in the plane transverse to the magnetic field direction (2-axis), magnetic field which 
has thus only one component. The Vlasov equation for the distribution function of 
the plasma particles in the variables n = v\/2B (the magnetic moment) and 4> (the 
modified gyrophase angle, see Appendix A) is given in Appendix B. The newly ionized 
particles, embedded now in the main plasma flow, are considered to be initially cold, 
as the thermal speed of the neutral particles is very small compared to the local 
drift velocity of the plasma. This assumption yields a relatively simple form of the 
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distribution function of newly ionized particles (A.l) and of the source term in the 
Vlasov equation for the plasma species (A.4). We consider quasistationary motions 
of the plasma with spatial scales much greater , than the ion gyroradius rc, and the 
electron gyroradius r c e . Using this approximation we expand the solution of the 
Vlasov equation for the ions in the small parameter e = 0(w/f2) = 0{krci), where 0 
is the gyrofrequency of the ions and u and k are the inverse time and spatial scales 
of the plasma motion, respectively. The expression for the solution of the Vlasov 
equation up to the third order in e is given in Appendix C. With the help of this 
solution one calculates the total current j : 

j = / v F Q ( r , v , 0 d 3 v , (2.1) 
a 

where the subscript a denotes the plasma species and ea is the charge of particles 
of species a . This expression can be used to obtain the equations of motion for the 
plasma flow from Maxwell's equation 

c2V x B = ^ + - j . (2.2) 
Ot £ o 

The y-component of this is the equation of motion for the plasma along the x-axis. 
The drift velocity along the x-axis, vox = ƒ = Ey/B is in a first approximation the 
bulk velocity of the plasma. 

Now we will consider only one-dimensional motions along the x-axis. This 
implies that the drift velocity vDy = -g = -Ex/B along the y-axis is zero, although 
it has nonvanishing gradients. It is then easy to determine the evolution of g from 
the x-component of equation (2.2): 

3P ~ n r 

2 dx mB2 2 B 
\fTB ~ v 

+ - T— = 0 . 

(2.3) 

Here we used up to second-order terms (the orders of the terms refer to powers of 
l /f2), because g occurs only in the second or higher order terms in the equation for 
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the motion along the stagnation line: 

dEr, o dB eB f P 2 P _ j / / 

3 P 
+ n U 2 2mB2 

1 / I I P U T 3 f 3 1 1 

~ Ô 2 B x + B f ~ 

B f d f 2 P a 3 n 
+ r ^ ^ + B 

I I I 

2ft2 I dx mB2 dx 3 m 2 £ 3 y 

_ f f 2 - , / ! ! - — — - f ^ - ) 3 ' 2 ' ) } = o . 

U2 \ B\ 2B 3 dx2B\2Bj J j 

(2.4) 

In equations (2.3-4) the operator T is denned as T = d/dt + fdjdx — gd/dy. For 

the sake of simplicity, all variables will eventually be supposed independent of y, so 

that later we only consider one-dimensional motions of the plasma flow. Also, the 

standard designation for derivatives d./dx = .x is used. 
We have to add equations governing the evolution of the plasma density n, 

r oo 
n = B Fo(r,M)dM, (2.5) 

Jo 

of the ion pressure P , 
P f ° ° 
- = B2 F0(r,Ax)/xdAi, (2.6) 
m Jo 

of the second moment II (in the magnetic moment y, of the particles), 

TT f ° ° 
= B 3 P0(r,M)M2dM, (2-7) 

mi J0 

and of the magnetic field B. However, it is easier to use equations governing the 

changes in n / B , P / B 2 and I I / B 3 , because of their invariance in the case of zero 

production rate u. This is a consequence of the adiabatic conservation of the magnetic 

moment of the particles during slow motions: 
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For the evolution of the magnetic field we can use Maxwell's equation V x E + d B / d t = 
0, which in our notations is written as 

TB = (gy-fx)B. (2.11) 

So we have a complete set of equations (2.3-4),(2.8-11) describing the slow 
motions of the plasma, As can be seen from the method of expansion of the distri-
bution function in Appendix C, slow motions here mean motions with characteristic 
time and space scales much greater than the ion gyroperiod and gyroradius, respec-
tively. 

