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FOREWORD 
This paper has been accepted for publication, in a volume of Geophysical 

Monograph Series entitled Physics of the Magnetopause. It is based on the 
invited talk presented by M. M. Kuznetsova during the Chapman Conference 
on Physics of the Magnetopause, San Diego (USA), March 14 -18, 1994. 

AVANT-PROPOS 
Cet article a été accepté comme publication dans un volume de la Série des 

"Geophysical Monograph", intitulé Physics of the Magnetopause. Il est basé 
sur l'exposé invité présenté par M. M. Kuznetsova au cours de la Conférence 
Chapman sur la Physique de la Magnétopause, qui s'est déroulée à San Diego 
(USA) du 14 au 18 mars 1994. 

VOORWOORD 
Dit artikel is aanvaard voor publikatie als een boekdeel in de reeks "Geo-

physical Monograph", getiteld Physics of the Magnetopause. Het' is gebaseerd 
op een voordracht, die door M. Kuznetsova op uitnodiging werd gehouden 
tijdens de "Chapman Conferentie over de Fysica van de Magnetopause" te 
San Diego (USA) van 14 tot 18 maart 1994. 

VORWORT 
Dieser Artikel wurde zur Veröffentlichung in einem Band der "Geophysical 

Monograph"-Reihe Physics of the Magnetopause zugelassen. Er gründet sich 
auf die Gastrede von M. M. Kuznetsova bei der vom 14. bis 18. März 1994 
in San Diego (USA) abgehaltenen Chapman-Konferenz über die Physik der 
Magnetopause. 



Kinetic Structure of the Magnetopause: 
Equilibrium and Percolation 

M.M. Kuznetsova * M. Roth § and L. M. Zelenyi11 

Abstract 
This paper addresses theoretical studies of the magnetopause kinetic fine structure. A 

considerable amount of effort was made beginning in the early sixties to construct Vlasov 
equilibrium models of one dimensional tangential discontinuities which were assumed to 
provide a reasonable approximation for the structure of the magnetopause current layer 
(MCL). Simple models of MCLs of finite thickness (with a minimum number of free pa-
rameters) can be used to illustrate the effects of asymmetrical boundary conditions on*the 
internal structure of the current layer. One dimensional current layers are thermodynam-
ical nonequilibrium systems which have an excess of free energy that allows excitation 
of drift tearing modes which result in destruction of magnetic surfaces. The stochastic 
wandering of magnetic field lines between the destroyed surfaces can result in formation 
of percolated magnetic filaments topologically connecting magnetosheath and magneto-
spheric field lines. The stochastic percolation model by Galeev et al. [1986], based on 
the symmetrical charge-neutral Harris equilibrium, is generalized for asymmetrical MCLs. 
Asymmetry in the B field profile strongly modifies the dependence of the marginal MCL 
thickness (below which the MCL is subjected to percolation) on the angle of magnetic 
field rotation 9q. The maximum thickness of MCLs which still could be subjected to 
percolation is achieved for ^o > 90°, that is, for southward IMF. Realistic asymmetri-
cal MCLs are likely to be thinner for a northward IMF than for a southward IMF. For 
northward IMF the MCLs are likely to be thinner for larger values of plasma /? in the 
magnetosheath. 

Résumé 
Cet article contient une étude théorique de la structure fine et cinétique de la magnéto-

pause. Une quantité considérable d'efforts a été fournie, au début des années soixante, 
pour construire des modèles d'équilibre de Vlasov de discontinuités tangentielles à une 
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dimension. Ces modèles étaient supposés fournir une approximation raisonnable de la 
structure de la couche de courant de la magnétopause (CCM). Des modèles simples de 
CCM d'épaisseur non nulle (avec un nombre minimal de paramètres libres) peuvent être 
utilisés pour illustrer les effets de conditions frontières asymétriques sur la structure in-
terne de la couche de courant. Les couches de courant à une dimension ne sont pas des 
systèmes en équilibré thermodynamique. Elles possèdent un excès d'énergie libre per-
mettant l'excitation de modes "drift tearing", qui aboutit à la destruction de surfaces 
magnétiques. L'errance stochastique de lignes de champ magnétique entre les surfaces 
détruites peut donner lieu à la formation de filaments magnétiques infiltrés, reliant entre 
elles, de façon topologique, des lignes de champ magnétique issues de la magnétogaine à 
d'autres, issues de la magnétosphère. Le modèle de "percolation" stochastique de Galeev 
et al. [1986], basé sur l'équilibre symétrique, électriquement neutre de Harris, est généra-
lisé pour des CCM asymétriques. L'asymétrie du profil du champ B modifie fortement la 
dépendance de l'épaisseur marginale de la CCM (en deçà de laquelle la CCM est soumise 
à "percolation") par rapport à l'angle de rotation du champ magnétique Oq. L'épaisseur 
maximale des CCM qui pourraient encore être l'objet d'une "percolation" est réalisée 
lorsque Oo > 90°, c'est-à-dire, pour un champ magnétique interplanétaire (CMI) d'orien-
tation sud. Des CCM d'asymétrie réaliste sont vraisemblablement plus minces lorsque le 
CMI est orienté au nord, plutôt qu'au sud. Pour un CMI d'orientation nord, les CCM 
sont probablement plus minces pour des valeurs plus élevées du (3 de la magnétogaine. 

