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Thresholds for Magnetic Percolation through the 
Magnetopause Current Layer in Asymmetrical 

Magnetic Fields 

M.M. Kuznetsova * and M. Roth§ 

Abstract 

The Vlasov kinetic approach is used to study the stability of magnetic surfaces with re-
spect to spontaneous excitation of collisionless tearing perturbations within magnetopause 
current layers (MCLs) with asymmetrical magnetic field profiles. For the unperturbed 
configuration a "tractable" (that is, with a minimum number of free parameters) Vlasov 
equilibrium model describing a tangential discontinuity is developed. In this model, asym-
metrical MCLs are not electrostatically equipotential configurations and their structure 
is only determined by the angle of the magnetic field rotation QQ and the magnetic field 
asymmetry factor KB = ( B 2 - BI)/B2, where BI and B2 are the magnetic field intensities 
in the adjacent magnetosheath and magnetospheric regions, respectively. The stochas-
tic percolation model by Galeev et al. (1986), based on the symmetrical charge-neutral 
Harris equilibrium, is generalized for asymmetrical MCLs. Asymmetry in the B field 
profile strongly modifies the dependence of the marginal MCL thickness (below which 
the MCL is subjected to percolation) on the polarity of the interplanetary magnetic field 
(IMF). For a northward IMF (0O < 90°), the percolation is impossible when Kb > 0.4, 
while for moderate values of Kb (0.15 < Kb < 0.4) only thin MCLs can be percolated. 
When Kb > 0.3, the maximum thickness of MCLs subjected to percolation is achieved for 
9q > 90°, that is, for a southward IMF. Assuming that the magnetopause should, on the 
average, be close to its stability threshold, realistic asymmetrical MCLs (with Kb > 0.3) 
should be thinner for a northward IMF than for a southward IMF. 

Résumé 

Pour étudier la stabilité des surfaces magnétiques de la magnétopause par rapport 
à l'excitation spontanée de perturbations de type "tearing" non collisionnelles, au sein 
de couches de courant (MCLs) caractérisées par des profils asymétriques du champ ma-
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gnétique, nous avons utilisé une approche cinétique basée sur l'équation de Vlasov. Pour 

décrire la configuration non perturbée, un modèle d'équilibre simplifié—de type Vlasov— 

(avec un nombre minimum de paramètres libres) a été développé. Dans ce modèle, les 

couches de courant asymétriques représentant la magnétopause (MCLs) ne sont pas, d'un 

point de vue électrostatique, des configurations équipotentielles, et leurs structures sont 

uniquement déterminées par l'angle de rotation du champ magnétique 9q et par le facteur 

d'asymétrie du champ magnétique kb (kb = {B2- B{]/B2, où B\ et B2 sont les intensités 

du champ magnétique dans les régions adjacentes ; respectivement la magnétogaine et la 

magnétosphère). 

Le modèle stochastique de percolation de Galeev et al. (1986) basé sur le modèle 

d'équilibre de Harris (symétrique et électrostatiquement neutre) a été généralisé aux cas 

de couches MCLs asymétriques. L'asymétrie du profil du champ B modifie fortement la 

dépendance de l'épaisseur marginale de la MCL (en deçà de laquelle la MCL est soumise 

à une percolation) par rapport à la polarité du champ magnétique interplanétaire (IMF). 

Lorsque le champ IMF possède une orientation nord (9q < 90°), la percolation est impos-

sible si kb > 0.4; tandis que pour des valeurs modérées de kb (0.15 < < 0.4), seules 

des MCLs minces peuvent être l'objet de percolation. Lorsque kb > 0.3, l'épaisseur mar-

ginale des MCLs est maximale pour Ôq > 90°, c'est-à-dire, pour une orientation sud du 

champ IMF. Considérant que la magnétopause devrait, en moyenne, être proche de son 

seuil de stabilité, les MCLs avec des facteurs d'asymétrie réalistes (kb > 0.3) devraient 

être plus minces lorsque le champ IMF est orienté au nord, plutôt qu'au sud. 

Samenvatting 

Een kinetisch model gebaseerd op de Vlasov vergelijking wordt gebruikt om de sta-

biliteit voor spontaan opgewekte botsingsvrije verbrokkelingsverstoringen ("collisionless 

tearing perturbations") van magnetische grenslagen te onderzoeken. Dit wordt gedaan 

voor stroomlagen in de magnetopause (MCLs), die worden gekenmerkt door een asymme-

trisch magnetisch veld profiel. Het niet-verstoorde regime wordt bestudeerd aan de hand 

van een Vlasov evenwichtsmodel dat een tangentiële discontinuïteit beschrijft met een 

minimaal aantal parameters. In dit model zijn asymmetrische MCLs geen elektrostatische 

equipotentiaal-configuraties; hun structuur wordt uitsluitend bepaald door de rotatiehoek 

0q van het magnetisch veld, en door de asymmetrie-factor kb (kb = (B2 — Bi)/B2, waarin 

B i en B2 de magnetische veldsterkten voorstellen in de magnetoschede en de magnetos-

feer, aan weerszijden van de MCL). 

Het stochastische percolatie-model beschreven door Galeev et al. (1986), dat gebaseerd 

is op de symmetrische neutrale evenwichtstoestand volgens Harris, wordt hier veralge-

meend voor asymmetrische MCLs. Asymmetrie in het B-profiel beïnvloedt in sterke mate 

de relatie tussen de marginale dikte van de MCL (beneden dewelke percolatie door de 

MCL mogelijk is) en de polariteit van het interplanetair magnetisch veld (IMF). Voor een 

IMF met noord-polariteit (90 < 90°) is percolatie onmogelijk wanneer kb > 0.4, terwijl 

voor gematigde waarden van kb (0.15 < kb < 0.4) enkel percolatie door dunne MCLs 

plaatsvindt. Wanneer kb > 0.3 wordt de maximale dikte van de MCL voor dewelke perco-

latie nog optreedt, bereikt voor 90 > 90°, dit wil zeggen, een IMF met zuid-polariteit. In 

de veronderstelling dat de dynamica van de magnetopause doorgaans dicht bij de stabili-



teitsgrens ligt, moeten realistisché asymmetrische MCLs (met KB > 0.3) dunner zijn voor 
een IMF met noord-polariteit dan voor een IMF met zuid-polariteit. 

Zusammenfassung 
Um die Stabilität der magnetischen Flächen der Magnetopause im Verhältnis zur spon-

tanen Erregung von "tearing"-artigen stoßfreien Störungen in, mit asymetrische Profile 
des Magnetfeldes, Stromschichten der Magnetopause (MCL) zu untersuchen, wählten wir 
einen auf die Vlasov'sche Gleichung gegründeten kinetischen Ansatz. Zur Beschreibung 
der nichtgestörten Konfiguration wurde ein vereinfachtes Vlasov-artiges Gleichgewichts-
modell mit einer Mindestanzahl freier Parameter die die tangentiale Diskontinuität besch-
reiben entwickelt. In diesem Modell sind die die Magnetopause (MCL) darstellenden asy-
metrischen Stromschichten — elektrostatisch gesehen — keine äquipotentialen Konfigura-
tionen und ihre Strukturen werden lediglich durch den Rotationswinkel des Magnetfeldes 
QQ und durch den Asymetriefaktor des Magnetfeldes «b («ß = (ß 2

 — -5I)/-Ö2), bestimmt, 
wobei B\ und die Intensitäten des Magnetfeldes in den anliegenden Bereichen darstel-
len, d.h. die Magnethülle respektive die Magnetosphäre. Das auf dem symetrisch und elek-
trostatisch neutralem Gleichgewichtsmodell nach Harris beruhende stochastische Perkola-
tionsmodell von Gaieev und al. (1986) wurde auf die Fälle asymetrischer MCL-Schichten 
verallgemeinert. Die Asymetrie des B-Feld-Profils verursacht eine bedeutsame Abhän-
gigkeit der MCL-Grenzdicke (unterhalb derer die MCL einer Perkolation unterliegt) in 
bezug auf die Polarität des interplanetären Magnetfeldes (IMF). Ist das IMF-Feld nach 
Norden orientiert (0q < 90°), so ist bei «b > 0.4 die Perkolation unmöglich; während bei 
mässigen «B-Werten (0.15 < kb < 0.4) nur dünne MCL eine Perkolation erfahren. Wenn 
kb > 0.3, ist die maximale Dicke der MCLs bei 9q > 90°, d.h. bei einer Orientierung des 
IMF-Feldes nach Süden maximal. Davon ausgehend, das durchschnittlich die Magneto-
pause ihrer Stabilitätßchwelle nahe kommen dürfte, müßten die MCL mit realistischen 
Asymetriefaktoren («b > 0.3) bei nördlicher eher als bei südlicher IMF-Feldorientierung 
dünner sein. 



1 Introduction 
Study of the structure and dynamics of transition current layers separating two mag-

netized plasmas with different characteristics is of fundamental importance in understand-
ing various phenomena in laboratory and space. Magnetopause current layers (MCLs) are 
formed at outer boundaries of planetary magnetospheres where the solar wind is stopped 
and deflected by a strong intrinsic magnetic field. The simplest model of a planetary MCL 
is described by a tangential discontinuity within which the magnetic field rotates from 
an arbitrary interplanetary direction to a magnetospheric direction. Statistical studies 
of abundant experimental material show, however, that interplanetary and geomagnetic 
field lines sometimes are topologically connected. The discovery of flux transfer events 
(FTEs) at the Earth's magnetopause [Russell and Elphic, 1978, 1979] indicates that this 
connection of magnetic field lines can be spatially and temporally localized. Although al-
ternative explanations for FTEs phenomena have been put forward by Lemaire and Roth 
[1991], Roth [1992], and Sibeck [1992], the transient reconnection nature of FTEs is widely 
discussed in the literature. 