3. QUASISTATIONARY PLASMA MOTIONS: 
LARGE SCALE MOTIONS 

Let us now consider the quasistationary motions described by the set (2.3-
4). As was stated in the Introduction, we take into account motions simultaneously 
on two very different spatial scales and it is hence advantageous to distinguish con-
tributions on different scales from the very outset. Every variable of the system is 
supposed to have two parts, one purely stationary and another one with a weak time 
dependence. The former describes the large space scale variations of the plasma flow, 
whereas the latter takes dispersive effects into account. For example, the flow veloc-
ity ƒ along the stagnation line has a stationary part f(x) and a part f(t,x) which 
depends only weakly on time. 

Neglecting the small scale motions in the set (2.3-4),(2.8-11) yields the 

following magnetohydrodynamic equations: 
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ƒ d h v 
dx B B' 

d_P_= vrn] 
dx B2 2B2 ' 
d_U_ _ um2f3 

dx B3 ~ 4Bz ' 
dBf _ 

dx 
The large scale motion is precisely the one used by Galeev, Craven and Gombosi 
[1985] to describe the solar wind flow in the vicinity of comets. We can use their 
solutions for (3.1), in the limit of small magnetic field pressure (neglecting it in the 
first equation): 

P = mnoo/^ - mhf2, 

~ r r I ^ / o o foo 
n j — ttoo / o o 

3ƒ 3/2 (3.2) 

^ o o / o o ^ o o / o o 4 7 r V g r n 0 0 / o o r 

Here the subscript oo denotes the undisturbed solar wind values. The plasma pro-
duction rate u depends on the production rate Qn of neutral cometary gas, on a 
constant gas outflow velocity Vg, on a characteristic time T for photoionization and 
on the radial distance r f rom the cometary nucleus, hence u = Qn / (47rV^rr2) . 

It can now be seen that the characteristic space scale for large scale plasma 

motions is 

RL = . u
9 n , • (3-3) 

The expressions (3.2) completely define these large scale motions, except near the 

point with large gradients where the local Maçh number, defined through M 2 = 

mhf2/2P = 2(ƒ - 1 /4 ) / ( 1 - ƒ), goes to 1. This means ƒ = 1/2, with ƒ = / ' / / o o -

9 



4. QUASISTATIONARY P L A S M A MOTIONS: 
D I S P E R S I V E S C A L E MOTIONS 

Now we will take into account the dispersive effects on the mass loaded 

solar wind flow. This is easily done by taking advantage of the fact that the ratio 

of the dispersive scale a o to the plasma production scale R e (defined in (3.3)) is so 

small. The spatial derivatives of the large scale motions will then be smaller than 

those of the small scale motions by the same ratio. The following analysis is in fact 

based on the expansion of the set (2.3-4),(2.8-11) in the small parameter CID/RL-

Before doing that, however, we note that in the opposite limit (Re = 0, signifying the 

absence of mass loading) the set (2.3-4),(2.8-11) describes nonlinear magnetosonic 

type motions (see e.g. Mikhailovskii and Smolyakov [1985]). 

For quasistationary motions, where in the operator T the time derivatives 

d/dt are much smaller than the fd/dx terms, one reduces the set (2.3-4) ,(2.8-11) to 

one equation for perturbations in the magnetic field. These perturbations, denoted 

by b and defined through B/B = 1 + b(t,x — ut), obey a KdV-equation 

2 P + £ 2 / m o \ b^ + ^ + a 2 D b x x x = o. (4.1) 

P(f-u) J 

Here p = mh is the mass density of the plasma and ap the dispersion length for the 

magnetosonic wave, defined through 

aD = (4.2) 

We see that in the absence of mass loading (u = 0, that is, the values of ri/B, P / B 2 

and Tl/B3 are adiabatically conserved) the set (2.3-4) ,(2.8-11) describes soliton-type 

nonlinear motions: 6(0) 
6 = 7 Y T 1 777' (4-3) 

cosh («(x — ut J) 

where 
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( ƒ - " ) 
1 . I V~2 

V = 

are the soliton amplitude, its characteristic width and the velocity of the linear mag-

netosonic waves, respectively. 

The preceeding results are well known. They include large scale motions, 
describing the smooth deceleration of the solar wind flow, as well as soli ton-type 
wave motions on the small scale (dispersive motions). It is worth noting that the 
description used in this paper is purely a kinetic one and thus automatically obviates 
problems concerning the precise calculation of the viscosity tensor in a hydrodynamic 
treatment (see Kennel and Sagdeev [1967]; Macmahon [1968]; Kennel [1968]). The 
kinetic description enables us to reproduce results of Mikhailovskii and Smolyakov 
[1985] derived by another approach — they used linear kinetic theory to calculate 
thé dispersive terms and then a hydrodynamic model to describe nonlinear effects 
in the wave equation. Moreover, in principle only a full kinetic t rea tment can give 
an accurate computat ion of the effects of different warm plasma components on the 
nonlinear motions, in particular on the dispersive lengthscale. Although Appendix C 
has all the expressions needed for such calculations, it is not the aim of the present 
paper to pursue this aspect further . 