Samenvatting 
Dit artikel handeit over de theoretische studie van de kinetische fijnstructuur van de 

magnetopause. In het begin van de zestiger jaren werd een aanzienlijke inspanning gedaan 
om Vlasov evenwichtsmodellen van één-dimensionale tangentiële discontinuïteiten op te 
stellen. Deze werden verondersteld een redelijke benadering te geven van de structuur 
van de stroomvoerende plasma-laag in de magnetopause ("magnetopause current layer" 
of MCL). Eenvoudige modellen van MCL's met een beperkte dikte kunnen gebruikt wor-
den om het effect van asymmetrische randvoorwaarden op de inwendige structuur van de 
magnetopause aan te tonen. Eén-dimensionale stroomvoerende plasma-lagen zijn thermo-
dynamisch gezien niet in evenwicht : ze hebben een teveel aan vrije energie. Daarom laten 
ze het ontstaan van drift-verbrekingsinstabiliteiten ( "drift-tearing mode instabilities" ) toe, 
hetgeen een vernietiging van magnetische oppervlakken tot gevolg heeft. Het stochastische 
gedrag van magnetische veldlijnen tussen de vernietigde magnetische oppervlakken kan 
leiden tot de vorming van percolerende magnetische filamenten, die de magnetoschede en 
de magnetosfeer met elkaar verbinden. Het stochastische percolatiemodel van Galeev et. 
al. [1986], dat gebaseerd is op het symmetrische neutrale Harris-evenwicht, wordt veral-
gemeend voor asymmetrische MCL's. Asymmetrie in het magnetisch veld-profiel wijzigt 
de invloed van de rotatiehoek 6q van het magnetisch veld op de marginale MCL dikte 
(de dikte beneden dewelke percolatie mogelijk is) aanzienlijk. De maximale dikte van 
MCL's waardoor percolatie nog mogelijk is, wordt bereikt bij 0$ > 90°, dus voor een in-
terplanetair magnetisch veld met zuid-polariteit. Realistische asymmetrische MCL's zijn 
waarschijnlijk dunner voor het geval van een noord-polariteit; in dat geval zijn de MCL's 
wellicht dunner voor grote waarden van plasma (3 in de magnetoschede. 



Zusammenfassung 
In dieser Arbeit ist die Rede von der kinetichen Feinstruktur der Magnetopause. Im 

Anfang der 60er Jahre wurden mit beträchtlichem Aufwand Vlasov'sche Gleischgewichts-
modelle mit eindimensionalen tangentialen Diskontinuitäten erstellt, mit dem Ziel, über 
eine vernünftige Annäherung für die Stromschichtstruktur (SSM) der Magnetopause zui 
verfügen. Einfache SSM-Modelle endlicher Dicke (mit einer Mindestzahl freier Parame-
ter) ermöglichen die Darstellung von Auswirkungen asymmetrischer Grenzbedingungen 
auf die innere Struktur der Stromschicht. Eindimensionale Stromschichten sind Systeme 
in thermodynamischem Nicht-Gleichgewicht, deren Ubermass an freier Energie die Erre-
gung von "drift tearing" Schwingbereichen, die eine Zerstörung von magnetischen Ober-
flächen bewirken, ermöglichen. Die regellose Wanderung magnetischer Feldlinien zwischen 
den zerstörten Oberflächen kann zur Bildung infiltrierter Magnetfilamente führen, die 
ein topologisches Bindeglied bilden zwischen Magnetfeldlinien aus der Magnetohülle und 
solchen aus der Magnetosphäre. Das auf dem Harris'schen symetrischen elektrisch neu-
tralen Gleichgewicht beruhende stohastische Perkolationsmodell von Galeev et al. [1986] 
wird für asymmetrische SSM Verallgemeinert. Die Asymmetrie des B-Feldprofils verur-
sacht eine starke Veränderung in der Abhängigkeit der SSM-Grenzdicke (unterhalb derer 
die SSM einer "Perkolation" unterliegt) von dem Drehwinkel des magnetischen Feldes 9q. 
Die höchste SSM-Dicke, bei der eine Perkolation möglich wäre, liegt bei 6q > 90°, d.h. bei 
-einem südlich orientierten interplanetaren Magnetfeld (IMF). Realistische asymmetrische 
SSMs sind wahrscheinlich dünner bei nördlich als bei südlich orientierten IMF. Für ein 
nördlich orientiertes IMF sind die SSM voraussichtlich dünner bei höheren ß-Werten der 
Magnetohülle. 
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1 Introduction 
Study of the fine structure and dynamics of the magnetopause current layer (MCL) 

separating magnetosheath and magnetospheric plasmas is of fundamental importance in 
understanding mechanisms of transport of solar wind energy, momentum and particles 
through the magnetopause boundary. The simplest model of the MCL is roughly described 
by a one-dimensional tangential discontinuity (TD) of finite thickness within which the 
magnetic field rotates from an arbitrary interplanetary direction to the magnetospheric 
direction. In a global sense it means that the MCL represents a smooth transition between 
open magnetosheath field lines and closed magnetospheric field lines. Equilibrium Vlasov 
models of steady state TDs received a great deal of attention beginning in the early sixties, 
see, e.g., Grad [1961], Harris [1962], Nicholson [1963], Sestero [1964, 1966], Alpers [1969], 
Kan [1972], Roth [1976-1983], Lemaire and Burlaga [1976], Channell [1976], Lee and Kan 
[1979], Roth et al. [1990]. 

