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FOREWORD 

The article " A method for solving Poisson's 
equation in Geophysical and Astrophysical Plasmas " has 
been presented at the " 17th International Symposium on 
Rarefied Gas Dynamics , Aachen ( 8-14 July 1990 ) " . it 
will be published in the procedings of this symposium . 

AVANT-PROPOS 

L'article " A method for solving Poisson's equation 
in Geophysical and Astrophysical Plasmas " a été présenté 
au " 17th International Symposium on Rarefied Gas 
Dynamics , Aachen ( 8-14 July 1990 ) " .11 sera publié 
dans 1 es comptes—rendus de ce symposium . 

VOORWOORD 

Het artikel " A method for solving Poisson's 
equation in Geophysical and Astrophysical Plasmas " werd 
tijdens het " 17th International Symposium on Rarefied 
Gas Dynamics , Aachen ( 8-14 July 1990 ) " voorgesteld . 
Het zal in het verslag van dit symposium verschijnen. 

VORWORT 

Der Text " A method for solving Poisson's equation 
in Geophysical and Astrophysical Plasmas " wurde während 
dem " 17th International Symposium on Rarefied Gas 
Dynamics , Aachen ( 8-14 July 1990 ) " vorgestellt . Er 
wird im Protokoll dieses Symposiums herausgegeben werden. 
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ABSTRACT 

The quasi-neutrality (QN) equation is usually solved by 
an iterative procedure to obtain the electrostatic potential 
distribution in plasmas . We present , first , a new 
numerical method to obtain the same result more efficiently 
This method is based on the numerical integration of the 
differential form of the QN equation . In the case when the 
QN approximation fails to be a valid approximation of 
Poisson's equation (PS) , the latter equation needs to be 
solved . A robust numerical method to solve PE , with 
buundary conditions at two different altitudes, has also been 
proposed . The method consists in integrating numerically by 
the Quadrature Discretization Method (QDM) a differential 
form of PE . For boundary conditions corresponding to the QN 
solution the result coincides with the QN solution . 

RESUME 

L'équation de quasi-neutralité (QN) est habituellement 
résolue par un processus itératif afin d'obtenir la 
distribution du potentiel électrostatique dans des plasmas . 
Nous présentons une nouvelle méthode numérique qui permets 
d'obtenir cette distribution d'une manière plus efficace 
Cette méthode est basée sur l'intégration numérique de la 
forme différentielle de l'équation de quasi-neutralité . Dans 
les cas où l'hypothèse de quasi-neutralité n'est plus valide 
, il devient nécéssaire de résoudre l'équation de Poisson . 
Nous proposons également une méthode numérique robuste qui 
permets la résolution de l'équation de Poisson avec des 
conditions aux frontières à deux altitudes différentes . 
Cette méthode consiste à intégrer numériquement une forme 
différentielle de l'équation de Poisson par la méthode QDM ( 
" Quadrature Discretization Method " ) . Pour des conditions 
aux frontières correspondant à la quasi-neutralité , cette 
méthode fournit la même solution que celle obtenue dans 
l'hypothèse de la quasi-neutralité . 



SAMENVATTING 

De vergelijking van bijna volledige neutraliteit 
(BVN) wordt, normaalgezien, door een herhalende methode 
opgelost, om een verdeling van het elektrische potentieel 
in het plasma te krijgen . We tonen eerst, een nieuwe 
numerische methode , om , op een zeer werkzame manier, 
tot hetzelfde resultaat te komen . Deze methode rust op 
de numerische integratie van de differentiele vorm van de 
BVN - vergelijking. In het geval waarbij de hypothese van 
BVN niet juist is, moet de Poissonsvergelijking opgelost 
worden. Een stevige numerische methode om de Poissons-
vergelijking op te lossen, met voorwaarden aan de grens 
op twee verschillende hoogtes, werd ook voorgesteld. Deze 
methode integreert, op numerische wijze, een diiferen-
tiele vorm van de Poissonsvergelijking, door de BVN 
methode. De oplossing die gekregen wordt, door de 
voorwaarden aan de grens van de BVN voor te schrijven, is 
dezelfde als degene die wordt gevonden door ' de 
vergelijking van BVN op te lossen. 

