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Solar Wind Interaction With the Magnetosphere 

M. Roth * 

Abstract 
Solar wind interaction with the magnetosphere results in the formation of a 

current layer called the magnetopause. This paper reviews the kinetic theory 
of this current layer in the context of a multi-species model describing one-
dimensional tangential discontinuities. Qualitative conclusions are drawn about 
the magnetopause thickness and structure. 

y 
Résumé 

L'interaction entre le vent solaire et la magnétosphère conduit à la formation 
d'une couche de courant appelée "magnétopause". Cet article analyse la théorie 
cinétique de cette couche de courant dans le contexte d'un modèle à plusieurs 
constituants décrivant des discontinuités tangentielles à une dimension. On tire 
des conclusions qualitatives concernant l'épaisseur et la stabilité de la magnéto-
pause. 

Samenvatting 
Door de wisselwerking tussen de zonnewind en de magnetosfeer ontstaat de 

magnetopause, ëen plasma-laag waarin een elektrische stroom vloeit. Deze tekst 
geeft een overzicht van de kinetische beschrijving van deze laag met behulp van 
een model voor één-dimensionale tangentiële discontinuïteiten in een plasma dat 
uit meerdere componenten bestaat. Aldus komt men tot een aantal kwalitatieve 
besluiten over de dikte en de struktuur van de magnetopause. 

Zusammenfassung 
Die Interaktion zwischen der Sonnen Wind und die Magnetosphäre bildet 

eine Schichte die "Magnetopauze" genemt wird. Dieses Artikel beschreibt eine 
kinetische Theorie solcher Schisten für tangentialen Diskontinuitäten mit mehr 
als zwei verschiedene Ionen oder Elektronen Populationen. Quantitative Anträge 
über die Dicke und Strucktur der Magnetopauze sind gegeben worden. 

*Institut d'Aéronomie Spatiale de Belgique 
Avenue Circulaire 3, B-1180 Brussels, Belgium. 



1 Introduction 
The magnetopause is the interface region between the shocked solar wind in 
the magnetosheath and the hot and low-density plasma in the magnetosphere. 
Study of the fine structure and dynamics of the magnetopause current layer 
(MCL) is of fondamental importance in understanding mechanisms of transport 
of mass, momentum, energy, and waves from the solar wind to the magneto-
sphere. Many interesting plasma processes, which include solar wind impul-
sive penetration [Lemaire and Roth, 1991], tearing instability [Kuznetsova et 
ai, 1994a, b; Kuznetsova and Roth, 1994], Kelvin-Helmhotz instability [Miura, 
1987], and microscopic plasma turbulence [Gary and Eastman, 1979], occur at 
this interface region. 

The structure of the magnetopause was first studied by Ferraro [1952], who 
assumed that the Earth's magnetic field is confined by the ram pressure of an 
unmagnetized plasma impinging on the magnetosphere. Without the neutraliz-
ing particles trapped inside the magnetopause, the characteristic thickness of the 
current sheet is of the order of the electron skin depth c/u>pe ( « 1 km). A polar-
ization electric field is present. It is due to charge separation whose thickness is 
of the order of the Debye length CD ( « 1 m). With a population of trapped par-
ticles to provide partial or complete neutralization, the characteristic thickness 
is of the order of the ion gyroradius p+ (p+ « 100 km) [Parker, 1967]. These 
early models of the magnetopause structure axe described in extensive reviews 
by Willis [1971, 1975] and Roth [1980]. 

The simplest model of the MCL is described by a one dimensional tangential 
discontinuity (TD) of finite thickness within which the magnetic field rotates 
from an arbitrary interplanetary direction to the magnetospheric direction. The 
MHD conservation equations lead to the following so-called Rangine-Hugoniot 
conditions for a tangential discontinuity (in Gaussian units): 

BN = 0, u n = 0, 0, [ B , ] j * 0 , [u t] 0, [P + B?/8IR] = 0 (1) 

where B, p, u, and P are the magnetic field, plasma density, velocity, and 
pressure, respectively. In equation (1), the square brackets denote the difference 
between the values of any quantity on the two sides of the discontinuity. It can 
be seen that across a TD the normal components BN and un are equal to zero, 
while there are jumps in p and in the tangential components Bf and The 
pressure balance in the Rangine-Hugoniot relations is a MHD jump condition. 
The kinetic theory tells us more about the pressure balance since, inside a TD 
of finite thickness, P + B?/8TT remains everywhere a constant quantity . 