A single plasma particle of species v (having electric charge ev and mass m„) in a one 
dimensional TD parallel to the y-z plane is characterized by three constants of motion: 
the Hamiltonian (if„ = mvv2/2 + et,</>) and the y and z components of the canonical 
momentum (Puy = mvvy 4- evay/c and Pvz = mvvz + euaz/c). The most generally used 
way to solve the time independent Vlasov equation is to introduce single-valued velocity 
distribution functions Fv in the (H v , Puy, Puz) space. The partial number densities n„ and 
the y and 2 components of the partial current densities Juy and Jvz can then be obtained 
after integrating the distribution functions fu(vx, vy, vz, ay, az, <j)) = Fv(Hv,Puy,Pvz) over 
velocity space (v x , v y , v z ) as functions of the electrostatic potential <p(x) and the y and z 
components of the vector potential ay(x) and az(x). The charge density a = vnv and 
the y and 2 components of the total current density Jy — Y1 Juy, Jz — 2 Jvz are then 
substituted into Maxwell's equations, leading to a set of coupled second order differential 
equations for <j){x), ay(x) and az(x) 

d2<f> 

— = —4ircr((f>, ay, az) (1) 

d2ayz 4-7T 
= —~JyA<P> %> az) (2) 

The differential equation for (j>(x) is usually replaced by the quasi-neutrality condition n ( x ) = Y1 Z v U v = n " (3) 
L>=L>+ V=U-

where u+ correspond to ion populations and to electron populations, Zveu is the 
ion charge (Zv = 1 for protons). In the general case, the number of ion and electron 
populations can be arbitrarily large. All particle populations can be subdivided into 
three groups associated with each of the two sides of the transition, called the "outer" 
regions, and its "inner" region. For magnetopause modeling it is reasonable to introduce 
magnetosheath, magnetospheric, and trapped (i.e. inner MCL) populations. 

The density of magnetosheath particles tends to zero on the magnetospheric side (x —• 
+00), while the density of magnetospheric particles tends to zero on the magnetosheath 
side (x —• —00). The inner (or trapped) populations are confined inside the current 
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layer, their density having a maximum inside the MCL and tending to zero on both sides 
(x —> ±00). The inner population is especially important in MCLs with large magnetic 
shear. 

The dependence of the velocity distribution function on Hv is usually introduced in a 
Maxwellian form 

Fv = su(mu/2nTu)3/2 e x p { - H v / T v ) g v ( P u y , Pvz) (4) 

that corresponds to Poisson distributions of the partial number densities in the electro-
static potential 

nu(<j), ay, az) = su eyL-p(-ev<j)/Tv)gv(ay, az) ( 5 ) 

g(ay,az) = Tr-ljexv{-(yly + vl^}gv{Pvy,Pu^dvVydvvz, vlyuz=(mu/2Tv)vlz. T h e f u n c t i o n s 
Gv{Pvy, Pvz) represent cutoff factors in phase space to describe the fact that charged 
particles from one side cannot penetrate arbitrarily deeply into the other side of the 
current layer and that trapped particles are confined inside it. The form of G(Pvy,Pvz) 
determines the gradient scale Dv of the partial current density of the z/'th species 

Juy,uz{<t>, CLy, = cTu(dnv/day>z) 

An isotropic Maxwellian distribution (with zero current velocity) corresponds to Qv = 1. 
The spatial variation of the density of such a population can only be controlled by the 
nonuniform electrostatic potential profile (that is, by the equilibrium electric field, Ex, 
inside the layer). 

The well known analytical Harris distribution, modified by a superposed constant 
By = B^y magnetic field component, is 

X 
B = B0 tanh — ez + B0yey . (6) 

L/ 

az = —BoyX, ay = LBoln ( c o s h ( x / L ) ) 

It is described by trapped populations of protons aiid electrons with G(PUy,Pvz) = 
exp(-muul/2Tv + uuPuy/Tu) corresponding to Maxwellian distribution functions shifted 
by the diamagnetic drift velocity in the y direction ( u v = -2cTu/euB0L): Fv = n(x) 
{mv/2<KTv)W exp {-mv[vl+ ( t / y -u„ ) 2 + v*]/2T„} (n(x) = n0 cosh - 2 {x/L)). Other forms 
of trapped distributions were introduced in the papers by Nicholson [1963] and Roth [1978, 
1980], 

The cutoff factors Gu(Puy, Pvz) for magnetosheath and magnetospheric populations are 
usually chosen in the form of step functions (e.g., Sestero [1964, 1966], Roth [1976, 1980]) 
or error functions (e.g., Alpers [1966], Lee and Kan [1979]) because they lead to rela-
tively simple analytical expressions for the moments nv, Juy, and Juz of the distribution 
functions. The choice of error functions allows one to introduce arbitrary gradient scales 
D v > Pv (pv is the gyroradius of the i / th species). Even for step-like cutoffs the char-
acteristic thickness of the TD can not be less than one electron gyroradius pv_ = pe (in 
electron-dominated layers, where ions are isotropic, i.e. Gv+ = 1, and the electric current 
is only carried by electrons), or one ion gyroradius pu+ = p̂  (in ion-dominated layers, 
where the electric current is carried by ions). However, in symmetrical transitions of the 

2 



Harris type (6), the minimum thickness can approach the Debye length. In the general 
case the characteristic thickness of the transition is determined by the gradient scales Dv 

of all populations collectively. Thin electron layers appear to be extremely unstable (see, 
e.g., Drake et al. [1994]; Drake, this volume), so below we will only consider layers with 
characteristic thickness of a few ion gyroradii. The choice of functions Gv(Puy,Puz) is of 
course not unique. 