It is also well known that if we include small dissipative terms, the soliton 
solution has two different kinds of evolution, depending on how the dissipation is cat-
alogued. If the dissipative term is proportional to b ("hydrodynamic" dissipation), 
we have the motion of a soliton with slowly varying amplitude. In this case there is 
no shock. If on the other hand the dissipative term is proportional to bxx ("viscosity" 
dissipation), then the wave equation describes a train of solitons with different am-
plitudes and this gives the s tructure of a collisionless shock [Sagdeev 1966]. The next 
section is devoted to the analysis of the wave equation, taking the effects of weak 
mass loading into account, tha t is, the above mentioned ratio of spatial scales ap/ i?£, 
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is small. We will see that the main terms have exactly the form of "hydrodynamic" 
as well as of "viscosity" dissipation. 

5. QUASISTATIONARY P L A S M A MOTIONS: 
EVOLUTION OF N O N L I N E A R WAVES 

Now we consider the slow evolution of quasistationary nonlinear waves in a 
hot plasma flow with mass loading, that is we are interested in the nonlinear solution 
of the set (2.3-4),(2.8-11) which is quasistationary in the reference frame of the 
neutral gas. In the absence of mass loading such a solution has the form of a soliton, 
as we saw in the preceeding section, with velocity u in a frame of reference moving 
with the plasma and with velocity f — u relative to the cometary nucleus. If one 
takes weak mass loading into account we must add to (4.1) dissipative terms which 
can be determined from the set (2.3-4),(2.8-11). The main term, in the case where 
the ratio of dispersive scale to mass loading scale is small, is proportional to b and 
to bxx. We thus find the nonlinear equation 

o / t/2 \ 
bx + 3bbx + a2Dbxxx + uvb2 

ii \ \ / u \ I 
6 = 0, 

p(f-u)*[\\fj f J rnuy\fj V ƒ, 

(5.1) 
where the viscosity dissipation term uv has a rather complicated dependence on the 
large scale motion. 

In the case of weak nonlinearity ( b / a o b x x <C 1) and weak mass loading, 
(5.1) can be solved by perturbation techniques (adiabatic motion of the soliton (4.3) 
with slowly varying amplitude). As customary for a perturbation method, the con-
dition that the zeroth-order solution (4.3) be orthogonal to the first-order solution 
determines the evolution of the soliton amplitude: 

2 1.(0) , umf 
— o} H 
f-u 
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From this equation it is evident that nonlinear waves can propagate quasistationary 

in a mass loaded plasma flow, provided the term between curly brackets vanishes in 

(5.2). This condition determines a second relation, in addition to (4.4), between the 

soliton amplitude and its propagation velocity. Both together give the quasistationary 

soliton amplitude at any point in the mass loaded plasma flow. Using the large scale 

motion characteristics (3.2), we can express the only parameter in the dissipative 

term of (5.2), which depends on these parameters, in terms of the magnetosonic 

Mach number of the plasma flow M = ƒ / V : 

ht= W ( 5 3 ) 

mu 2(1 - M 2 ) ' { ' 

One then finds that the dissipation term is proportional to 

1 / ' / 5 1 - M 2 

where £ = 1 — u/f. This second-order polynomial in f has two roots 

6 -

Ml - 1 
Z2 -

2 , (5-5) 

M2 + 0 . 5 ' 

that determine the propagation velocities of quasistationary localized solutions. Here 

we consider not only soliton-type solutions of the wave equation (5.2) but also a 

wider class of quasistationary solutions as a wave packet or a train of solitons, which 

is the limiting form of a moving collisionless shock in the case of small viscosity. 