2 Kinetic structure of the magnetopause 
Vlasov equilibrium models of tangential discontinuities in collisionless plasmas 
have been described by, e.g., Grad [1961], Harris [1962], Nicholson [1963], Sestero 
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[1964, 1966], Alpers [1969], Kan [1972], Roth [1976, 1978, 1979, 1980], Lemaire 
and Burlaga [1976], Channell [1976], Lee and Kan [1979], Roth et al. [1990, 
1993, 1994], Kuznetsova et al. [1994a], Kuznetsova and Roth [1994], Table 1 
summarizes the characteristics of most of these one-dimensional models. 

A single plasma paxticle of species v (having electric charge qu and mass 
m„) in a one dimensional TD parallel to the y-z plane is characterized by three 
constants of motion: the Hamiltonian (H„ = m „ u 2 / 2 + q„<f>) and the y and 
z components of the canonical momentum ( P v y = mvvy + quay/c and Puz = 
muvz + ql/azjc). The most generally used way to solve the time independent 
Vlasov equation is to introduce single-valued velocity distribution functions Fv 
in the (#„ , Pvy, P„z) space. The partial number densities nu and the y and z 
components of the partial current densities jvy, juz can then be obtained after 
integrating the distribution functions fu(vx,vy,vz,ay,az,<f>) = Fu(Hv,Pvy,Puz) 
over velocity space' (vx, vy, vz) as functions of the electrostatic potential 4>{x) 
and the y and 2 components of the vector potential ay(x) and az(x). The charge 
Hpnjsity <t — a n < i the y and z components uf llie total current density 
Jy = Yljuyi Jz = juz aje then substituted into Maxwell's equations, leading 
to a set of coupled second order differential equations for <j>(x), ay(x) and az(x) 

The differential equation for <f>(x) is usually replaced by the quasi-neutrality 
condition 

where v+ correspond to ion populations and i/_ to electron populations, Zue 
is the ion charge (Z„ = 1 for protons). In the general case, the number of ion 
and electron populations can be arbitrarily large. All particle populations can be 
subdivided into three groups associated with each of the two sides ("outer") of the 
transition and its "inner" region. For magnetopause modeling it is reasonable 
to introduce magnetosheath, magnetospheric, and trapped (i.e., inner MCL) 
populations. 

The density of magnetosheath particles tends to zero on the magnetospheric 
side (x —* +00), while the density of magnetospheric particles tends to zero on 
the magnetosheath side (x —>• —00). The inner (or trapped) populations are 
confined inside the current layer, their density having a maximum inside the 
MCL and tending to zero on both sides (x —• ±00). The inner population is 
especially important in MCLs with large magnetic shear. 

The dependence of the distribution function on Hu is usually introduced in 
a Maxwellian form 

— = -4w(r(</>,ay,az) (2) 
d2ay,z _ 4 t t t 

dx2 ~ c V'zW>ayiaz) (3) 

(4) 

Fv = sv{mvl2itTvfl2ex^{-HvlTv^v{Pvy,Pvg) (5) 
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Table 1: Characteristics of kinetic TD models 

Models Properties 
Grad [1961]: A unique and monotone B-field pro-
file exists for the thinnest transition describing the 
exponential decrease of a field-free plasma into a 
unidirectional magnetic field region, if there are no 
"trapped" particles and if the asymptotic distribu-
tions are isotropic 

Electrostatics 
Charge separation effects in i 

the case of particles of 
different masses are ignored. 

Thickness 
c/wp = p 

Harris [1962]: Plasma slab separating plasma-free 
regions of oppositely directed magnetic fields (^BH 
along the z axis). The trapped populations of 
electrons (—) and protons (+) are described by 
Ma.xwpllian Hist.ribution functions shifted along the 
vy axis by the drift velocity V^ = ±2cT/eBnC 
(/^characteristic thickness). 