In summary, the existing one-dimensional Vlasov models can be characterized by the 
following set of attributes: 

• The number of different particle populations (magnetosheath, magnetospheric, and 
inner). For instance, the models by Harris [1962] and Nicholson [1963] include only inner 
(i.e., trapped) populations of electrons and protons, while Sestero [1964, 1966] and Alpers 
[1969] introduced only magnetosheath and magnetospheric particles without trapped pop-
ulations. Both "inner" and "outer" populations were incorporated by Lee and Kan [1979]. 
Multi-species plasma with different densities, ion charges and temperatures (including 
asymptotic temperature anisotropies) were considered by Lemaire and, Burlaga [1976] 
and Roth [1978, 1980]. 

• Assumptions about the charge neutrality and the electric field within the layer. 
• The form of the cutoff functions Gu(Puy,Puz) and corresponding gradient scales- Dv 

that control the thickness of the MCL. 
• The degree of asymmetry in boundary conditions that can be described by the model 

(e.g., the velocity shear; the angle of magnetic field rotation, 90; density and temperature 
asymmetries). For instance, models by Sestero [1966] and Roth [1976], where velocity 
shear was taken into account imply unidirectional magnetic fields (90 = 0). The model 
by Alpers [1969] without inner populations can only describe MCLs with zero velocity 
shear and small magnetic shear (0O < 90°). The unified model by Lee and Kan [1979] 
can describe asymmetric MCLs with zero velocity shear and arbitrary magnetic shear 
(including 90 > 90°) as well as MCLs with finite velocity shear and small magnetic shear 
(9o < 90°), but due to different formalisms for inner and outer populations their model is 
unable to describe MCLs with both velocity shear and large magnetic shear (90 > 90°). 

A generalized one-dimensional kinetic multi-species model of MCLs was developed 
recently by Roth, De Keyser and Kuznetsova [Belgian Institute for Space Aeronomy, 
preprint, 1994]. In this model all particle populations (from both outer regions and from 
inside the layer) are described using a unique formalism for the velocity distribution 
functions. Most of the previous models can be retrieved as special cases. The model also 
describes current layers with velocity shear and large angles of magnetic field rotation. 

Such multi-species models with a large number of free parameters and different gra-
dient scales could in principle illustrate many observable features of the MCL, including 
its multiscale fine structure. However a number of problems associated with the one-
dimensional, time-independent Vlasov approach should be kept in mind: 

• Vlasov theories of plane tangential discontinuities yield nonunique solutions because 
particle distribution functions are assigned arbitrarily in different regions of phase space. 

• Time-independent plane TD models do not provide a complete solution to the prob-
lem of particle accessibility, both to the current layer itself, and, more specifically, to 
different phase space regions [Whipple et al., 1984]. Stationary plane Vlasov configura-
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tions are supposed to be formed from remote plasma source regions by suitable transport 
across magnetic field lines. A possible way to solve the particle accessibility problem is 
to consider the temporal behavior of the sheath and introduce two (or three) dimensional 
"degrees of freedom".. 

• The large number of free parameters obscures the relation between boundary con-
ditions and the internal structure of the layer. 

• One-dimensional current layers with magnetic shear are thermodynamical nonequi-
librium systems that have an excess of free energy and are potentially unstable with 
respect to the excitation of large scale electromagnetic perturbations, resulting in the de-
struction of magnetic surfaces. Therefore, MCLs most likely are in a state of turbulence 
rather than in a state of one-dimensional Vlasov equilibrium. 

Therefore, a reasonable application of these one-dimensional Vlasov models is to adopt 
them as an initial unperturbed state and then consider the temporal and spatial evolution 
of the system caused by superposed perturbations. 

In section 2, we consider several simple models of MCLs of finite thickness (with a 
minimum number of free parameters) to illustrate the effects of asymmetrical boundary 
conditions (velocity shear, density gradient) on the internal structure of the current layer. 
In section 3, the free energy and the "energy level" of large-scale, adiabatic electromagnetic 
perturbations is evaluated and a way is discussed to reduce the number of free parameters 
of the initial configuration. In section 4, the stochastic percolation model by Galeev et al. 
[1986] is reviewed and the thresholds for the formation of percolated magnetic filaments 
are generalized to the case of asymmetrical MCLs. Qualitative conclusions concerning 
the probable fine structure and thickness of the MCL are presented in section 5. 