The discovery of FTEs has given an impulse to the development of unsteady and patchy 
reconnect,inn models. Most of these thcorctical models have been proposed to explain.the 
phenomenon of FTEs (see, for example, Lee and Fu [1985], Pudovkin and Semenov [1985], 
Galeev et al. [1986], Scholer [1988], Hesse et al. [1990], Tetreault [1992], Lee et al. [1993], 
and references cited in these works). In this domain a considerable amount of papers 
decribes MHD simulations of the dayside magnetic driven reconnection (see, for example, 
Fu and Lee [1985], Sato et al. [1986], Shi et al. [1988], Ogino et al. [1989], Otto [1990], 
Shi and Lee [1990], Fu et al. [1990], Ding et al. [1991], Liu et al. [1992]). In some of these 
MHD simulations the effect of different initial parameters on both sides of the MCL was 
analyzed (see, for example, Hoshino and Nishida [1983], La Belle-Hamer et al. [1988], 
Scholer [1989], Pu et al. [1990]). The MHD models are focused on the global structure 
of FTEs without addressing the resistivity mechanism responsible for reconnection. The 
assumed spatial and temporal variations of resistivity may, however, not be realistic in the 
collisionless magnetospheric plasma. Microscopic plasma turbulence in the magnetopause 
region plays an important role and could act as an effective resistivity. Microturbulence 
is indeed observed to be a permanent feature of magnetopause crossings [e.g., Gurnett et 
al., 1979; Gary and Eastman, 1979; LaBelle and Treumann, 1988]; Tsurutani et al., 1989; 
and references therein]. The observed amplitude of the most intense turbulence is of the 
order of few millvolt per meter. The lower hybrid drift instability is considered as the 
most plausible candidate to explain these oscillations when the interplanetary magnetic 
field is northward [Gary and Eastman, 1979; Sotnikov et al., 1981; Gary and Sgro, 1990]. 
However, for significant angles between the magnetosheath and magnetospheric magnetic 
fields the strong stabilizing influence of the magnetic shear on the lower hybrid drift 
instability [Krall, 1977; Huba et al., 1982; Gladd et al., 1985] could be very important, but 
this topic requires further studies. Recent work has shown that an anomalous resistivity 
can be associated with the destabilization of whistlers [J. F. Drake et al., The structure 
of thin current layers: Implications for magnetic reconnection, submitted to Journal of 
Geopysical Research, 1994] or with the current convective instability in small-scale current 
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structures (with transverse scale lengths smaller than the electron skin depth) embedded 
in the broader magnetopause current layer [Drake et al., 1994]. 

Many advances have also been made in particle simulations of collisionless magnetic 
reconnection [Ding et al., 1992b; and references therein]. Another group of papers based 
on the kinetic Vlasov formalism invokes a specific reconnection mechanism: collisionless 
drift tearing modes [Laval et al., 1966; Galeev and Zelenyi, 1977; Coppi et al, 1979; 
Quest and Coroniti, 1981; Galeev et al., 1986; Kuznetsova and Zelenyi, 1985, 1990a, b; 
Gladd, 1990]. The main advantage of the kinetic approach is that it does not require an 
"ad hoc" resistivity and describes spontaneous processes driven by the free energy of the 
MCL magnetic field itself. This approach is more appropriate for investigating the fine 
dynamics of thin current layers (a few ion Larmor radii thickness). This analytical (or 
semianalytical) approach allows us to obtain a parametric dependence of the reconnection 
process and helps us to make a deeper insight into the physics of the problem. The main 
difficulty in the framework of the one-dimensional kinetic Vlasov approach is to include 
self-consistently some elements of the global pattern. 

The linear and nonlinear dynamics of the collisionless drift tearing mode has been 
thoroughly investigated by Galeev and Zelenyi [1977], Coppi et al. [1979], Kuznetsova and 
Zelenyi [1985, 1990a, b]. The stochastic percolation model based on these studies has been 
suggested by Galeev et al. [1986]. It will hereafter be referred to as the GKZ model. In 
this model reconnection was considered as an irregular multiscale process associated with 
the magnetic field diffusion caused by the self-consistently generated magnetic turbulence. 
This stochastic process results in the formation of magnetic field lines connecting both 
sides of the current layer via an irregular path. The necessary condition for the magnetic 
percolation through the MCL appears to be the destruction of all magnetic surfaces within 
it. This condition imposes a bound on the thickness of the MCL for the formation of 
reconnection "patches" with characteristic spatial scales along the magnetopause \ z x Xy. 
The marginal thickness depends on the angle of the magnetic field rotation 6$, the single 
factor characterizing the difference between conditions on both sides of the equilibrium 
MCL used in the GKZ model. Results of particle simulations of magnetic field line 
stochasticity due to the growth and overlapping of multiple tearing mode islands within 
such a symmetrical current layer reported recently by Wang and Ashour-Abdalla [1994] 
support the GKZ percolation model. 

In the GKZ model (as well as in many other papers devoted to this subject, for ex-
ample, Drake and Lee [1977], Galeev and Zelenyi [1977], Coppi et al. [1979], Quest and 
Coroniti [1981], Gladd [1990], Wang and Ashour-Abdalla [1994]) the well-known Harris 
[1962] configuration (generalized for the case where the plasma is magnetized by the con-
stant current-aligned magnetic field component By) was chosen as an initial equilibrium 
structure 

B = B0 tanh(X/L)e z + Byey, By = const (1) 
This magnetic field configuration describes the main property of the MCL, the rotation of 
the magnetic field vector across the layer, the angle of rotation being 9Q = 2 arctg(5o/By). 
Configuration (1) corresponds to a symmetrical MCL composed of a population of trapped 
particles "isolated" from the magnetosheath and magnetospheric plasmas. The latter can 
only be introduced self-consistently in the form of an uniform background with a constant 
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number density rn, [Kuznetsova and Zelenyi, 1990b] 

n p O = n 0 cosh" 2 (X/L)+n 6 , 8irn0(Te + T<) = (2) 

Observations show however that the magnetopause is a mixture of plasmas of both magne-
tosheath and magnetospheric origins [Bryant and Riggs, 1989]. Layers with a constant or 
nearly constant value of BY are seldom observed and the field magnitude clearly increases 
in the earthward direction. The violation of the "5y=const" approximation appears to 
be especially important for small values of the magnetic field shear (Bo < BY, 90 < 90°), 
when the pressure balance condition in (2) is unlikely satisfied, because the plasma may 
now be confined not only by the "azimuthal" field BQ(X), but also by the weak gradient 
of the "guiding" field BY. The less the angle 90 the more pronounced this effect. To 
avoid this difficulty Galeev et al. [1986] modified the equilibrium constraint in (2) in the 
following way 

8nn0(TE + T<) = B% + AB2
Y (3) 

where the parameter a characterizes the role of a current-aligned magnetic field in the 
magnetopause plasma confinement. For 90 < 90° the results of the stability analysis 
appears to be very sensitive lu the choice of a (that is, to the choice of the initial config-
uration). For a = 1 (when the maximum kinetic pressure no(Te + T{) is assumed to be 
equal to the maximum magnetic pressure (BQ + By)/%ir) 9Q = 60° was found to be the 
most favorable angle for percolation. This result seems to disagree with ISEE magnetic 
field measurements [Berchem and Russell, 1984] indicating that the southward polarity of 
the interplanetary magnetic field is the most favorable for the formation of FTEs. Other 
statistical studies (see, for example, Southwood et al. [1986]) also show that the occurrence 
of FTEs is strongly correlated with a southward interplanetary magnetic field. 

The conditions of spontaneous excitation of long wave perturbations (wavelength Â  = 
2ir/k much greater than the thickness of the layer L) depend not only on the local values 
of the plasma parameters near a given magnetic surface within the MCL but also on 
the initial equilibrium structure of the layer which determines the free energy of the 
perturbations. It is reasonable to assume that the value 9Q = 60° is associated with the 
symmetrical Harris magnetic field profile and the "constant beta" assumption 

8?r nmax(Te + Ti) 8tt n0(Te + T<) 
R2 = P2 I D2 = C O n S t 
Bmax BQ -I-

which does not result from a self-consistent treatment. For more realistic asymmetrical 
magnetic field profiles the "preferable" angle could be different and may be sensitive to 
the degree of asymmetry. The presence of an equilibrium electric field normal to the MCL 
also may modify the dependence of the marginal thickness on 90. 

This circumstance significantly complicates the theoretical study of the global stability 
of the MCL and emphasizes the importance of a proper choice for the initial configuration 
where some elements of the global pattern are self-consistently included. In other words, 
to understand how the magnetosheath parameters control the stability of the MCL, factors 
of asymmetry should be introduced in the equilibrium model (the latter factors emphasize 
the differences between magnetosheath parameters just outside the MCL and those in the 
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magnetosphere). These asymmetry factors should control the magnetic and electric fields 
profiles within the MCL and should finally appear as parameters in the formulation of 
the stability thresholds. 

The effect of the relative flow velocity on collisionless tearing modes in the MCL have 
been studied by several authors (see, for example, Lakhina and Schindler [1983], Wang and 
Ashour-Abdalla [1992], Kuznetsova et al. [1994, and references therein]). A temperature 
gradient has also been taken into account by Drake et al. [1983] using fluid equations. 

An asymmetrical magnetic field profile was assumed by Ding et al. [1992a] in their 
study of the beta dependence of the collisionless tearing mode growth rate at the dayside 
magnetopause. In that study, the plasma density distribution corresponding to the given 
magnetic field profile was determined to satisfy the pressure balance condition, and the 
power of the free energy source available from the current filamentation (controlling the 
"strength" of the instability growth) was derived using the expression obtained by Furth 
et al. [1963] in the hydromagnetic approximation. In the study by Ding et al. [1992a] 
the important role of the magnetic field profile across the MCL was emphasized, but the 
problem of determining the velocity distribution functions corresponding to the chosen 
magnetic configuration was not discussed. 

A considerable ainuunL uf effort was made after the pioneering work of Sestero [1964, 
1966] to construct equilibrium Vlasov models of realistic tangential discontinuities with 
asymmetrical boundary conditions and large magnetic shears (see, for example, Alpers 
[1969], Kan [1972], Lemaire and Burlaga [1976], Roth [1978, 1979, 1984], Lee and Kan 
[1979], and references cited in these works). However none of these models were used for 
the stability analysis of the MCL using the Vlasov formalism. 

In the present study we investigate the stability of magnetic surfaces with respect to 
spontaneous excitation of collisionless tearing perturbations within MCLs with asymmet-
rical magnetic field profiles. The unperturbed MCL is modeled by a "tractable" version 
(that is, with a minimum number of free parameters) of Vlasov equilibriums used by 
Roth [1978, 1979, 1984] and Lee and Kan [1979]. Such an approach enables us to take an 
electric field normal to the MCL into account, to obtain a more accurate expression for 
the "free energy" of tearing perturbations, and to consider the finite ion Larmor radius 
effects and the stabilizing influence of the field-aligned ion oscillations. On the basis of 
this study the GKZ model is reconsidered and generalized. 