All such solutions are the more stationary in a mass loaded plasma flow, the closer 

their propagation velocities are to the values (5.5). For linear magnetosonic waves 

(£ = ± l / A f ) one can reproduce from (5.5) the result of Galeev and, Khabibrakhmanov 

[1989] that magnetosonic waves propagating forward through a mass loaded plasma 

become unstable as the local magnetosonic Mach number decreases to M — 2. For 

backward propagating linear magnetosonic waves this value is a little less, M — 1.74. 
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CONCLUSIONS 

We have shown in this paper that, although supermagnetosonic mass loaded 
plasma flows with M > 2 are stable against infinitesimal disturbances, sufficiently-
strong nonlinear disturbances have a definite growth rate due to mass loading. There 
are solutions for the wave equation of the form of l/cosh2-solitons with a threshold 
amplitude, which are quasistationary — their growth rates are zero — on the ion-
ization time scale. It seems that such solitons are a permanent feature of the mass 
loaded plasma flow, because arbitrary disturbances of the KdV-equation split into a 
train of solitons, as is well known from soliton theory. According to our results, soli-
tons with amplitudes below the threshold will be damped, whereas stronger ones will 
be accelerated and their amplitudes will grow until overturning. Only solitons with 
threshold amplitudes can be quasistationary. At the point in the plasma flow where 
the magnetoaonic Mach number equals 2, the threshold amplitude for forward propa-
gating waves decreases to zero. As was pointed out by Galeev and Khabibrakhmanov 
[1989], this can be indicative of the beginning of the bowshock formation process in 
the neighborhood of comets. Similar conclusions can be drawn for the other astro-
physical occurrences of mass loaded plasma flow, of which some indicative examples 
were given in the Introduction. These are, however, as yet less amenable to in situ 
observational verification. 
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A P P E N D I X A: D E S C R I P T I O N OF NEWLY IONIZED PARTICLES 

Let us suppose that the distribution function of the neutral particles in a 
cometocentric frame is maxwellian with a characteristic temperature m A/2, m being 
the mass of the particles: 

We change variables to the magnetic moment fj. = Uj_/2B, with v\ — v2 + v2, and 
to the gyrophase <j> of the ionized particles: 

vx = \J2\JLB cos <J) + ƒ, 
_ (A. 2) 

vy = \/2(j.B s'mcf) — g, 

where ƒ = EyjB and —y — -Ex[ B are the components of the drift velocity of the 
plasma. One then gets the initial distribution function of the newly ionized particles, 
in the following form: 

1 ( 2fj.B + g2 + f 2 \ ( 2V2^B ~ . - \ $ 0 = — exp I — 1 exp I ——(ƒ cos0 - gs\n<p) 1 . (A.3) 

We now see that the description of the newly ionized particles is simpler if one replaces 
the gyrophase (j> by a modified gyrophase <j> = <j> + n + a, with a = arctan(g/f) the 
initial gyrophase of the particle at the moment of ionization. Taking into account 
the following series expansion exp(2cos#) = -M2) + 2 X^^li Ik[z) cos k8, where Ik{z) 
are the modified Bessel functions of the first kind, and using the expansions for 
large arguments (z » l) , namely I„(z) = ^ = ( l - 4t'8"~1 H j , the distribution 
function for the newly ionized ions can be expressed in the small temperature limit 
in the form: 

lim — 7 = = = exp f - ^ — ( I+ 2 jr cos k<j>) 
A — » 0 TTy/iTrAwo \ A / ^ J 

(oo 

1 + 2 ^ cos k<p 
k=i 

where v = y/2^B is the initial velocity of the particles perpendicular to the magnetic 
field and v0 = \JP + g2 is the local drift velocity which the newly ionized particles 
acquire at ionization, due to the electric field induced by the solar wind flow. 15 



A P P E N D I X B: V L A S O V E Q U A T I O N F O R THE D I S T R I B U T I O N 

F U N C T I O N IN V A R I A B L E S (n, <f>) 

Now we consider the most simple geometry of a moving plasma. The mag-

netic field vector has only one component, along the z-axis, so that B = (0 ,0 ,5 ) . 

The electric field E = ( E x , E y , 0 ) only has components perpendicular to B . In 

this geometry the drift velocity of the plasma will have two components: Vd = 

{Ey/B,-Ex/B,0) = (ƒ,-<?, 0). 