2 Harris Equilibrium Modified by Asymmetrical 
Boundary Conditions 

Let us assume that, in a first approximation, the MCL can be modeled as a one dimen-
sional TD which separates two plasmas with number densities Ni and N2, temperatures 
Tn, Tei and Ti2, Te2, bulk flow velocities V^O, 0, Vu) and V2(0,0, V2z) and magnetic fields 
Bi(0, Biy, Biz) and B2(0, B2y, B2z) (subscript "1" corresponds to the magnetosheath side 
x —»• — oo, subscript "2" to the magnetospheric side x —»• +00, subscript V ' corresponds 
to ions and subscript "e" to electrons). The TD is assumed to be parallel to the (y, z) 
plane so that all plasma and field variables depend only on the x coordinate normal to 
the layer. We also choose the coordinate system in such a way that Bz is equal to zero 
in the center of the MCL (x = 0), but has opposite signs on its outer edges (B z < 0 for 
x < 0, Bz > 0 for x > 0), while By remains everywhere positive. In this configuration, 
the total angle of the magnetic field rotation 90 < 180° is then given by 

dQ = arctg( |B l z | / f l i„) + zxctg{\B2z\/B2y) 

This approach is not able to described magnetic field rotations greater than 180° which 
according to Berchem and Russell [1982b] are seldom observed. 
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2.1 2.1 Effect of Relative Flow Velocity 
To illustrate the modifications of the Harris neutral sheet (configuration (6) with Byo <C 
Bo) separating magnetosheath and magnetospheric plasma with nearly antiparallel mag-
netic fields (OQ close to 180°) by the flow asymmetry Kuznetsova et al. [1994] suggested 
to consider a simple equilibrium which is a combination of the models of Harris [1962] 
and Sestero [1966]. To illustrate effects of the relative flow velocity an isothermal plasma 
is considered (Tn=Ti2=Ti=Te=Tei=Te2=l keV) and the absolute value of the magnetic 
fields is assumed to be equal on both sides of the transition ( |Siz |=|S2z|=So = 60nT, 
Biy=B2y=Boy=0.08Bo). We also choose the coordinate system in which the bulk flow ve-
locity, directed along the z axis, has an antisymmetric profile, that is, V\Z=U=—V2Z- The 
structure of the configuration is only determined by the flow asymmetry factor u — U/ui, 
where u* is the ion diamagnetic drift velocity. The configuration reduces to the Harris 
plane neutral sheet (with Soy=0.08So, i.e., QQ « 170°) when the factor u tends to zero. 

Fig. 1 illustrates the structure of the MCL for two different positive u values. It is 
seen that the relative flow velocity results in the generation of a strong BY component 
in the center of the layer (BY(0) » BOY). For u = 2 BY(0) becomes comparable with 
BQ- Therefore, in the presence of a shear flow in the MCL with DO —• 180°, the magnetic 
field is expected to rotate from one direction to another, rather than to change its sign 
only. For negative u the bulk flow velocity has a nonrealistic oscillating profile inside the 
current layer. However simultaneous change of the sign of Boy and u (which is equivalent 
to change of the coordinate system, y —> —y, z —• —z) corresponds to configurations 
similar to those shown in Fig. 1. 

Therefore for do 180° the sense of magnetic field rotation is likely to be related with 
the direction of the flow in the magnetosheath, i.e., it should be opposite in the northern 
and southern hemispheres. Experimental data, discussed by Sonnerup and Cahill [1968] 
and Su and'Sonnerup [1968], appear consistent with this prediction. 

2.2 Effect of Asymmetrical Magnetic Fields 
The modification of the Harris equilibrium by an asymmetrical magnetic field is considered 
in detail in the paper by Kuznetsova and Roth [1994], where the velocity shear is neglected 
and the plasma is assumed to be isothermal (i.e., the temperature Ti = 4Te = 1 keV is 
assumed to be independent of x). In this study, three proton and two electron populations 
are introduced and two groups of Vlasov equilibria are illustrated. The first group (referred 
to as case I) corresponds to situations where an increase of the thermal pressure in the 
magnetosheath (Si = 40nT is fixed) causes an earthward displacement of the MCL (S2 is 
increasing, N2 — 0.1cm -3 is fixed). Magnetic field hodograms and number density profiles 
for fixed B\ =40 nT and different values of B2 and QQ are shown in the left columns of 
Figs. 2 and 3. The second group (referred to as case II) corresponds to situations where 
the positions of the MCLs are fixed (B2 = 80nT and N2 = 0.1cm-3 are .fixed), while any 
increase of the thermal pressure in the adjacent magnetosheath results in a corresponding 
reduction of the magnetic pressure (Si is decreasing). Magnetic field hodograms and 
number density profiles for fixed B2 = 80 nT and different values of Si and 9Q are 
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Figure 1: Structure of the magnetopause current layer for different flow asymmetry factors 
u = U/ui (u = 0.9 in the left column, u = 2 in the right column), |Bi | = |I?2| = 60nT, 
Ti = Te = IkeV, do = 170°. Harris profiles, corresponding to u = 0, are shown by the dashed 
lines, (a): Hodogram of the magnetic field; (b): Bulk flow velocity normalized by the ion thermal 
velocity as a function of the distance x/pi from the center of the layer, where pi = 54km is the 
ion Larmor radius in the asymptotic magnetic field. 
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Figure 2: Hodograms of B through the MCL for different values of B\, Bi and 9q. 
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Figure 3: Number density profiles n(x) (cm 3) corresponding to the magnetic field hodograms 

shown on Fig. 2. 
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shown in the right columns of Figs. 2 and 3. The number density profiles in Fig. 3 are 
illustrated as a function of the distance x/p from the center of the layer x = 0, where 
p = c(2T im i)1/2/eB* is a typical ion Larmor radius (7* = IkeV, B* = 40 nT). 