Section 2 is devoted to a discussion of several series of Vlasov equilibrium configu-
rations with different asymmetry factors, but with a fixed angle of the magnetic field 
rotation. In section 3 generalized expressions for the particle adiabatic response to col-
lisionless tearing perturbations are derived and the free energy of these perturbations is 
calculated. In section 4 the eigenmode set of equations for tearing perturbations in current 
layers with asymmetrical magnetic field profiles is presented. The criterion of stability 
for an arbitrary magnetic surface is obtained in section 5. The minimum spatial scale of 
reconnection patches and the marginal magnetopause thickness for different asymmetry 
factors are calculated in section 6. The paper ends in section 7 with a summary and the 
conclusions. 
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2 Sets of initial configurations 
In this paper we consider the magnetopause current layer (MCL) as a one-dimensional 

slab tangential discontinuity (TD) which is not necessarily charge neutral and which 
separates two plasmas with different number densities Ni and N2, and different magnetic 
fields Bi and B2. The TD is assumed to be parallel to the Y-Z plane and all plasma and 
field variables only depend on the X coordinate normal to the layer, with a characteristic 
gradient scale length D. In this configuration the magnetic field B rotates in the {Y-Z) 
plane (the total angle of rotation being 0O; < 180°) from Bi(0, BXy, Bu) = B(X - 0 0 ) 
in the magnetosheath to B2(0, B2y, B2z) = B ( X - > + o o ) in the magnetosphere, while the 
electric field E is parallel to the X axis. We also choose the coordinate system in such a 
way that Bz is equal to zero in the center of the MCL (X = 0), but has opposite signs 
on its outer edges (B z < 0 for X < 0, Bz > 0 for X > 0), while By remains everywhere 
positive. In this configuration, the total angle of the magnetic field rotation 90 is then 
given by 

0O = arctg (\Blz\/Bly) + arctg (\B2z\/B2y) 

We consider that the MCL is a mixture of five plasma components, each of them 
being denoted by a subscript u, that is, the MCL contains magnetosheath (u = 1) and 
magnetospheric (1/ = 2) ions, trapped ions (u = 3) and electrons (v = 4), and isotropic 
electrons (u = 5). 

In a TD configuration, a single plasma particle is characterized by three constants of 
motion: the Hamiltonian (#„), and the Y and Z components of the canonical momentum 
(Pvy and Pvz) 

I f e„ \ 2 

Hv = I P „ - a ) + eu<)> = mvv2/2 + ev<j> 
mv \ c J 

£ 
Pvy = mvvy H a,y, Pvz = mvvz + —az 

c c 
In these equations c is the velocity of light in vacuum, e„ is the charge of the particle 
of mass m„, and v(vx,vy,vz) its velocity vector, while <p(X) is the electric potential, and (ay, az) are the Y and Z components of the vector potential. The electric and magnetic 
field distributions are the derivatives of these potentials 

E = -d4>(X)/dX (4) 

By = -daz(X)/dX, Bz = day(X)/dX (5) 

We further assume that the plasma contains only one kind of ions (protons) with 
an electric charge e, mass m, and thermal energy T* (e„ = e, mv = rrn, T„ = Tjj for 
v = 1,2,3). Electron components have electric charge —e, mass me and thermal energy 
Te {ev = - e , mu = me, Tu = Te; for v = 4, 5). 

The velocity distribution function of ions (F t) and electrons (Fe) are sums of partial 
distributions 

3 

F i = Y ^ f v ( H v ; P v y , P v s ) , (6) 
i/=i 
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P& — ^ ] Fv(Hl/> Puyi Puz) 
i/=4 

The simplest (and the most generally used way) to solve the Vlasov equation is to use 
single-valued velocity distribution functions in the (H,P y ,P z ) space. Partial distribution 
functions are chosen in the following way: 

/ m \ 3/2 / H \ 
e x p ( - j f ) w v ' w 

with 

Qv = -erfc 
( - l ) "cP„ 

Qv = Cv exp 

eBxy/Dl - pl_ 

( " 1 YcPuy 

u =1,2 

v = 3,4 

(7) 

(8a) 

(8b) 

(Be) 

eB\Dv 

Gu = 1, v •= 5 
where erfc(£) is the complementary error function, Cu = e x p ( — a n d py = 
c(2T„m„)1/ '2/e-yi is the particle Larmor radius of the v species in the asymptotic magnetic 
field B\ (pu = pi for v = 1,2,3; pv = pe for v = 4,5). Parameters Dv are gradient scale 
lengths which control the number density profiles of each plasma component v. Collec-
tively, these parameters Du determine the magnetopause thickness (see also Lee and Kan 
[1979]) and must be larger than pv. 

When Du shrinks to p„, the complementary error functions in (8) tend to the step 
functions introduced by Sestero [1964]. In what follows we will assume that all spatial 
gradient scale lengths are the same for all species, that is, 

DV = D v = 1,2,3,4 

The magnetosheath ion velocity distribution function F\ approaches a Maxwellian at 
X = — oo but tends to zero at X = +00. Similarly, the magnetospheric ion velocity 
distribution function F2 approaches a Maxwellian at X = +00 but tends to zero at 
X = —00 (see equation (8)). These magnetosheath (v = 1) and magnetospheric (u = 2) 
ions are carrying current (J z ) along the Z axis (Jz = ju+j2z, where are partial current 
densities) and are responsible for the gradient of By. The larger the asymmetry factor 

kb = (B2 - BI)/B2 (9) 

the stronger the Jz current. When Fi + F2 reduces to an uniform background Maxwellian 
distribution, the Jz current cancels and By remains constant inside the MCL. In this case 
the asymmetry factor kb is equal to zero. 

Partial distribution functions F3 and F4 correspond to the trapped ions (1/ = 3) and 
electrons (1/ = 4) confined within the MCL (F3i4(X —* ±00) —• 0). They can also be 
represented in the form of Maxwellian functions shifted by the diamagnetic drift velocity 
uv = cTv/evB\Dv, that is (for v = 3,4) 

F„ = nu(X) exp{—m„[t^: + (vy - uuf + vl]/2Tv) 
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These particles are carrying current (Jy) along the Y axis (Jy = j3y+j4y). The Jy current 
supports the reversal of Bz. For fixed values of the asymmetry factor Kb the larger the 
angle 9Q the stronger the Jy current. The exponential expression used in (9a) allows us to 
retrieve the symmetrical charge neutral (<f> =const) Harris configuration with an analytical 
solution for ay when KB = 0 

ay = 2DBl\ncosh(X\Blz\/2DBl) 

Although the distribution of trapped particles can be represented by other functions than 
that used by Harris [1962] [see Roth, 1979, 1984] we have chosen the particular Harris-
type formulation given in (9a) because it gives us an opportunity to compare the results 
of our stability analysis with previous analytical ones obtained by Galeev et al. [1986]. 

The colder electrons (Te <C Tj) of magnetosheath and magnetospheric origin denoted 
by the subscript v = 5 have a Maxwellian distribution and maintain the global charge 
neutrality. They carry zero electric current, and their number density variation is mostly 
determined by the electric potential gradient. 

From the velocity distribution functions given in (8)-(9b), partial number densities 
(nu) and currcnt componcnto ( jU y , juz) can be calculated as functions of (4>, ay, az) 

nv = 5I/exp(-e^0/T^)gJ/(oy,a2) (10) 

jvy = cTvdnu/day, jvz = cTudnu/daz (11) 
where 

gv = 0.5erfc[(-l) l'az/5iZ> l /], i/ = l , 2 

g„ = exp (~ay/BiDv), v = 3, 4 

gv = 1, u = 5 
The total ion and electron number densities ni(ay, az, </>), ne(ay,az,<f>) must satisfy the 
quasi-neutrality condition 

3 5 
n(X) = rii = = = ne (12) 

i/=l i/=4 

The ion and electron distribution functions (6) describe a MCL with an asymmetrical 
magnetic field profile: B\ ^ Z?2- In this study we will neglect other possible asymmetries 
in order to single out the effect of the asymmetry of the magnetic field on the stability 
properties of the MCL. This simplified model is a tractable version of Lee and Kan [1979] 
and Roth [1978, 1979] models. When Bi B2 (KB 0) the electric potential (0) is 
constant inside the transition and n5 = n i+ = = constant. In this limit, the 
distribution functions (6) tend to the Harris configuration with an uniform background 
(see equations (l)-(2)). The parameter D is related to the L parameter of the Harris 
configuration in the following way: 



In our simplified model the structure of the M C L is only determined by the angle of 

the magnetic field rotation 9Q and by the factor of asymmetry KB• The rotation of the 

magnetic field vector is controlled by trapped particles (v = 3,4), while the increase of 

its absolute value is supported by the other species (u = 1, 2, 5). 

It is reasonable to assume that the magnetospheric plasma is rather rarefied and to 

choose N2 = n(X —• oo) = 0 . 1 cm-3 . For given values of Bi and B2 the asymptotic 

number density on the magnetosheath side N\ = n(X —• —oo) is determined from the 

pressure balance condition 

8irNi(Te + Tt) + B\ = 8nN2(Te + T<) + B\ (14) 

Assuming that <f>i = <f>(X —• -oo) = 0 and taking account of (10) and of the quasi-

neutrality condition (12), it can be seen that 

/N 2 \ T e / T % 

si = s5 = Ni, s2 = N2 ( ^ J (15) 

02 - = + « j ) = y l n ^ (lb) 

The structure of the M C L is given by the solutions of a set of two second-order 

differential equations for ay(X) and az(X) 

d2ay 47r Jk . 47r 
= -—2^ivy{ay>az,<t>) = Jy (17a) 

Cu=Z c dX2 

d2az Air ̂  , , ,, An 

dX2 
= S 3uZ(ay, az, <j)) = Jz (17b) 

c
 U=1 

coupled with the quasi-neutrality equation (12). The differential equations (17), (18a), 

and (5) form a system of four differential equations of the first order for ay, az, ay = Bz 

and az = — By. This system is solved numerically using a Hamming's predictor-corrector 

scheme [Ralston and Wilf, 1965]. It is coupled with (12) whose solution is obtained by the 

Newton-Raphson method for finding the root of a nonlinear algebraic equation [Press et 

ai, 1986]. Starting from the central surface X = 0, the system is integrated towards the 

magnetosheath (X —• -oo) up to the turning point X*, where both components of the 

current density become negligibly small, and then back to the magnetosphere ( X —• +oo). 