ZUSAMMENFASSUNG 

Die Gleichung von Quasi-Neutralität (QN) wird 
normalerweise durch eine iterative Methode aufgelöst, um 
eine Verteilung vom elektrischen Potential im Plasma zu 
bekommen. Wir zeigen zuerst , eine neue wirksame 
numerische Methode , um zum selben Ergebnis zu kommen. 
Diese Methode wird auf die numerische Integration der 
differentialen Form der QN Gleichung aufgebaut. Im Fall, 
wo die Vermutung von QN nicht stimmt, soll die Poissons-
gleichung aufgelöst werden. Eine starke numerische 
Methode uro die Poissonsgleichung zo lösen, mit 
Bedingungen an den Grenzen auf zwei verschiedenen Höhen 
wurde auch vorgestellt. Diese Methode integriert 
numerisch eine differentiale Form der Poissonsgleichung, 
mit der QN Methode. Die Lösung, die man bekommt, durch 
Bedingungen an den Grenzen der QN auf zu zwingen, ist 
dieselbe als die Lösung, die man beim Auflösen der QN 
Gleichung bekommt.. 
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I. INTRODUCTION 

Photoionization of the components of the terrestrial 
atmosphere occurs at altitudes greater than approximately 
80km, which is the lower level of the ionosphere. At very 
high altitudes (1000km-2000km) , only the lighter 
constituents such as protons and ionized helium exist 
together with a population of free electrons. The kinetic 
theory of this plasma under the influence of a 
gravitational field and the (self consistent) electrostatic 
field has been the subject of intense interest among both 
kinetic theorists and planetary scientists.1"7 

The calculation of the transport properties of this 
multicomponent plasma and its stability against escape from 
the planet has been considered by many authors.2'4"6- The 
escape of protons and alpha particles from the topside 
ionosphere (approximately 1500 km) is referred to as the 
"polar wind"2'3 in analogy with the supersonic expansion of 
the solar atmosphere which is known as the solar wind.6-8 

A major concern with regard the escape of protons and alpha 
particles from the ' terrestrial ionosphere is the 
determination of the self-consistent electrostatic field 
that plays an important role in the determination of the 
distribution functions of the ions and electrons. 

The quasi-neutrality condition is given by, 

2izini(h) = 0 (1) 
where and n^h) are the charge and number density 
profile of the ith constituent, and h is the altitude. 
Equation (1) is generally used to calculate the 
electrostatic potential distribution ^E(h), in geophysical 
and astrophysical plasmas.7 Indeed, the gravitational 
force acting with different strengths on the ions and on 
the electrons produces a charge separation E-field tending 
to preserve local and global charge neutrality of the 
plasma. 

Equation (1) is a zero order approximation to the 
solution of Poisson's equation for the electrostatic 
potential 
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V2 *E(h) = - (e/60) s ^ n ^ h ) ( 2 ) 

where e is the electronic charge. In all cases when the 
Debye length is much smaller than the characteristic scale 
length of the system, the electric potential distribution, 
<£E(h), obtained by solving Eq. (1) iteratively is a 
satisfactory zero order solution of Poisson's equation Eq 
(2). 

However, at large radial distances, where the 
geophysical plasma density tends to zero (i.e. where the 
Debye length becomes arbitrary large) Poisson's equation, 
which is a non-linear differential equation, must be solved 
subject to appropriate boundary conditions in order to 
determine the correct solution. Similarly, at the interface 
between two regions filled with plasma of different 
temperatures, densities, electrostatic double layers occur, 
and the quasi-neutrality approximation gives non-realistic 
solutions of Eq.(2). The numerical solution of Eq.(2) is 
generally difficult, since the right hand side of Poisson's 
equation is very small. It is given by the difference of 
the electron and ion densities which are very large and 
almost exactly equal. Truncation errors lead in this case 
to numerically unstable solutions. 

We have found an original mathematical method to avoid 
this numerical difficulty. This new method, based on the 
numerical integration of a higher order differential 
equation derived from Eq.(2), gives accurate and 
numerically stable solutions for ^E(h). This method is 
applicable to the case when the Debye length is small 
compared to the scale length of variation of <f>E. it also 
gives accurate results in the. case when the quasi-
neutrality condition, Eq.(1) is a satisfactory first order 
solution. This method has been applied to the calculation 
of the ambipolar electric potential distribution in the 
Earth's ionosphere. Also, a Quadrature Differential Method 
(QDM) has been used to calculate the solution of the 
differential equations for boundary conditions given at two 
different altitudes, and the solutions obtained were 
compared with the other methods of solution. 