The Vlasov equation for the distribution function F(t,r,v), describing the 

motion of particles in the above defined field configuration, turns out to be more 

tractable if one uses instead of v the variables (J. (magnetic moment) and <f> (modified 

gyrophase as defined in Appendix A) and expresses F throughout as a function 

F[t,r,fj,,<j>), so that 

dF_(W dr dF_ d»d£ d$_c)F_ 

~dt ~ dt + dt ' dr + dt d\i + dt d<j> ' 

To calculate the derivatives d^/dt and d(f>/dt one uses the particle equations of motion 

d2x _ eB dy e ^ 

dt2 m dt m 

d2y eB dx e 

dt2 m dt m y' 

With the following rule for the change of variables: 

dx 

— = - yJl\xB cos{<(> - a) + ƒ, 
dt (B.3) 
(it! 
— = -y/2fj,Bsm(<f> - a) - g, 
at 

where a = arctan(g/f) is the initial gyrophase of a particle (significant only for newly 

added particles) and using the chain rule for the derivative d/dt\ 

d • d . d . d 

37 = = + + 

dt dt dx dy tX} , 

d d d ( d d\ ^ ' 

= dt+fTx-gd~y-^ H* ~a)Tx+
 Sin(* -a)d-y)> 

16 



one obtains expressions for ji and <f>\ 

ii=^(-TB + B{gy- fT)) 

- [ c o s ( ^ _ a ) - f ƒ ) + sin(0 - a) + Tg) ] (B.5) 

+ n [cos 2(0 - a) ( ~ f x - gy) + sin 2(0 - a) (gx - fy)\ , 

4> =ot - ft + ^ { f y + gx) - (cos{<f> - a)Tg + sin(0 - a ) f ƒ ) 

+ ^{cos2{<j>-a){gx-fy)+sm2{<f>-a){gy + f x ) \ . (B.6) 

Here ft = eB/m is the gyrofrequency of a particle, and s tandard notations for the 
derivatives d./dx = .x and d./dy = .y are used. The operator T is defined as T = 
d/dt + f d / d x — gd/dy. We note that the first term in the expression for (i vanishes 
due to Maxwell's equation ? x E + d B jdl — 0, rewritten in our notationc ae 

TB = B ( g y - f x ) . (B.7) 

This simply means that /x is an adiabatic invariant of the motion of the particle, and 
this is a particular incentive to use the magnetic moment in the following expansions 
of the distribution function for slow motions. 

The Vlasov equation for the distribution function F(fj.,4>), neglecting the 

motion along the magnetic field lines, looks like 

LF = St{F), (B.8) 

the operator L being defined as: 

17 



- - d 11 , , , fTg - gTf \ d 

a fiBx + Tf d ( i s . f g r - g f A a 

f 5 1 5 1 
+ M cos2(^ - a) | ( - / s - gy)— + ~(gx - ƒ „ ) - | 

/ <3 1 1 
+ Ai sin 2(<f> - a) | ( - f y + gx) — + - + /*) ^ } • 

ƒ?«, - g fy \ d 
ƒ2 + g2 J d<t> 

(B.9) 

A P P E N D I X C: EXPANSION OF DISTRIBUTION F U N C T I O N FOR 
SLOW MOTIONS 

To solve equation (B.8) we suppose that terms in T are small compared to 
those in fl. The righthand side of equation (B.8), according to (A.4) and taking the 
Jacobian of the transformation (B.3) into account, will have the form: 

St(F) = - tj) + , (C.l) 

where u is the production rate of the newly ionized particles and 77 = (ƒ2 + g2)/2B 
is the initial value of their magnetic moment. 

The zeroth-order approximation of equation (B.8) gives as only result that 

the zeroth-order distribution function Fo is independent of Averaging the equation 

for Fo over the gyrophase 4> according to 

1 C2* 
± < . . . > « # , (C.2) 
2?r Jo 

we can determine the equation governing Fo: 

TF 0 = ^ 6 { n - v ) . (C.3) 
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For the next approximation we split the distribution function into two parts according 
to F\ = Fi of which the first part is independent of <f>. Averaging now the first-
order equation 

f A - n ^ - V ^ B c o s - . ) { f + I - f f ) 

aFo d F 0 ( C - 4 ) - Aicos2(0 - ot)(/ x + + fj-s'm2{(f) - a ) [ - f y + f x ) - ^ -
oo 

=27\F 0 X ] c o s 

fc=i 
over one obtains an equation for the part F\ which is independent of <f>: 

TFi = 0. (C.5) 
Substituting the solution of this equation back into (C.4), we get an equation for F\, 
with solution 

(dF0 1 / „ ~ dF0 nF1 = - y/2sin{4> - a) j + i [~nBx - f f ) ^ 

+ V ^ B cos(* - a) { ^ + I { - , B y + f „ ) ^ 
(C.6) 

- - s i n 2 ( 0 - a ) ( / z + 0 » ) " ^ 
a , w , ^ ~ „ sin kd> - | cos2(<£ - « ) ( - / „ + - 2TF0 £ 

^ k= 1 
The second approximation to the distribution function can found from the equation 

n d J l = f h + f F l - V ^ B cos(0 - a) a ( i y ^ 2 ) 

^ . (C.7) 
- V W s m ( < f > - « ) d { F l d + y F 2 ) . 