For the starting values we choose 

ay( 0) = a,(0) = 0, 

a„'(0) = Bz( 0) = 0, ag'(0) = -By( 0) 

The values of By(0) and </>(0) can be obtained from the pressure balance condition (14) 

and from the quasi-neutrality equation (12) 

£ y (0) = yjBl + S n ^ - n i O M T e + Ti), 
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n(0) = (34 + s t f b + 0.5(si + s 2 ) P , 
^ l n f 2 + 0 5 ( £ i ± i 5 ) 

e s 4 + s 5 

where rje = Te/(Te + Ti) and rji = Ti/(Te + Ti). Parameters si, 52 and s 5 determined from 
boundary conditions are given in (15). The value of the input parameter s = s3 = S4 
controlling the angle of the magnetic field rotation 0o is determined in the following 
way: for fixed values of B\ and B2, an iterative method is used to find the value of s 
corresponding to a given 9q. Table 1 gives some computed values of s for 9q = 120°, 90° 
and 60°, and for different values of B\ and Bi- In this table the asymmetry factor kb is 
also estimated, and it is assumed that Ti = 4 T e = l keV and D = 2p, where 

is the typical ion Larmor radius (Tj = 1 keV , B* =40 nT, p = 114.3 km) which will be 
used as our normalization factor for spatial scales. Note that the values given in Table 1 
as well as plasma and field profiles that will be later illustrated practically do not depend 
on the ratio D//). 

Table 1: computed values of s(B\, B2,9q). 
Magnetic Asym. s = s 3 = s 4 

field [nT] factor [cm" 3] 
B1 b2 «B 00 = 120° 0O = 90° 0 O = 60° 
40 40 0.000 2.384 1.588 0.795 
40 43 0.075 2.524 1.677 0.829 
40 45 0.111 2.603 1.730 0.850 
40 47 0.149 2.674 1.780 0.871 
40 50 0.250 2.769 1.853 0.904 
40 60 0.333 2.988 2.068 1.014 
40 70 0.426 3.104 2.240 1.113 
40 80 0.500 3.157 2.380 1.201 
50 80 0.375 4.753 3.340 1.641 
60 80 0.250 6.415 4.324 2.099 
67 80 0.163 7.552 5.021 2.441 
70 80 0.125 8.026 5.324 2.596 
73 80 0.086 8.492 5.630 2.760 
75 80 0.063 8.798 5.838 2.875 
80 80 0.000 9.536 6.358 3.179 

*t 

The electric field E(X) can be either calculated from (4) by numerical differentiation 
of the electrostatic potential profile 4>{X), or expressed algebraically through ay, az, <j>, 
By, Bz. The latter expression can be obtained from the quasi-neutrality condition (12) 
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and expressions for nv(ay, az, </>), jvy(ay, az, <f>), and juz{ay, a2, 0) given in (10) and (11) 

We will now illustrate how the MCL structure is changing when the factor of asymme-
try kb is increased, while keeping the angle 90 approximately constant. We will consider 
two groups of MCLs (1 and 2). First, we assume that the magnetic field magnitude on 
the magnetosheath side is fixed, Bi =40 nT (case 1), and introduce an asymmetry by 
increasing the magnetic field B2 on the magnetospheric side from 40 to 80 nT. This case 
describes the situation when the increase of the kinetic pressure in the magnetosheath 
causes an earthward displacement of the MCL toward regions with a larger magnetic 
pressure. Magnetic field hodograms and number density profiles for fixed B\ =40 nT and 
different values of B2 and 9q are shown in the left columns of Figures 1 and 2. 

In case 2, we assume that the magnetic field magnitude on the magnetospheric side 
is fixed, B2 =80 nT. In this case, the total pressure and the position of the MCL are 
fixed (because the number density in the magnetospheric adjacent region is a given small 
parameter N2 =0.1 cm - 3 ) . The increase of the kinetic pressure in the adjacent magne-
tosheath region results in a corresponding reduction of the magnetic pressure. This will 
introduce an asymmetry in the magnetic field profile, that is, a decrease of the magnetic 
field Bi on the magnetosheath side from 80 to 40 nT. Magnetic field hodograms and 
number density profiles for B2 =80 nT are shown in the right columns of Figures 1 and 
2, for different values of B\ and 9q. 

The number density profiles in Figure 2 are illustrated as a function of the distance 
X/p from the center of the layer X = 0. It is seen that the introduction of asymmetry 
in case 1 (the left column) significantly modifies the number density in the center of the 
layer, while in case 2 (the right column) the number densities at X = 0 are only slightly 
different for various asymmetry factors. 

Plasma and field parameters characterizing the structure of the MCL are illustrated 
in Figure 3 for 90 = 120°, Bi =40 nT, and for different values of B2. It can be seen that 
when 0O is fixed, the profiles of Bz and Jy only slightly differ from those obtained from the 
symmetrical (B2 = Bi) Harris case, while By and Jz are significantly modified with the 
increase of the asymmetry (that is, the increase of B2). This means that the asymmetry 
is mainly controlled by the Jz current. The profiles for <j>(X) and E(X) show that even 
a small asymmetry (for example, kb = 0.25) results in a significant drop of the potential 
across the layer A 0 ~ 700 V (with a maximum value of the electric field of the order of 
0.5 m V / m near X = 0). 

In the following sections we will study the stability of the equilibrium configurations 
illustrated in Figures 1-3. The first necessary step in establishing the threshold conditions 
for global magnetic reconnection is to study the instability at a given magnetic surface 
within the MCL. 

(19) 
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8 2 = 80nT 

80nT 80 

\ z t o 
8, = « n T V ^ V ^ B, \ 90° / B = gonT 

80nT 

8, = i»0nT 8 2 = 80nT 

Figure 1: Hodograms of B (in nanoteslas) through the magnetopause current layer for different 
values of B\, B2, and 90. (left) Case 1: The magnitude of the magnetic field in the adjacent 
magnetosheath region is fixed, B i = 4 0 nT, while the intensity of the magnetospheric field ( S 2 ) 
is changing from 40 to 80 nT. (right) Case 2: The magnitude of the magnetic field in the 
adjacent magnetospheric region is fixed, 52=80 nT, while the intensity of the magnetic field in 
the adjacent magnetosheath (B1) is changing from 80 to 40 nT. From top to bottom the angle of 
the magnetic field rotation 90 is changing from 60° to 120°. These MCL hodograms have been 
calculated with the following parameter values: N2 = 0.1 c m - 3 , T, = 4T e = 1 keV, D = 2p (p is 
the Larmor radius of a ion with a typical thermal energy of 1 keV, in a magnetic field intensity 
of 40 nT, p = 114.3 km). The value of the parameter s = S3 = s4 depends on the values of 
Bi , and B2 as computed in Table 1. 
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B, = 40nT B2 = 80nT 

1: B, = 80nT 
2: S, = 70nT 
3: B, = 60nT 
U: 8, = SOnT 
5: B, s (.OnT 

1 2 - 6 O 6 12 
X/p 

Figure 2: Number density profiles n(X) (per cubic centimeters) corresponding to the magnetic 
field hodograms shown in Figure 1 as a function of the normalized distance X/p from the center 
of the layer (X = 0). 
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Figure 3: Structure of the magnetopause current layer for 9q = 120°, AT2 = 0.1 c m - 3 , Ti = 
4T e = 1 keV, B\ =40 nT, and different values of B2 (1, B2 =40 nT; 2, B2 =50 nT; 3, B2 =60 
nT; 4, B2 =70 nT; 5, B2 =80 nT). Plasma and field parameters are illustrated as a function 
of the distance X/p from the center of the layer (X = 0) (p is the Larmor radius of a ion with 
a typical thermal energy of 1 keV, in a magnetic field intensity of 40 nT, p = 114.3 km). It 
is also assumed that D = 2p. The symmetrical Harris profiles correspond to curves 1 ( B 2 =40 
nT). From top to bottom and from left to right, the following variables are illustrated: (a) By 

(in nanoteslas); (b) Bz (in nanoteslas); (c) number density n(X) (per cubic centimeters); (d) 
j y = hy + jiy ( 1 0 - 7 A /m 2 ) ; (e) J z = j u + j 2 z ( 1 0 - 7 A /m 2 ) ; (f) magnitude of the magnetic field 
B (in nanoteslas); (g) electric potential <j>(X) (in kilovolts); (h) electric field E { X ) (in millivolts 
per meter); (i) plasma beta ( 0 ( X ) = 8 T T n ( X ) ( T i + T e ) / B 2 ( X ) ) - , (j) the hodograms of B (in 
nanoteslas). 
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3 Adiabatic response to tearing perturbations in 
the outer region 

Let us consider the stability of an arbitrary magnetic surface X = Xs of the plasma 
configuration modeled in the previous section with respect to the excitation of low-
frequency tearing-type electromagnetic perturbations. Such perturbations can be de-
scribed by small variations Ay, Az, and (p superposed on the equilibrium vector and 
scalar potentials ay, az, and (/> 

Ay = ay + Ay, Az = az + Az, <p = <j) + <p, (20) 

These perturbations depend on both the Y and Z coordinates and on the time t in the 
form of a plain wave 

Ay, Az,(p ~ exp(-iut + ikzz + ikyy) (21) 

where u> ( = uiT + i j ) is the complex frequency and k(0, ky, kz) is the wave vector perpen-
dicular to the local direction of the equilibrium magnetic field at X = Xs 

k±(Xs) = k, fe||(A"s) = 0 (22) 

Subscripts "||" and "_L" refer to the vector components parallel and perpendicular to the 
local direction of the magnetic field B ( X ) . For instance, 

kn(x) = kyBy + kzBz, k±(x) = ~kyBz + kzBy 

B 

All(X) = ÄyBy + ÄzBz, A±(X)=~ÄyBz + ÄzBy 

B B 
For such perturbations the inductive and potential parts of the parallel perturbed electric 
field E\\ (X) cannot compensate each other in some small vicinity of the X = Xs plane. 
Therefore i?n has a finite value in this region which results in a strong nonadiabatic in-
teraction of electromagnetic perturbations with particles. The plane X = Xs is usually 
called the singular surface for the k-mode (k • B ( X s ) = 0). Far from the singular sur-
face, that is, in the "outer region" E\\{X) —• 0 and the nonadiabatic contribution to the 
interaction becomes negligibly small. 