4 



II. ION DENSITY DISTRIBUTIONS 

The ion and electron density distributions in 
planetary ionospheres do not depend only on the 
gravitational potential $g given by, $g(h) = -GM/(R+h), but 
also on the polarisation electric field distribution which 
is induced in the plasma by the gravitational forces acting 
on the ions and lighter electrons. Indeed the gravitational 
force for ions is TciL/me times larger than that for the 
electrons, where mi and me are the ion and electron masses 
respectively. These forces tend to produce a charge 
separation which induces the polarisation electric field 
maintaining local quasi-neutrality in the whole ionosphere. 

With the assumption that the atmosphere is isothermal 
and in hydrostatic equilibrium, the density distribution of 
particles of ehnrge Zje and masa mj is given by: 

n-j(h) = nj(h0) exp[ (-mj*g-Zje*E)/kTj ] (3) 

where $E(h) represents the electrostatic potential; T- are 
the temperatures of the ions (i) and electrons (e) ; n"1- (h ) 
are their number densities at the reference altitude,"1 h°, 
that we shall take equal to 1000 km appropriate to the 
Earth's ionosphere. This implies that each constituent is 
in diffusive equilibrium in the gravitational and 
electrostatic fields: g = -d$g/dh and E = -d$E/dh. 

The hydrostatic equations for ions and electrons are 
then given by : 

kl^ dn.j/dh = - n ^ d$g/dh - Z^er^ d$£/dh (4) 

kTe dne/dh = -neme d$g/dh - Zeene d$E/dh (5) 

III. ELECTROSTATIC POTENTIAL DISTRIBUTION 

We obtain the electrostatic field intensity for which 
the plasma is locally quasi-neutral (SjZjnj = 0) by adding 
Eqs.(4) and (5) after having multiplied their l.h.s and 
r.h.s. respectively by Z^ and Ze. 
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-(SjZjnjitij) d$g/dh - (SjZj2erij) d*E/dh = 0 (6) 

Indeed when the quasi-neutrality condition is verified, the 
gradients of the particle densities satisfy the relation : 
si zi dnj/dh = -Ze dne/dh. Using the definitions of g and 
E, we find that 

2j Zj mj nj / l c Tj e E = - g ( 7 ) 

EjZj nj / k Tj 
This relation is the generalisation for a multi-ionic 

plasma of the so called Pannekoek-Rosseland (PR) formula 
which was established by Pannekoek9 and Rosseland10 for a 
fully ionized hydrogen stellar atmosphere. In this case 
the PR electrostatic potential is simply related to the 
gravitational potential by : 

$E(h) = -(mp-me)$g(h)/(2e) + constant. 

It is easy to verify that under these conditions the 
total (gravitational + electrostatic) force and potential 
energy is the same for the electrons and protons. From Eq. 
(3), the proton density is strictly equal to the electron 
density at all altitudes if this is true at the reference 
altitude hQ, as imposed by the quasi-neutrality condition. 

IV. GENERAL SOLUTION OP THE QUASI NEUTRALITY (QN) EQUATION. 

For multi-ionic plasmas there is no such simple 
formula, and the method then used to determine the value of 

at a given altitude h 1 # is to iterate until that value 
is found such that the r.h.s. of the quasi-neutrality Eq. 
(1) is equal to zero with an arbitrarily chosen precision. 

The QN equation is a non-linear function of $E. Common 
iteration procedures are . the bracketing or bissection 
methods, which can be quite time-consuming in certain 
cases; furthermore, these numerical methods fail sometimes 
to converge toward the expected solution. But in general, 
when the initial value of ^(h-^ in the iteration procedure 
is close enough to the solution, convergence is generally 
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rather fast. This numerical method, well documented in 
Press et al.11, has been used for instance by Lemaire and 
Scherer ' 6 to determine the electrostatic potential 
distribution in kinetic polar wind and solar wind models. 
These numerical methods can become cumbersome and imprecise 
when first and second order derivatives need to be computed 
numerically from a series of values of $E(h ) 
corresponding to a set of different altitudes h1# h", 
•••hN-l* I n t h e n e x t section we propose a more efficient 
and faster method to determine the solution of the QN 
equation. 