Again averaging this over the gyrophase, we obtain the «^-independent part of the 
second approximation to the distribution function: 

n F 2 = n{g x + - ^/2^B ( s i n a ^ + c o s a ^ ) . (C.8) 
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Substitution of this result back into (C.7) allows one to determine the remaining 

part: 

n 2 F 2 = 

dTF0 ( nTBx+T2f n. . nr A dF0 
cos(0 - a) \J2iiB —^ + x— J-.+ Z (4gxy - ƒ « + 3 f y y ) 

dx \ B 4 v " " Jyy' J dii 
2̂ . ^ /—~ dTFo ƒ iiTBy — T g p . . n , , \ dF0\ 

+ sin(0-a)V^Bj-^+ I -Z y- y- + ^(gyy-Zgxx-4fxy) J \ 

+ f c o s 2 ( , - - + 1 ( „ < * . - B „ , + § f < * + , . , ) f } 

i c) W 
+ \/2fiB — ~ ~~ cos 3(0 - a) - 2<7.T!/ - ,/Tr) 

12 dfj. 
3 ri 

- Sin 3(0 - a) (gyy + 2 / I y -

- 2 M S c o s ^ - a ) | c o s a — + S i n ( i — | 
„ , , * f - d2Fo d2Fo \ 

+ 2 / /Bs in(0 - a) j s i n a - ^ - + c o s a d x d y J 

„ cos kd> 
+ 2T2FoY^ 

k 2 k=l 

.k = 2 
oo 

. — r j r ^ z cos((A; - 1)0 + a) cos((fc + 1)0 - a ) \ cos(20 - a) [ d T F 0 - \ ^ ( + k { k + 1 ) ) + > 

, — - J ^ /S in((fc — 1)0 + a ) sin((fe + 1)0 — <x)\ sin(20 - a) [ dTF0 

+ ^ B { I j I k(k - 1 ) w + 1 ) ) 2 ƒ ~ W 
(C.9) 
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From the equation for the third-order approximation to the distribution 
function: 

n
dJ±=TFz + TF2 - ^Bcos{4> - a) _ yj2\iB sin(<£ - a) dSEl±IA ^ 

o<p ox ay 
(C.10) 

we need only the part averaged over <f>: 

+ j ^ c o s a - ^ s i n a j (C.l l) 

HB f fd2F0 d2F0\ d*F0 . . \ cos 2a — 2 sin 2a > , 
2 I \ dx2 dy2 J dxdy 

and the first harmonics in the gyrophase <f> of the (/»-dependent part: 
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O , ,—=\dT2Fo 3ßB ( d3F0 d3F0\ 
n F3 = r + mt) 

( f3F0 Sy/2JIB f d2TF0 d2TF0 
-f cos a 2—== . 1 r—T 

\ yfïixB 4 y dx2 dy2 

3 / . df2F0 o df2F0V 
+ - sm2a— cos 2a— 

2\ dy dx J 

UB ( ' (d3F0 d3F0 \ . d3F0 \ 
+ T r s 2 a { - d ^ - a * * ) -2sm2ad^d~y) 

1 / f f d2TF0 d2TF0\ n . „ d2f \ 
+ - V W [ c o s Z a ^ - ^ - - ^ - J - 2 S 1 n 3 a — J 

/ f3/ b ^ , ÔFû 

+ ( ^ s s ^ B * - ^ - + Y { B x y y + B x x x ) + T T { f y y + 9 x y ) ) 

U \ '/m\df2Fo Z ß B ( d Z p ° 4. 5 3 M - cos(<£ - a) v / 2 m 5 I — + ^ r j 

/ f 3 F 0 3y/2jïB ( d2TF0 d2TF0 

-sm a [27^Ë - [ + 

3 f n dT2F0 . 0 df2F0\ 
+ ï [ c o s 2 a - ^ r + s m 2 a - d ^ ) . 

uB / ( d3F0 d3F0\ . d3F0 

+ T [COS2a { d ^ d - y - ^ ) - 2 S m 2 a d ^ 

1 > f ( d2TF0 d2TF0\ n 0 d2f \ 
+ - ^sin3a + J - 2cos3a — j 

+ + f-W + T + * » " > - T f + m ) f 

(C.12) 
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