In this outer region the reversible adiabatic response of particles to tearing pertur-
bations can be derived immediately from the equilibrium distribution. Let us assume 
that adiabatic contributions to the perturbed electric current and number density can be 
expressed as functions of <p, Ay, and Az. Using the Taylor expansion series for Äy <C ay, 
A z « flj, < (j>, we obtain the linearized Maxwell equations and the quasi-neutrality 
condition for perturbations in the outer region in the following form: 

d2Ay 

Ix2" 

d2Äz 

dX2 

- k2Äy = - 4 t t (diÄy + d3Äz - bi<p) (23a) 

- k2Äz = - 4 t t (d2Äz + d3Äy - b2<p) (23b). 
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blAy + b2Az + b0ip = 0 (23c) 

where 
, l d J y d2G 1 < / N 

= = ^ = ( 2 4 a ) 

_ l d J z _ d2G 2agTi 2 dnv ' • 

( 2 4 b ) 

— = a a = 0 (24c) c oaz c oay aayaaz 

® dn„ d2G 2 , „ s T e + Ti , x 

( 2 4 d ) 

61 = "FIT* = = FfiD"1)""' (24e) oaydcj) c d<f> B\D v y 

2 ~ daz<9(/> ~ c dcj) ~ AirTi ~dX ^ 

5 
G(ay,az,<f>) = ^2n„Tv (24g) 

i/=i 
and Jy(ay,az,<f>), Jz(ay,az,<f>), and nv{ay,az,<j)) are the equilibrium current and number 
densities given in section 2. 

Let us introduce the functions Ai (X) and A2(X) 

(25a) 

(25b) 

Since 
A 1 ( X = X s ) = A h A2(X = X S ) = A± 

we call functions Ai(X) and A2(X) quasi-parallel and quasi-perpendicular components of 
the perturbed vector potential A(0,A y ,A z ) . Substituting expressions (25) and (26a) into 
equations (23) and (24a), and eliminating <p by taking into account condition (23c), the 
set of eigenmode equations in the outer region can be reduced to the following form 

^ A - f c 2 ^ = V u A ^ V u A z (26a) 

^ f - k2A2 = VnAi + V ^ (26b) 

AI II <e ' T - ^ T 

A2 11 + A,KF = AL 
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Terms Vu, Vi2, V2i and V22 depending on the global plasma distribution are proportional 
to the perturbed current density responsible for the reversible adiabatic interaction of 
electromagnetic perturbations with particles 

Vn = -4tt [ci cos2 9 + c2 sin2 9 - c3 sin 2fl] (27a) 

V12 = V2i •= -2?r [(CI - c2) sin 29 + 2c3 cos 20] (27b) 

V22 = -4tt ci sin2 9 + c2 cos2 9 + c3 sin 20 (27c) 

where 
6 i • , &2 , M 2 ci = di + —, c2 = d2 4- —, c3 = cf3 + —— 
oo »0 »0 

and 9 is the angle between the wave vector k and the Z axis 

sin 9 = ^ = - ^ 4 , cos g = = A; 5 ( ^ 5 ) ' A; 

For the symmetrical case 61=62=d3=0, and equations (26a) and (26b) are not coupled 
any more at Xs = 0 (where sin0 = 0). For the general asymmetrical case (Kb ^ 0) 
equations for Ax and A2 are coupled even for Xs = 0. Using the same approximate gauge 
condition as in the GKZ model, that is 

kyAy + kzAz = 0 (28) 

which means that the coupling between quasi-parallel ("tearing") and quasi-perpendicular 
("alfven") modes is neglected (that is, dAx/dX « 0, ~ 0), the set of eigenmode 
equations (26a) and (26b) is reduced to a single equation 

d2AY „ 
- - k 2 A 1 = V0A1> Vb = Vn (29) 

The asymmetry of the magnetic field profile (B2 ± Bi => Kb ± 0) modifies the well-known 
potential well 

Vb = Bz"/Bz = — 2L~2 c o s h - 2 ( X / L ) cos2 9 

corresponding to the symmetrical Harris case (£2 = B\ = 0), in the following way: 

B" 9 B". 9 Te dBl/dX 
V0 = -J- sin2 9 + cos2 9 + ——yA— 

By"~ ' ' Bx ' 2Ti B2 (30) 

/ Bz . X f dB2
y/dX eE\ x cos 9 sin 9 \ ;—f-

V By J \8mi(X)(Te + Td Te j 
The solution of (29) for a given magnetic surface X = Xs 

A1(X<XS) = AT(X), Ai(X >Xs) = At(X) 
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should satisfy the following boundary conditions: 

Af(X Too) ~ e±kX — 0 

For the symmetrical case (/cB=0) the solution of (29) can be analytically expressed through 
associated Legendre's functions 

Ai{X < Xs) = C~Prm tanh ^ 

Ax{X > Xs) = C+PF (tanh^ 

where I = 0.5(\/ l + 8 cos2 9 - 1), m = kL. 
For the general asymmetrical case ( k b ± 0) the eigenmode equation (29) in the outer 

region is solved numerically. Introducing the variable R(X) which is the logarithmic 
derivative of the function Ai (see the Ricatti transform method used by Gladd [1990]) 

R ( x ) _ iAgiX 
A i 

R(X < Xs) = R~(X), R(X > Xs) = R+(X) 

equation (29) can be reduced to a nonlinear first-order differential equation 

dR . o o — = k2 + Vb - R2 (31) 

with the following boundary conditions: R(X —* ^oo) —» ±k. 
The structure of the outer solution A\(X) is shown on Figures 4 and 5 for different 

0o, «b, Xs, and kD. The dashed curves on each of these figures (curves denoted "IS" 
for Xs = - 0 . 4 0 , "2S" for = 0, and "3S" for = 0.4D) correspond to symmetrical 
Harris profiles, that is, to the case where kb = 0 (B2 = Bi). The solid curves (denoted 1, 
Xs = —0.4D] 2, Xs = 0; and 3, Xs = 0AD) correspond to asymmetrical magnetic field 
profiles with kb = 0.5 (Bi = 2Bi). The normalization is chosen in the following way: 

Af (X = - 6 D) = 1 

AJ(X = Xs-0)= Af(X =Xs + 0) 

The first derivative of the outer solution Ai is discontinuous at X = Xs, that is, R~(X —> 
Xs- 0) R+(X ~^XS + 0). The jump of the solution of (31) (the logarithmic derivative 
of the outer solution >li) at X = Xs 

A' = R+(X^Xs + 0)~ R-(X^Xs-O) (32) 

is proportional to the power of the free energy source available from current filamentation. 
This term contains information about the global distribution of plasma and magnetic field 
in the layer. 
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X/D 

X/D 

Figure 4: Spatial forms of the outer solution for kD = 0.2 and Èx = 40 nT. The angle of the 
magnetic field rotation is (a) 90 = 90° and (b) 60 = 120°. The six curves correspond to different 
values of KB and Xs: (1) = - 0 . 4 D , K B = 0.5; (IS) Xs = - 0 . 4 D , K b = 0; (2) Xs = 0, 
K b = 0.5; (2S) X S = 0, KG = 0; (3) X s = 0.4D, K B = 0.5; (3S) Xs = 0.4D, K B = 0. The 
dashed curves (IS), (2S), and (3S) correspond to symmetrical Harris profiles. 
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X / D 

X/D 

Figure 5: Spatial forms of the outer solution for 0 O = 60° and B\ = 40 nT. (a) kD = 0.2; (b) 
kD = 0.1. The six curves correspond to different values of k q and Xs and are denoted in the 
same way as in Figure 4. The dashed curves (IS), (2S), and (3S) correspond to symmetrical 
Harris profiles. 
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For the symmetrical Harris equilibrium (Bi = B2) the expression for A' can be analyt-
ically calculated for arbitrary magnetic surfaces within the layer and expressed through 
the associated Legendre functions [see Kuznetsova and Zelenyi, 1985, p. 367]. For Xs = 0 
this expression reduces to the well-known form 

A <(M) = A'o = 

The dependences of the free energy of perturbations A' on the wave number kD 
modified by the finite asymmetry are calculated from (32) and are illustrated in Figure 6 
for different 6Q and Xs- The dashed curves on each of these panels correspond to the 
symmetrical Harris equilibrium (Kb = 0). The dotted curves correspond to asymmetrical 
magnetic field profiles with KB = 1/3, while the solid curves correspond to the most 
asymmetrical configurations with KB = 1/2. 

When A'(XS, kD, KB, > 0 the magnetic surface Xs within the MCL with given 9Q, 
KB, and D has an excess of free energy with respect to the excitation of perturbations 
with wavelengths 2n/k. Figure 6 shows that configurations with the largest degree of 
asymmetry KB have the largest excess of free energy A' for the same 60, Xs, and kD. Hence 
the asymmetrical transitional layers are potentially more unstable than the symmetrical 
ones. Whether this tendency will be realized depends on other contributions to the 
energy balance condition associated with irreversible nonadiabatic responses of resonant 
particles to perturbations inside the interaction region |x| < This will be calculated 
in the following section. 

4 The set of eigenmode equations 
The first-order perturbation of the velocity distribution function 

3 _ 5 

fi = fv> fe~ fu 
u=l i / = 4 

is obtained by integrating the linearized Vlasov equation along the unperturbed particle 
trajectory 

h = I f + . / r (33) 

where the first term corresponds to the solutions in the outer region illustrated in previous 
section 

-r^ e„ (dFu - dFu - 8FV \ , x 

This term associated with the reversible change in the distribution depends only on the 
form of the equilibrium distribution function. The second term in (33) represents the 
irreversible change in the distribution and depends on the details of the particle orbits 

t 
S = t(£,Fu) J ( v | | ^ 4 | | + U D v A x - dp) dr (34b) 
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k i 0 

B2 = B, = 40nT 

B2 = 3B-|/2 = 60nT 

B2 = 28, = 80nT 

Figure 6: Free energy of the perturbations A ' as a function of the wave number KD for different 

values of Oo, Xs , and KB- The dashed curves on each panel correspond to the symmetrical 

Harris equilibrium (Bi = B2 = 40 nT; KB = 0). The dotted curves correspond to asymmetrical 

magnetic field profiles with KB = 1/3, while the solid curves correspond to the most asymmetrical 

configurations with KB = 1/2. 
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where 
, i „ , ( dF„ 9F„ 

and udu=ue+ubu are averaged guiding center drifts perpendicular to the magnetic field 
( U £ ; = C [ E x B } / B 2 , u B u = ~ C T u [ V B X B]/e„£ 3) . 