V. S O L U T I O N O P Q N E Q U A T I O N BY N U M E R I C A L I N T E G R A T I O N f 
Instead of solving the algebraic equation (l) as 

described above, we found that it is easier and faster to 
obtain the solution nf the QN equation by a different 
method. This new procedure consists of differentiating 
analytically the QN Eq.(1), and then integrating 
numerically the first order differential equation obtained 
with an appropriate boundary condition at hQ. With Eq.(3), 
we find that this differential equation becomes: 

A($e) d*E/dh = B(*E) (8) 

where A and B are non-linear functions of : 
ti 

A = ( e 2 A Q ) Rj CZj2 Nj(h)/kTj] exp [ -Z j e$E/kTj ] (9) 

B = -(e//eQ Rj[ZjNj(h)mjg/kTj] exp[-Zje$E/kTj] (10) 

with 
Nj(h) = nj(hQ) exp[-mj$E/kTj] (ii) 

The boundary condition at h Q is imposed to be $ E = o, in 
order to satisfy the QN at the reference altitude. The 
solution of Eq.(8) has been calculated for nR+(h0) = ne(hQ) 
= 800 cm"3; T H+ = T e = 3 000 K at h Q = 1000 km altitude; 
hN-l = 3 0 0 0 km (N = 28). 

The solid line in Fig. 1 shows the distribution of 
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Fig.l. Electrostatic potential distribution 
corresponding to the quasi-neutrality (QN) solution 
obtained by solving the algebraic Eq.(1) by an iterative 
method (solid line); the symbols correspond to the QN 
solution obtained by integrating the differential Eq.(8) 
with the Quadrature Discretization Method (QDM); the 
solution obtained by integrating the 3rd order differential 
Poisson's Eq.(14) with the QDM is also given by the symbols 
at 28 quadrature points. 
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as a function of the altitude; it corresponds to the 
solution of the QN equation (1) evaluated by any of the 
algebraic methods described in section IV. The symbols (*) 
in Fig. 1 correspond to the values of l>E(hn) at the 2 8 
quadrature points (hn) which coincide with the zeros of the 
Lengendre Polynomial of 28th order. The Quadrature 
Discretization Method (QDM) proposed by Shizgal and 
Blackmore is one of many available numerical method to 
solve the differential equation (8). Of course, a standard 
Runge-Kutta or Hamin algorithm can also be used to perform 
this numerical integration, in this case. The numerical 
results obtained by any of these algorithms coincide 
exactly with the solution of Eq.(1) obtained usually by 
solving this algebraic equation. 

The values of the electric field, E = -d$E/dh, are 
given by -B/A, with A and B defined as functions of h in 
Eqs. (8) and (9). It can be seen that E(h) is not obtained 
here by numerical differentiation, and consequently the 
results with this method are more accurate than with the 
algebra ic method outlined in section IV. 

Similarly, the values of the second derivative of 
which is proportional to the electric charge density, is 
easier to calculate by differentiating B/A analytically 
than by differentiating $E(hn) numerically as indicated in 
the previous section. The values of the polarisation 
electric field is generally small in planetary ionospheres 
: E = 10 8-l0-7 V/m. The solid line in Fig.2 shows 
electric field distribution evaluated as described in 
section IV by solving iteratively Eq.(1) and 
differentiating numerically the *E(hn). The symbols 
correspond to the results obtained at the quadrature points 
with the new resolution method outlined in section V. The 
agreement is perfect. 

The distribution of the excess charge density, An/n, 
which is responsible for this polarisation electric field 
can be determined from 

An/n =-eQ/(e ne) (d/dh) (B/A) (i3) 

It can be seen that in the case considered, the value of 
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ALTITUDE (1000 km) 

Fig.2. Electric field distribution corresponding to the 
quasi-neutrality (QN) solution obtained by solving the 
algebraic Eq.(1) by an iterative method (solid line); the 
symbols correspond to the QN solution obtained by 
integrating the differential Eq.(8) with the Quadrature 
Discretization Method (QDM); the solution obtained by 
integrating the 3rd order differential Poisson's Eq.(14) 
with the QDM is also given by the symbols at 28 quadrature 
points. 
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An/n is indeed extremely small: [10~16- io"15]. This is 
generally the case in plasmas where the Debye length L D is 
small compared to the characteristic scale height (H) of 
the density distribution. The Debye length (in cm) is given 
by : L D = 7 (T/n)* , where T is the temperature (in K) and n 
the electron number density (in cm"3), in the terrestrial 
ionosphere where T. = 3000 K and n(hQ) = 800 cm"3, the 
electron density scale H = 1 0 0 km, and L D = 13 cm. 