In both groups, the internal structure of the MCL depends on two parameters charac-
terizing the magnetic field asymmetry, that is, the asymmetry factor kb = (£2 — B{)/B2 
and the angle of the magnetic field rotation Qq. These parameters determine in particular 
the plasma density and the magnetic field in the center of the layer. When the asymmetry 
factor Kg tends to zero the configuration reduces to the symmetrical Harris equilibrium 
(6) with a rarefied uniform background. The peak in density in the center of the layer is 
associated with the trapped populations (the relative contribution of which to the total 
number density increases with increasing angle 9q) and is likely to be a general feature of 
an isothermal current sheet with large magnetic shear. It is seen that the introduction 
of asymmetry in case I (the left column) significantly modifies the number density in the 
center of the layer, while in case II (the right column) the number densities at x = 0 are 
only slightly different for various asymmetry factors. 

3 "Energy Level" of Adiabat ic Perturbat ions t 

Generalized models of TDs usually introduce a large number of free parameters which 
are not determined by the boundary conditions. One such parameter is the electrostatic 
potential drop across the layer. We now discuss a procedure that could help to reduce 
this uncertainty. 

Let us introduce a three-dimensional "degree of freedom" into the configuration in the 
form of periodic perturbations of vector and scalar potentials. Such perturbations can be 
described by small variations Ay ,AZ, (p ~ e x p ( i k z z + ikyy) superposed on the equilibrium 
vector and scalar potentials ay, az and (j>\ Ay=ay+Ay, Az=az+Az, (p=<f>+<p. Taking 
into account the approximate gauge condition k • A = 0 it is convenient to introduce 
the scalar quantity A=A\\ = {kzAy— kyAz)/k, which corresponds to the component of the 
vector potential parallel to the local direction of the magnetic field near the so-called 
singular magnetic surface x3, where k • B(x s )=0 (i.e., Bz(xs)/By(xs)=—ky/kz). 

We assume that adiabatically perturbed electric current and number densities can be 
expressed as functions of <p, Ay, and Az and expanded in Taylor series for Ay ay, 
Az -C az, (p <C (f>. The linearized Maxwell equations and quasi-neutrality condition can 
then be reduced to an eigenmode equation of Schrodinger's type 

(d2A/dx2) - (k2 + V0)A = 0 (7) 

where 

and 
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The solution of equation (7), satisfying the natural boundary conditions A(x —• 
±00) —• exp^/crr) —> 0, has a jump of the logarithmic derivative R(x) = (dlnA/dx) 
at x = xs 

A'(xs,k) = R+{x^xs + 0) - R~(x->xs-0) (8) 

which is proportional to the excess free energy that could be released by current fila-
mentation in the vicinity of the singular surface. This term depends on the form of the 
equilibrium distribution functions and contains information about the global distribution 
of plasma and magnetic field in the layer. 

For the symmetrical Harris configuration (6) the "potential well" VQ takes the simple 
form [Furth et ai, 1963] 

V0 = Bj'/Bz = —2(kz/kL)2 cosh~2{x/L) 

and equation (7) can be solved analytically. The analytical expression for A'(xs,k), at 
an arbitrary magnetic surface xs within the symmetrical configuration (6), in terms of 
associated Legendre functions is presented in the paper by Kuznetsova and Zelenyi [1985]. 
For xs — 0 this expression reduces to the well-known formula A' — (1 — k2L2}/kL [Ln,vnJ, 
et ai, 1966]. 

In a general asymmetrical case, the solution of the eigenmode equation (7) and' the 
corresponding jump of the logarithmic derivative (8) can be obtained numerically (see 
Kuznetsova and Roth [1994]). 

When A'(xg,k ==&») = 0 the solution of equation (7) is smooth at x — xs- The 
corresponding eigenvalue k 2 of the Schrodinger-type equation (7) may be thought of as 
an "energy level", £k = kj2, of adiabatic perturbations at x = x$. For instance, at the 
plane of symmetry, xs = 0, of the Harris configuration (6) we have £k = l/L2. 

The integral value 

£k = ƒ Sk{xs) dxs (9) 

depends on the form of equilibrium distribution functions Fu (that is, on free parameters 
of the model controlling the internal structure of the layer). It is reasonable to assume 
that the most favorable free parameters of the model, related to the most stable configu-
ration (among those with the same thickness and boundary conditions), correspond to the 
minimum value of £k• This gives us a method to reduce arbitrariness and to determine 
some properties of the internal structure of the MCL (e.g., the electrostatic potential drop 
across the layer). 