Let us adopt the gauge condition (28) and assume that in the vicinity of the singular 
surface X = Xs• A± « A2 « 0 and A\\ « Ax. An eigenmode equation for the quasi-
parallel component A\ where the nonadiabatic terms are taken into account is obtained 
by considering the linearized Maxwell equation 

d2A1 l 2 j _ k
2Al - VbAi = VA\ (35) 

The term VAi corresponds to the singular current due to the nonadiabatic response of 
the particles near X = Xs 

47r 5 r 
VAx = e " / (vv c o s 9 ~ v* s i n e ) f ™ d v (36) 

c i/=i J 

'l'his equation is coupled with the quasi-neutrality condition 

5 r ~ 
bQcp + b3A! = - £ > „ / f T d v ( 3 7 ) 

v=l J 

The singular current which is strongly peaked near the singular surface X = Xs is con-
trolled by the local values of the plasma density and magnetic field in the singular region 

\x\ = \X-Xs\<\Su\, 6V= 
k\\VTu 

where = uj - uje - wDu, uE « kuE(Xs), ss kuou(Xs), vn, = yj2Tv/mv, and 

k / _ dkW (x - Q) - k * B ' ( x s ) + kyBy'(Xs) 
11 dx ^ ] B(XS) 

It can be seen that 
6\ = 62 = 63 = 6i, S4 = 85 — Se 

Assuming that all particles are magnetized and that their Larmor radius is smaller than 
the spatial inhomogeneity gradient scale the trajectory integrals in (34b) can be evaluated 
in the guiding center approximation, and the singular current (36) can be reduced to the 
following form 

kx 
V A > = k { E V» - + (38) 

Operators Vu, f „, and R% are given by 

2u> 2 

Vu = (39a) 
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^v = h {\pl v kl )eM-\plu^ l ) (39b) 

3 

R i = ß(X)rHJ2(»Su 2k2 x (39c) 
i/=i 

where kx = -i(d/dx) is a differential operator, 70 is the modified Bessel function of order 
0, Pxv=PvB\/B{Xs) is the particle Larmor radius in the local magnetic field B(Xs), 

uipi/=[4:TTn(X)e2/mu}1^2 is the plasma frequency, and 

- üv Su 
SU — , 

k\\VTv % 

Functions Sv\ and Sv2 in (39a) and (39c) come from averaging the perturbed distribution 
functions over the normalized parallel velocity (v|| = V\\/VTU) 

<7 - w -uw ibiBy + b2Bz)c '-'i/(n+l) = VV^n+l) + Wvn r - ^ 
ÖQBvtu 

n[X)u)v J u|| - Qu 

Index n can take any integer values: n = 0 ,1 ,2 , . . . . Neglecting terms proportional 
to Pxu/D functions Wun can be approximately expressed through the plasma dispersion 
function (Zn) 

T n„ u>* Wu 
n(X) <jjv 

<1 . 

tn e x p ( ~ t 2 ) d t 

Zn{C,v) ( 4 0 ) 

1 r tnexp( 
- T / ^ l 7T73 y/ir J t — ( — zesignC' —00 

In (40), ui* is the local drift frequency of the v species 

ck[TuVnv x B ] * 
U) = — v 

euB2n{X) 

nu cTuk ( . dnu ndn7 
-UE-1—7 + —— sin + cos 0 - — 

n{X) eun(X) y day daz j 

The ion (u;*) and electron (cj*) drift frequencies are then 

3 5 

x=xs 

u.* 
* \ * * V^ * 
i = Ve = 

v=\ u=4 

Operator Vv (see equation (39a)) comes from integrating along the particle motion 
parallel to the magnetic field lines. The nonlinear operators f „ (see equation (39b)) and R { 

(see equation (39c)) come from averaging over the particle motion along the Larmor orbit. 
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The term proportional to Ri describes slow variations of A\ across the layer (perpendicular 
to the magnetic field) and corresponds to corrections associated with deviations from the 
"Ai = const" approximation. For electrons (u = 4,5) IV = T e « 1. The average scalar 
potential f w = Tv(p (u = 1,2,3) introduced in the GKZ model determines the cutting 
distance (6¥>) of the parallel electric field in the vicinity of the singular surface When 
the local ion Larmor radius ( p x i = pxl/, v = 1, 2, 3) in the vicinity of Xs is smaller than 
the spatial scale of variation of the resonant ion current (Si = Su, u = 1,2,3), the operator 
f i can be expanded as f i « 1 - p\ jz 2 J2, and the quasi-neutrality equation (37) takes the 
differential form 

1 2 /- / „ , d2<P v T i u / ^ A A 
2 P * c i l w » d x i - T w a d x * ) • ( 4 1 ) 

where 
w i n = U J ~ 0 J : ~ U E z n ( c l ) 

v=\ u i 
Ci = Cu and Ui — u>„ for v = 1, 2, 3. 

The parallel Ampere's law (35) (where VAi is given by (38)) together with the quasi-
neutrality condition (41) form a set of two coupled second-order differential equations, 
which constitutes the eigenvalue problem for the collisionless drift tearing mode when 
Pxi < Si. The similar system for the symmetrical Harris equilibrium (when all coefficients 
in the differential equations can be expressed analytically) was solved by Gladd [1990] 
with the use of an integration scheme utilizing Ricatti transforms. The numerical growth 
rates were found to be smaller than analytical estimates given by the GKZ model, while 
there was no disagreement on the parametric dependences of the stability thresholds. The 
main purpose of this paper is to analyze the modifications of the stability thresholds due 
to asymmetries in the magnetic field profile. We assume that after the instability onset 
the linear collisionless growth rate could be modified, for instance, due to coupling with 
high-frequency electrostatic turbulence or due to overlapping of nearby growing magnetic 
islands. Therefore we will apply the "Ai = const" approximation used in the GKZ model 
and neglect the term proportional to the operator Ri in (38). 

In the GKZ model it was illustrated that the condition pxi <C <5; is very rarely satisfied 
within the typical MCL. It is more appropriate to consider the opposite case pxi > 6i when 
the operator f j and, consequently, the quasi-neutrality equation (37) take an integral 
form. Evaluation of the solution of the quasi-neutrality equation in this "integral" case 
was presented in the paper by Galeev et al. [1986]. In the next section we will neglect 
unimportant logarithmic corrections ("residual" ion magnetization in the region |x| < pxi) 
and use the approximate "steplike" expressions for the perturbed electrostatic potential 
and for the operator f j 

v = r ~ h ( \ x \ ~ f i = MM - pxi), pxi > Si (42) K\\C 

where h{£) is the Heaviside step function. 
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5 Criterion of a magnetic surface stability 
The dispersion relation in "Ai =const" approximation acquires the following form 

(see, for example, Galeev and Zelenyi [1977]): 
1 °° A' = £ ƒ VdX = Ue + Ui (43) 

—oo 
The right-hand side of (43) is a total nonadiabatic response which is proportional to 
the perturbed electric field work upon the singular current. The term Ue describes the 
irreversible increase of resonant electron energy, while Ui is the energy expenditure for 
the excitation of field-aligned ion oscillations. The values of these integrals are controlled 
by the local values of the magnetic field and electron density in the region of the singular 
surface X — Xs and can be estimated from (38) where the term proportional to Ri is 
neglected, and ti<p is expressed through Ai with the help of (42) 

1 /2 pe (w - UJe - WE) -ITT — — j C2 fen VTe 

(44) 

(U-Uj- u E ) Si Ui « —5 —, (45) c* || v T i pxi 
The solution of the dispersion equation (43) for the drift tearing mode u = u>T + 17 
{uir » 7) takes the form 

U B ( X s ) - ~ e B i B { X s ) D n ( X s ) (46a) 

7 » 7 i ( l - a) (46b) 
where 'y L =A'c 2 k\i 'v T e /ujp e (X s ) \ / : n : is the linear tearing mode growth rate. The parameter 
a « Ui/A' characterizes the departure of the mode from its linear stability threshold. Far 
from the stability threshold the growth rate is thus mainly controlled by the electrons and 
is positive for all parameters when A' is positive. The stabilizing effect is related to the 
coupling of tearing perturbations with field-aligned ion sound waves [Coppi et ai, 1979; 
Galeev et al., 1986]. In this study, we are mainly interested in the threshold conditions 
when the growth rate changes its sign. When the ion term Ui becomes larger than the free 
energy A' the growth rate should change sign and the threshold (7 = 0) can be obtained 
from the condition 

A ' = 2 a j ^ J d n f l x , ) « . (47) 
vTi p%i 

obtained substituting 7 = 0 and w = to * 4- uE in (43)-(45). 
The results of the numerical solution of the dispersion equation (47) are shown on 

Figures 7a-7f, where the dependences of the threshold wave number k^D on X s / D for 
different values of 9q, Bi, and £2 are presented. Instability development on the magnetic 
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B, = tOnT B2 = 80nT 

Figure 7: Threshold wave number ka-D as a function of X s / D for different values of 6q, B I , 
and B i - (left) Case 1. (right) Case 2. Instability development on the magnetic surface X s is 
possible only if the perturbation wavelength A is greater than A = 2i:/kcr. The dotted-dashed 
curves correspond to the G K Z model. 
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surface Xs is possible only if the perturbation wavelength A is greater than = 2n/kcr. 
Perturbations with wavelengths less than A a r e completely stabilized. 

It can be seen that curves in Figures 7a-7f with equal asymmetry factors but from 
different sets (1: Bi = const, and 2: B2 = const) are qualitatively similar. The maxima of 
the curves in Figures 7a-7f correspond to the "most unstable" magnetic surface X ^ with 
the widest range of wavelengths of unstable modes. For the symmetrical case (the GKZ 
model represented by the dot-dashed curves) this most unstable surface is the central 
magnetic surface = 0. For asymmetrical MCLs the most unstable surface is shifted 
to the magnetosheath side, the smaller 90 the larger the shift. For instance, for the 
asymmetry factor kb = 0.5 (B2 = 2£i; solid curves in Figures 7a-7f) the most unstable 
magnetic surface is shifted to X^ « -0.5£> for 90 = 120°, to Xg1 « -0 .7D for 90 = 
90°, and to Xg « -1 .3D for 90 = 60°. Comparing curves in Figures 7a-7f with the 
number density profiles shown in Figure 2 (where D = 2p), it can be seen that the 
maxima in corresponding curves, that is, in those with the same values of 90 and kb, are 
located at nearly the same Xs• This means that the most unstable magnetic surfaces 
are located close to the maxima of the number density profiles. Near the maximum 
(Xs = X2f) the stabilizing influence of the coupling with ion field-aligned oscillations 
appears to be inefficient. At X = Xjf the critical wavelength (Acr)min is determined 
mainly by the free energy source of the instability, that is, from the condition A' = 0. 
For the symmetrical MCL this condition corresponds to ( k ^ ^ D = O.5sin(0o/2), or to 
(Acr)mm = 4?xD j sin(0o/2). In Figures 7a-7f the values of (k^)^ for asymmetrical MCLs 
are all systematically higher than the one for the symmetrical MCL, which means that 
the corresponding critical wavelengths are shorter. For the most asymmetrical MCLs, 
this effect is the most pronounced for 9Q < 90° (especially for 9Q = 60°). 