However, along auroral magnetic field lines thin 
Double Layers (DL) are formed; within these DLs the quasi-
neutrality approximation fails to be valid. Within these 
electrostatic sheaths confined in regions which are only a 
few Debye lengths thick, Poisson's equation (PE) must be 
solved instead of its QN approximation. 

VI. RESOLUTION OP POIOGON'S EQUATION (PE) 

Poisson's equation (2) is a second order differential 
equation for *E. its r.h.s. is a small quantity 
(proportional to the minute excess charge density) which is 
unfortunately the difference of large number densities. A 
small round-off error in the value of the potential can 
lead in some cases to unphysical diverging solutions, as a 
consequence of numerical instabilities. Therefore, the PE 
is difficult to integrate and to solve in the case of 
plasmas where the Debye length is small compared to the 
other characteristic scale lengths of the system. This is 
also the main reason why one is inclined to solve the QN 
approximation of PE instead of PE directly. In this 
section, we outline a new technique which enabled us to 
find numerically stable solutions of PE, in cases where 
other numerical methods tend to fail. 

This mathematical technique consists first in differ-
entiating analytically the two sides of PE (2) and then 
integrating the third order equation obtained numerically 
with appropriate boundary conditions. It can be seen that 
this procedure is similar to that followed above when we 
differentiated the algebraic QN equation to obtain a first 
order differential equation for $E. The third order 
differential equation derived from PE is given by : 
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d3$E/dh3 + A(*e) d$£/dh = B(*E) (14) 
where A and B are the non-linear functions of $E given by 
Eqs.(9) and (10). 

The three boundary conditions can either be specified 
at hQ or at hjj^ when Runge-Kutta or Hamin algorithms are 
used to integrate (14). But when a Quadrature 
Discretisation Method is used boundary conditions can also 
be defined at different points (altitudes). This is one of 
the main advantage and power of this alternative numerical 
algorithm, as compared to the other two methods. 

In the following examples the boundary conditions are 
determined by: $E = o, at h = hQ; = at h = h ^ . 
d $E/dh = at h = hN_1; where <p and cp" are arbitary input 
data for the integration algorithm. When these boundary 
conditions are chosen to be precisely equal to Ihe 
corresponding values of the QN solution obtained and 
discussed in section IV, one obtains almost exactly the 
same distributions as those deduced above by integrating 
Eq.(8). The values of the electric potential are so close 
to that of the QN solution shown in Fig.l that it is 
difficult to distinguish them on this graph. The electric 
field intensity is then also everywhere the same as that of 
the QN solution shown in Fig.2. 

When the boundary condition $E at h N - 1 is taken to be 
either smaller or larger than the value corresponding to 
the QN solution, electrostatic potential sheaths are formed 
at hQ and h j ^ Large electric field intensities are then 
obtained in thin layers a few Debye lengths thick. However, 
at some distance from these thin layers the electric field 
intensity tends to be very small as in the QN case. This is 
an important property of plasmas in general. 

VII. CONCLUSIONS 

From this study it is concluded that differentiating 
analytically the QN equation and integrating it numerically 
is an easier and more efficient method to obtained the 
electrostatic potential distribution in a plasma. Therefore 
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this procedure should replace the classical one consisting 
of solving the algebraic QN Eq.(1) by bracketing or 
bissection iterative methods. 

Although the QN solution is a very good approximation 
for the small polarisation electric field intensity in 
plasmas, to calculate the large charge separation electric 
potential variation occuring in electrostatic double layers 
(generally a few Debye lengths thick), Poisson's equation 
(2) must be solved. 

Solving Poisson's non-linear second order differential 
equation is numerically difficult. A numerically stable 
and reliable solution has been proposed above. It consists 
in differentiating analytically the PE (2), and integrating 
numerically the third order Eq. (14) for appropriate 
boundary conditions. With this new procedure, we have 
shown that the QN solution is recovered for specific 
boundary conditions. But this new method enables one to 
obtain a more general solution corresponding to double 
layers. 
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