4 Percolated Magnetic Filaments. 
Marginal Thickness of Asymmetrical MCLs 

When A'(xs, k) > 0 (for k < k*) the magnetic surface xs has an excess of free energy 
with respect to the excitation of the drift tearing perturbations A\\, (p ~ exp(—iu>t+ikyy + 
ikzz) with wavelength 2ir/k and wave vector perpendicular to the local direction of the 
equilibrium magnetic field (k • B = 0 ) . Whether this tendency will be realized depends on 
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other contributions to the energy-balance condition associated with the temporal evolution 
of the layer ( d / d t ~ —iu>) and with irreversible nonadiabatic interaction of resonant 
particles with perturbations in some small vicinity of the x3 plane, where fy = (k • B/B) 
is small and the inductive and potential part of the parallel electric field E\\ — (iuj/c)A\\ — 
ik\\(p cannot compensate each other. 

The linear and nonlinear dynamics of the collisionless drift tearing mode has been 
thoroughly investigated by a number of authors (e.g., Galeev and Zelenyi [1977], Drake 
and Lee [1977], Coppi et al. [1979], Quest and Coroniti [1981], Kuznetsova and Zelenyi 
[1985, 1990a,6], Gladd [1990]). The linear stability analysis shows that the drift tearing 
mode can be stabilized due to its coupling with ion sound waves. The analysis of the 
nonlinear dynamics of the drift tearing mode (in the single mode approach) shows that 
the growth of the magnetic islands saturates when their half width approaches the ion 
Larmor radius [Kuznetsova and Zelenyi, 1990b] which, according to Berchem and Russell 
[1982a], is much less than the thickness of the MCL. The principal conclusion from this 
result is that the destruction of a single magnetic surface cannot lead to macroscopic 
reconnection of magnetosheath and magnetospheric magnetic fields. 

A stochastic percolation model based on these studies has been suggested by Galeev, 
Kuznetsova and Zelenyi, hereafter referred to as the GKZ model [Galeev et al., 1986]? In 
this model, reconnection was considered as an irregular multiscale process associated with 
the magnetic field diffusion caused by the self-consistently generated magnetic turbulence. 
If the distance between the singular magnetic surfaces corresponding to unstable modes is 
less than the ion Larmor radius, the overlap of magnetic islands growing on neighboring 
magnetic surfaces results in stochastic wandering of magnetic field lines from one magnetic, 
surface to another [Rosenbluth et al., 1966]. This stochastic process leads to the formation 
of percolated magnetic filaments which connect the two sides of the current layer via an 
irregular path [Galeev et al., 1986, Figure la]. Results of particle simulations of magnetic 
field line stochasticity due to the growth and overlapping of multiple tearing mode islands 
within a symmetrical current layer, reported recently by Wang and Ashour-Abdalla [1994], 
support the GKZ percolation model. 

If regions of stable magnetic surfaces wider than the ion gyroradius exist within the 
MCL, the stochastic wandering of magnetic field lines does not result in percolation, 
i.e., the topological connection of magnetosheath and magnetospheric field lines is absent 
[Galeev et al., 1986, Figure 16]. Therefore the necessary condition for magnetic percolation 
through the MCL appears to be the destruction of all magnetic surfaces within it. This 
condition imposes a bound on the thickness of the MCL, required for the formation of 
reconnection "patches" with characteristic spatial scales along the magnetopause X z x \ y ~ 
A 2 

eit" 
The energy balance equation for the tearing mode development can be represented in 

the following form 
A' = Ue + Ui (10) 

The right-hand side of equation (10) is a total non-adiabatic response which is pro-
portional to the perturbed electric field work upon the singular current (J|| = cr\\E\\). The 
values of these terms are controlled by the local values of the magnetic field and electron 
density in the vicinity of the singular surface x = xs. The term Ue describes the irre-

11 



versible increase of resonant electron energy. The term Ui is the energy expenditure for 
the excitation of field-aligned ion oscillations, which carry the wave energy away from the 
interaction region (where fy ~ 0) and slow down the growth of the electron drift tearing 
mode. At the stability threshold, the energy of ion-sound oscillations is exactly equal to 
the free energy of the instability, i.e., Ui = A'. 

The integral expressions for nonadiabatic contributions Ue and Ui for the general case 
and the numerical solution of the marginal condition A' = Ui for the sets of equilibria 
illustrated in section 2.2 are presented in the paper by Kuznetsova and Roth [1994]. It is 
shown that the "most unstable" magnetic surfaces (i.e., those with the widest wavelength 
range of unstable modes) are located close to the maxima of the number density profiles 
where the stabilizing influence of the coupling with ion field-aligned oscillations appears to 
be inefficient. On the contrary, the "most stable" magnetic surfaces (where the marginal 
wavelength for the instability is maximal) are located in regions with the strongest density 
gradients, where drift effects are the most prominent and where perturbations are strongly 
coupled with ion sound oscillations. 

One can assume that the characteristic spatial scale along the magnetopause, Xext, is 
determined by external conditions (the size of the magnetopause, the convection pattern 
in the magnet,nsheath). The dcpcndence of the dimensionless marginal magnetopause 
characteristic thickness L^/p on 90 for Xext = 90p « 10,000 km and different Kb is 
shown in Fig. 4. A MCL of thickness less than the marginal one (Lq") will be subject to 
percolation of magnetic field lines. The results shown on Fig. 4 represent the generalization 
of the GKZ model to the asymmetrical case. Note that for the symmetrical case («s = 0, 
i.e., B\ = Bi) the characteristic thickness LQ shown in Fig. 4 is linked to the characteristic 
thickness L%KZ used in the GKZ model (LQKZ = 2 L , where L is the half thickness of the 
Harris current sheet (6)) by the relation LQ /LQKZ = sin(0o/2). 