The minima of the curves in Figures 7a-7f correspond to the most stable magnetic 
surfaces Xg where the range of wavelengths of unstable modes is the most narrow, that 
is, only very long wave perturbations can be excited. Comparing curves in Figures 7a-7f 
with the number density profiles shown in Figure 2 (where D = 2p), it can be seen that 
the most stable magnetic surfaces X§ are located in regions with the strongest density 
gradients, where drift effects are more effective. Perturbations near the magnetic surface 

= X*s are strongly coupled with ion sound oscillations that carry away the wave energy 
from the interaction region. 

For symmetrical MCLs the most stable magnetic surfaces are located symmetrically 
at both edges of the layers (see the dotted-dashed curves in Figures 7a-7f). For asymmet-
rical MCLs, Figures 7a-7f show that the stability of the magnetospheric part of the layers 
(Xs > 0) is more affected by the asymmetry of the magnetic field than the magnetosheath 
part (Xs < 0). In particular, in asymmetrical MCLs the stability of the magnetospheric 
part is strongly dependent on the orientation of the interplanetary magnetic field (IMF), 
that is, on the value of 9q. Indeed, nearly all curves in Figures 7a-7d have a well pro-
nounced minimum in the region Xs > 0, the exceptions being the dotted-dashed curves 
corresponding to the symmetrical case ( k b = 0 ) , and the dotted curves corresponding to 
small values of the asymmetry factor kb (see Table 1). This means that, when the value 
of kb is not too small, asymmetrical MCLs with 90 < 90° (corresponding to a northward 
orientation of the IMF) are then characterized by an internal magnetic surface at X = Xg, 
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inside the magnetospheric region, which is the most stable. Furthermore, when KB in-
creases (keeping a fixed value for 0O) this most stable magnetic surface (corresponding to 
the position of the minima in the curves ilustrated in Figures 7a-7d) "moves" deeper into 
the layer and the range of wavelengths for its stable modes increases (the depth of the 
minima in the curves illustrated in Figures 7a-7d increases). 

For asymmetrical MCL's with 0O > 90° (Figures 7e and 7f when 0O = 120°), the mag-
netospheric edge is more unstable than the magnetosheath one, since the corresponding 
curves in Figures 7e and 7f are above the dotted-dashed curve of the symmetrical case 
when Xs » 0. It is only when KB > 0.4 that there is a pronounced minimum in the 
threshold wave number curve (see the solid lines in Figures 7e and 7f corresponding to 
kq = 0.5, i?2 = 2i?i), similar to those found for several non-zero values of kb when 
0O < 90° (see Figures 7a-7d). 

Note that with the decrease of 0O (for a fixed value of kb) the most stable magnetic 
surfaces are shifted closer to the center of the layers. For instance, for KB = 0.5 
(B2 = 2Bi, the solid curves in Figures 7a-7f), the most stable surface is at ss 0.4D 
when 0O = 120° (Figures 7e and 7f), at X£ « 0.2£> when 0O = 90° (Figures 7c and 7df), 
and at Xg ss 0 when 90 = 60° (Figures 7a and 7b). 

6 Marginal Thickness of Asymmetr ica l MCLs 

According to the GKZ model the necessary condition for the magnetic percolation 
through the MCL is the destruction of all magnetic surfaces within it (see Galeev et aVs 
[1986], Figure la illustrating the stochastic wandering of magnetic field lines through 
the layer and the resulting magnetic percolation). If a domain with stable and smooth 
magnetic surfaces exists within the MCL (somewhere in the vicinity of the most stable 
magnetic surface X*) the MCL appears to be impenetrable for the diffusing field lines (see 
Galeev et a/.'s [1986], Figure lb illustrating the interruption of the percolation process). 

If all magnetic surfaces within the MCL are destroyed and the percolation is success-
fully accomplished the minimum excursion of the percolated field lines along the magne-
topause should not be smaller than the critical wavelength for the most stable magnetic 
surface 

A* = Ac-PC) = (Acr)max 

It is seen from Figures 2 and 3 that all plasma and field parameters are varying on a 
characteristic distance of the order of 

L0 « 4D (48) 

Let us adopt this value for the characteristic thickness of the magnetopause. Thus for 
each D, Bi, B2, and 0O, we select the region AX = L0 where the conditions for the 
instability development are the most favorable, and find the magnetic surface within it 
characterized by the maximum critical wavelength A*. This critical wavelength can be 
identified with the minimum "latitudinal" spatial scale of the reconnection patch on the 
magnetopause surface. 
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The dependences of the dimensionless spatial scale A*/p on the dimensionless magne-
topause thickness Lq/p for different values of 9q and kb (that is, different values of 
and B2) are shown on Figure 8. The lower curves in each panel correspond to reconnec-
tion patches with the smallest spatial scale for identical MCL thickness, and correspond 
therefore to cases where the MCL can be easily percolated. For <90 = 60° the results are 
very sensitive to the value of the asymmetry factor, that is, even curves corresponding to 
very small asymmetry factors (kb «0.07, or, case 1: = 40 nT, B2 = 43 nT; case 2: 
B2 = 80 nT, B1 = 75 nT) are well separated from the curves corresponding to the sym-
metrical case (case 1: B\ = B2 = 40 nT; case 2: B\ = B2 = 80 nT). For 9q = 90° and 
0o = 120° the dependence on kb is less pronounced. Therefore, in addition to the curves 
corresponding to the symmetrical case (kb = 0) only curves corresponding to Kg > 0.2 
are displayed when 90 > 90°. It is seen that for 90 = 120° the curves corresponding to 
different asymmetry factors are much closer to each other (that is, less sensitive to the 
value of kb) than for 90 = 90°. For 90 = 60° and 90 = 90° the largest asymmetry factors 
kb correspond to the largest spatial scales A*. For the latter values of 90, the symmetrical 
case (Bi = B2 = 40 nT in the left column, Bx = B2 = 80 nT in the right column) is seen 
to correspond to the lowest values of A*/p, and is therefore the most favorable case for 
percolation. However, when 90 = 120°, it can be seen that the symmetrical case is not the 
m u s t favorable case for percolation. Indeed, for 9q = 120°, the lowest Curve corresponds 
to B1 = 40 nT and B2 = 70 nT in the left column (case 1), and to Bx = 50 nT and 
B2 — 80 nT in the right column (case 2). Therefore, for large angles 90 « 120°, the most 
favorable configurations for percolation are asymmetrical configurations with asymmetry 
factors kb of the order of 0.4. 

One can assume that the characteristic spatial scale along the magnetopause Xext 

is determined by the external conditions (the size of the magnetopause, the convection 
pattern in the magnetosheath). Let us assume that Aeit = 90p « 10,000 km. The 
dependence of the dimensionless marginal magnetopause thickness LQ/p on 90 for different 
KB is shown on Figures 9a and 9b. A MCL of thickness less than the marginal one ( L f f ) 
will be subjected to percolation of magnetic field lines. The results shown on Figures 9a 
and 9b can be considered as the generalization of the GKZ model for the asymmetrical 
case. 

Note that the characteristic thickness LfiKZ used in the GKZ model {LQKZ = 2L) 
is linked to the characteristic thickness Lq used in the present study by the relation 
L0/L$KZ = sin(0o/2) (see equations (13) and (48)). In the GKZ model, the "most 
favorable angle for percolation" 9*0 (corresponding to the maximum marginal thickness 
LQ") depends on the definition of the MCL thickness and on the parameter a (see equation 
(3)), but its value was always found less than 90° (that is, in symmetrical MCLs, 9Q was 
always found to correspond to a northward orientation of the IMF). For instance, in Galeev 
et al. [1986, Figure 5] 9Q « 60°, for a thickness definition given by (13) and a = 1. For a 
thickness definition given by (48) and a = 0, the most favorable angle for percolation in 
symmetrical MCLs is 9Q « 85° (see curves corresponding to symmetrical configurations 
in Figures 9a and 9b). 

Despite the fact that the series of curves in Figure 9a and 9b are qualitatively similar 
to each other, it can be seen that in case 2 (when the magnetic field is kept constant 

29 



B, = 40nT B
2
 = 80nT 

60 200 

/ 50 
/ / to 150 

£100 

e0= 90° 50 

J 1 ! 1 1 1 1 
16 20 0 

200 

150 

.n"100 

50 

0 

L0/9 

Bj = 80nT, ,„ 70 

r-Bj = lOnT 

1 I 1 1 1 * 1 1 1 1 • 1 • 1 1 • • 1 

84= 120° 
1 1 • 1 1 ' ' ' 1 1 • ' 1 ' ' 1 1 

C 8 12 16 20 
L0/? 

200 

150 

.•Two 

50 

0 

t 8 12 16 20 
Lo'9 

B, = 80nT 

8« = 120" 
1 1 ' 1 1 1 1 1 1 1 1 • 1 1 1 ' 1 1 

U 8 12 16 20 

L0/? 

Figure 8: Dimensionless minimum spatial scale of the reconnection patch X* / p as a function 
of the dimensionless MCL thickness L0/p = 4 D / p for different values of B1, S 2 and 90. (left) 
Case 1. (right) Case 2."It can be seen that for 90 = 60° and 0O = 90°, the symmetrical case 
(B1 = B2 = 40 nT in the left column, Bi = £ 2 = 80 nT in the right column) corresponds to 
the lowest value of A*/p, and represents therefore the most favorable case for percolation. For 
00 = 120°, asymmetrical configurations with asymmetry factors « s of the order of 0.4 represent 
however the most favorable configurations for percolation. 

30 



12 

10 

o . 
A 

B 1 = 4 0 n T 

1 1 • • 11 •1 • I • • • •1 •1 • •1 • •1 • i • ' » • ' • • • • i 
50° 60° 70° 80° 90° 100' 110° 120° 

00 

12 

10 

o-

B 2 = 8 0 n T 

- 80 

B1 = ÔnT 

percolation 

(b) 
' ' I ' • ' ' I ' ' ' ' I ' ' ' ' ' ' ' ' ' ' • • I ' ' ' ' I 

50° 60° 70° 80 
9n 

90° 100° 110° 120° 

Figure 9: Dimensionless marginal magnetopause thickness L f f / p as a function of 0O for different 
values of Bi and B2, and assuming that„the spatial scale of the reconnection patch Xext = 90p « 

10,000 km (p is the Larmor radius of a ion with a typical thermal energy of 1 keV, in a magnetic 
field intensity of 40 nT, p = 114.3 km), (a) The magnitude of the magnetic field in the adjacent 
magnetosheath region is fixed, Bi=40 nT, while the intensity of the magnetospheric field (B2) 
is changing from 40 nT to 80 nT (case 1). (b) The magnitude of the magnetic field in the 
adjacent magnetospheric region is fixed, B 2 =80 nT, while the intensity of the magnetic field in 
the adjacent magnetosheath (Bi) is changing from 80 to 40 nT (case 2). 
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on the magnetospheric side) the marginal thickness is more sensitive to the value of 
the asymmetry factor than in case 1 (when the magnetic field is kept constant on the 
magnetosheath side). The introduction of the asymmetry in the magnetic field profile 
significantly modifies the dependence of the marginal MCL thickness on the angle of the 
magnetic field rotation 90. When 90 < 90°, it can be seen that even for small values of the 
asymmetry factor ( k b > 0.15) the marginal thickness LJf is significantly decreased, that 
is, only thin MCLs can be subjected to percolation. Furthermore, for very asymmetrical 
MCLs ( k b > 0.4) with 0O < 90° (northward IMF) the percolation becomes impossible. 
Therefore the most favorable angle for percolation (9Q) is shifted to larger values: 9Q > 90° 
(southward IMF). The larger the asymmetry factor kb, the larger the angle 9Q. For very 
asymmetrical MCLs ( k b >0.4), 9£ > 120°. 

If the magnetopause thickness is much larger than the marginal one a large domain 
of stable magnetic surfaces should exist within it which should prevent particles diffusion 
across the layer. In this case a one-dimensional slab TD could be considered as a good 
approximation for the magnetopause current layer if one disregards the question of particle 
accessibility both in the current layer itself, and more specifically to different phase space 
regions. However, consideration of particle accessibility in Vlasov theories of plane TD's 
requires the knowledge of the characteristics of the plasma in the source regions together 
with the transport mechanisms bringing the plasma to the transition itself [Whipple et 
al., 1984]. In the opposite case, that is, when the magnetopause thickness is much less 
than the marginal one, the strong large-scale magnetic turbulence developing within the 
layer should result in turbulent reconnection and current sheet broadening. A diffusive 
broadening of the symmetrical current layer when a large number of tearing modes are 
allowed to grow together was illustrated by Wang and Ashour-Abdalla [1994] using a 
three-dimensional particle simulation. 

Thus it is reasonable to assume that the magnetopause thickness should, on the av-
erage, tend to the marginal one. The magnetopause current layer in this case could be 
modeled as a one-dimensional tangential discontinuity perturbed by embedded percolated 
magnetic filaments. From this point of view, curves in Figures 9a and 9b represent a char-
acteristic dependence of the magnetopause thickness on the angle 90. It is seen that in 
realistic asymmetrical cases ( k b > 0.3) the magnetopause should be thinner for 90 < 90° 
(northward IMF) than for 90 > 90° (southward IMF). 

7 Summary and Conclusions 
The aim of this study has been to understand some of the basic signatures of the internal 
structure of the magnetopause current layer (MCL) when the latter is not an electrostat-
ically equipotential configuration and is characterized by an asymmetrical magnetic field 
profile. Within such MCLs we have investigated the stability of magnetic surfaces with 
respect to spontaneous excitation of collisionless tearing perturbations. The stochastic 
percolation model by Galeev et al. [1986] (the GKZ model), based on the symmetrical 
equilibrium configuration of Harris, has been reconsidered and generalized. 

In this study, two groups of Vlasov equilibrium configurations have been considered. 
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The first one (referred to as case 1) corresponds to situations when an increase of the ki-
netic pressure in the magnetosheath (Bi fixed) caused an earthward displacement of the 
MCL (B2 is increasing, N2 is fixed). The second group (referred to as case 2) corresponds 
to situations where the positions of the MCLs are fixed (B2 and N2 are fixed), while any 
increase of the kinetic pressure in the adjacent magnetosheath results in a correspond-
ing reduction of the magnetic pressure (Bi is decreasing). In both groups, the internal 
structure of the MCL depends on two parameters characterizing the magnetic field asym-
metry, that is, the asymmetry factor (kb = (B2 - B{)/B2) and the angle of rotation of 
the magnetic field (Qq). These parameters determine in particular the plasma density and 
the magnetic field in the center of the layer. We have shown that the number density 
in the center of the MCL strongly depends on the magnetic field asymmetry parameters 
for MCLs of group 1, but is rather insensitive to these parameters for MCLs of group 2. 
The magnetic field asymmetry significantly modifies the By and Jz profiles (with respect 
to the symmetrical Harris case), while the Bz and Jy profiles are only slightly affected. 
This means that the asymmetry is mainly controlled by the magnetosheath and magneto-
spheric ions and not by the trapped particles. Moreover, the electric field distribution is 
strongly dependent on the magnetic field asymmetry, and the departure from the equipo-
tential condition, <£(X)=const, is already significant for rather small values of kb. Note 
that the introduction of the asymmetry in our model leads to the increase of the plasma 
beta in the magnetosheath, from nearly zero (for kb —• 0) to 2 -r- 3 (for kb > 0.3). 

The modifications of the initial symmetrical Harris configuration (1), introduced by 
the presence of an asymmetrical magnetic field profile, strongly influence the adiabatic 
interaction of the plasma with tearing-type perturbations as well as the nonadiabatic 
response of the particles near the center of the MCL. In other words, the free energy 
of the perturbations (controlled by the global plasma and field distributions) and the 
singular current (controlled by the local values of the plasma density and magnetic field 
near the center of the MCL ) are both significantly modified by the presence of a magnetic 
field asymmetry. Configurations with the largest degree of asymmetry kb have the largest 
excess of free energy A' and are thus potentially more unstable than the symmetrical ones. 
The stabilizing effect related to the coupling of tearing perturbations with field-aligned 
ion sound waves has also been studied. 

For asymmetrical MCLs the most unstable magnetic surfaces (those with the widest 
range of wavelengths for unstable modes) are no longer located at X — 0 as in the GKZ 
model but are shifted to the magnetosheath side. This shift is more pronounced for small 
values of the magnetic field rotation. The most unstable magnetic surfaces are located 
close to the maxima of the number density profiles. Near these most unstable magnetic 
surfaces, the stabilizing influence of the coupling with ion field-aligned oscillations appears 
to be inefficient and the threshold wave number is mainly determined by the free energy 
source of the instability. The most stable magnetic surfaces are located in regions with 
the strongest density gradients, where drift effects are more effective. Perturbations near 
these most stable magnetic surfaces are strongly coupled with ion sound oscillations that 
carry away the wave energy from the interaction region. For a northward orientation of 
the IMF (Qq < 90°) the magnetospheric edge of the asymmetrical MCL has been found 
to be more stable than the magnetosheath one. ^Vith the increase of kb, the most stable 
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(magnetospheric) surfaces (that is, those where the range of wavelengths of unstable 
modes is the most narrow) move deeper into the layer and the range of wavelengths for 
their stable modes still increases. For a southward orientation of the IMF (90 > 90°), 
a moderate asymmetry (KB < 0.4) makes the magnetospheric part of the MCL more 
unstable. A region with a most stable magnetic surface is present in the magnetospheric 
part only for very asymmetrical MCLs (KB > 0.4). 

According to the GKZ model, almost all the magnetic surfaces within the magne-
topause layer must be unstable to accomplish the percolation process. The characteristic 
spatial scale of the reconnection patch Xext is limited internally from below by the con-
ditions of the tearing-mode destabilization and growth: Xext > A* = A „ ( X g ) = (Acr )max-

The external conditions of plasma motion within the magnetosheath impose the other up-
per boundary: Xext < 1 -2R E . A typical value of Aeit has been chosen of the order of 90 p, 
that is, Aext « 10,000 km. For 90 = 60° and 0o = 90°, the symmetrical case (Bi = B2) 
corresponds to the lowest value of A* and therefore represents the most favorable case for 
percolation, However, for 0O = 120°, asymmetrical MCLs appear to be more unstable, the 
most favorable ones for percolation having asymmetry factors KB of the order of 0.4. 

The introduction of asymmetry in the magnetic field profile strongly modifies the 
dependence of the marginal MCL thickness (below which the MCL is subjected to perco-
lation) on the polarity of the interplanetary magnetic field (IMF). In the GKZ model, a 
northward orientation of the IMF was found to be optimum for percolation, that is, the 
maximum thickness of Harris-type layers subjected to percolation is achieved for 0O < 90°. 
The introduction of asymmetry in the magnetic field helps to overcome this seemingly 
contradiction with experimental data [Berchem and Russel, 1984; Southwood et ai, 1986]. 
It is demonstrated that for 90 < 90°, and especially when the magnetospheric field B2 is 
kept constant (MCLs of group 2), the marginal thickness is significantly smaller than that 
computed in the GKZ model, even for small values of KB. This means that for 0Q < 90° 
only thin asymmetrical MCLs can be subjected to percolation. For very asymmetrical 
MCLs (KB > 0.4) the percolation is possible only for 0O > 90°, that is, for a southward 
IMF polarity (with 90 > 120° the optimum range for percolation). 

Assuming that the magnetopause should, on the average, be close to the threshold 
of its stability it is found that realistic asymmetrical MCLs (with KB > 0.3) should be 
thinner for a northward IMF than for a southward IMF. 

When the threshold conditions for percolation are satisfied the magnetic field lines be-
come stochastic. In symmetrical charge-neutral MCLs composed of trapped particles, the 
field line stochasticity can only result in a diffusive broadening of the current layer. The 
formation of percolated magnetic filaments in asymmetrical MCLs should result in a dif-
fusive penetration of particles from the magnetosheath to the magnetosphere, that should 
be accompanied by particle heating. It is also interesting to consider the role of the equi-
librium electric field which, after percolation, has a component parallel to the magnetic 
filament. This parallel electric field component should provide the MCL with the feature 
of a "semipermeable membrane" at the early stage of diffusion. Indeed, the potential 
drop across the asymmetrical MCL (~ 700 V) will accelerate the magnetosheath ions and 
prevent the cold magnetospheric ions to overcome the potential barrier. However, mag-
netic field line stochasticity and particle diffusion in asymmetrical, electrostatically non 
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equipotential MCLs represent important challenging problems that should be attacked by-
methods of particle simulation. 
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