In the GKZ model, northward orientation of the IMF was found to be optimum for the 
percolation, that is, the maximum thickness of Harris-type layers subjected to percolation 
is achieved for 0Q < 90°. The introduction of asymmetry Kg ^ 0 in the magnetic field 
helps overcome this seeming contradiction with experimental data [Berchem and Russell, 
1984; Southwood et al., 1986]. When 9Q < 90°, it can be seen that even for small values of 
the asymmetry factor (KB > 0.15) the marginal thickness Lq" is significantly decreased, 
that is, only thin MCLs can be subject to percolation. Therefore the most favorable angle 
for percolation (9Q) is shifted to larger values: 9Q > 90° (southward IMF). The larger the 
asymmetry factor KB, the larger the angle 9Q. For very asymmetrical MCLs (Kb >0.4), 
e*Q > 120°. 

5 Discussion and Conclusions 
The kinetic analysis discussed above enables us to draw a number of qualitative con-

clusions about the magnetopause thickness and structure. 
If the MCL thickness is much larger than the marginal one, a large domain of stable 

magnetic surfaces should exist within it, which should prevent particles diffusion across 
the layer. Note that microscopic plasma turbulence (e.g., lower hybrid drift instability 
[Gary and Eastman, 1979; Winske et al., this volume; Treumann et al., this volume] that 
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Figure 4: Dimensionless marginal magnetopause thickness LQ~/p, for typical spatial scale of the 
reconnection patch of A^t = 90p « 10,000 km, as a function of 0o for different values of B\ and 
B2. Here p = c ^ m , ) 1 / 2 / e B * ~115 km is a typical ion Larmor radius (7* = IkeV, B* = 40 
nT). (a) case I (#i=40nT and iV2=0.1cm-3 are fixed, B2 is increasing from 40nT to 80nT); (b) 
case II (B2=80nT and <V2=0.1cm-3 are fixed, B\ is decreasing from 80nT to 40nT). 
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could provide diffusion when the magnetosheath and magnetospheric fields are parallel) 
is strongly stabilized by the magnetic shear when do is substantial. In this case a one-
dimensional slab TD could be considered as a good model for the MCL, if one disregards 
the question of particle accessibility discussed by Whipple et al. [1984], In other words, the 
process of formation of such a thick smooth slab configuration in the absence of transport 
mechanisms across the magnetic field, which could bring the plasma inside the transition, 
is still unknown. 

When the thickness is close to the marginal value, the MCL can be modeled as a 
tangential discontinuity "spoiled" (in the first approximation) by embedded percolated 
magnetic filaments. In this case the MCL is likely to have a pore-like fractal structure, 
where percolated magnetic filaments (common for both sides of the MCL) are surrounded 
by closed magnetospheric and open magnetosheath field lines. The process of aggrega-
tion (self-organization) of these filaments into large-scale clusters (like FTEs) due to the 
attraction of field aligned currents is a challenging subject for future studies. 

When the MCL thickness is much less than the marginal one, strong, large-scale 
magnetic turbulence develops within the layer. This turbulence creates a perfect "kinetic 
background" for turbulent magnetic reconnection models (e.g., Galeev [1991], Tetreault 
[1992]). The diffusive broadening of the symmetrical cuiienl layer when a large number 
of tearing modes are allowed to grow together was illustrated by Wang and Ashour-
Abdalla [1994], using a three-dimensional particle simulation. It was shown that after the 
field lines become stochastic, the tearing modes which cause the stochasticity grow 2-3 
times faster than in the linear stage. The diffusion coefficient was found to reach 109 

m 2 / s for typical magnetopause parameters which is in good agreement with quasi-linear 
analytical estimates Dp = £ (B^/B2)ir8(k\\(x)) ~ (p3/LXext) tan(#o/2) [Rosenbluth et al., 
1966; Galeev et al., 1986] as well as observationally based estimates [Sckopke et al., 1981]. 
Recently it was shown [Milovanov and Zelenyi, this volume] that the taking into account 
of finite ion Larmor radius effects could appreciably enhance the stochastic diffusion rate 
across the magnetopause. 

It is reasonable to assume that the curves shown in Fig. 4 qualitatively reflect the 
dependence of the characteristic magnetopause thickness (normalized on a typical ion 
Larmor radius p = c{2Timi)l^/eB* ~115 km for 7* = IkeV, B* = 40 nT) on the an-
gle do and the plasma beta in the magnetosheath (which for N2 & 0 can be expressed 
through the asymmetry factor kb: (3 = kb{2 - « s ) / ( 1 - «b)2)- One can see, that in 
realistic asymmetrical cases (kb > 0.3), the magnetopause should be thinner for 6q < 90° 
(northward IMF) than for 90 > 90° (southward IMF). For southward IMF (0O > 90°) 
the magnetopause thickness depends only slightly on KB and (3. For northward IMF the 
magnetopause should be thinner for larger values of (3 in the magnetosheath. 
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