Electrostatics 
Electric field vanishes in the 

reference system where 

Thickness 
C> CD 

Nicholson [1963]: Plasma slab separating plasma-
free regions of constant magnetic field, the field be-
ing in the same direction on the two sides of the 
slab. The trapped populations of electrons and pro-
tons have velocity distribution functions that differ 
from Maxwellians to the extent that a parameter a 
entering into the characteristic length differs from 
zero. 

Electrostatics 
Exact charge neutrality. This 
condition fixes the parameter 

a and the thickness. 
Thickness 

P+ 

Sestero [1964]: Magnetized plasma on both sides 
without trapped populations. Unidirectional mag-
netic field. No change in the plasma velocity across 
the plasma sheet. Two plasma components (elec-
trons and ions). Asymptotic isothermal plasma 
(T+(±oo) = T-(±oo)) . 

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

Thickness 
p~ or p+ 

Sestero [1966]: Magnetized plasma on both sides 
without trapped populations. Unidirectional mag-
netic field. Change in the plasma bulk velocity 
in the direction perpendicular to the field. Two 
plasma components (electrons and ions). Asymp-
totic isothermal plasma (T+(±oo) = T~(±oo)). 
The maximum velocity shear is the thermal velocity 
of the particles carrying the current (ions in ion-
dominated layers, electrons in electron-dominated 
layers). 

Electrostatics 
Charge neutral approximation. 
Non-zero normal electric field. 

\ Thickness 
p~ or p+ 
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Table 1: Characteristics of kinetic TD models (cont'd) 

Models Properties 
Alpers [1969]: A whole class of distribution func-
tions are constructed, by prescribing the magnetic 
field profile and a bulk velocity profile in the di-
rection of the magnetic field. Magnetic shear is 
included (By / 0). Two plasma species (electrons 
and ions). Asymptotic isothermal plasma (T = 
T + ( ± o o ) = T~(±oo)). No trapped populations. 

E lec t ros t a t i c s 
Exact charge neutrality. 

Th ickness 
>P+ 

Roth [1976]: Magnetized plasma on both sides with-
out trapped populations. Unidirectional magnetic 
field. Change in the plasma bulk velocity in the 
direction perpendicular to the field. Multi-species 
plasma with diflerenl densities and temperatures. 

E lec t ros t a t i c s 
Charge neutral approximation. 
Non-zero normal electric field. 

Th ickness 
p~ or p+ 

Lemaire and Burlaga [1976]: Magnetized plasma 
on both sides without trapped populations. Mag-
netic shear is included (B y ^ 0). No change 
in the plasma velocity across the plasma sheet. 
Multi-species plasma with different densities and 
temperatures. 

E lec t ros t a t i c s 
Charge neutral approximation. 
Non-zero normal electric field. 

Th ickness 
p~ or p+ 

Roth [1978, 1979, 1980]: Magnetized plasma on 
both sides with or without trapped populations. 
Magnetic shear (B y / 0). Shear in the plasma bulk 
velocity (uy / 0, uz ^ 0). One single formalism for 
trapped and untrapped populations. Multi-species 
plasma with different densities and temperatures. 
Asymptotic temperature anisotropics (T± ^ Tj|). 

Elec t ros t a t i c s 
Charge neutral approximation. 

Zero or non-zero normal 
electric field. 
Thickness 

> Lu (inner only); p~ or p+ 

Lee and Kan [1979]: Magnetized plasma on both 
sides with or without trapped populations. Mag-
netic shear (B y ^ 0). Shear in the plasma bulk 
velocity (uy ^ 0, uz ^ 0). Different formalisms for 
trapped and untrapped populations. Two plasma 
components (protons, electrons) with different den-
sities and temperatures. 

E lec t ros ta t i c s 
Charge neutral approximation 

or exact charge neutrality. 
Th ickness 

>P+ 

Roth et al. [1994]: In the previous model of 
Roth [1980] the thickness is included as a free 
parameter. Other characteristics of this general-
ized model are unchanged, except that temperature 
anisotropics are not considered in the velocity dis-
tribution functions. 

E lec t ros t a t i c s 
Charge neutral approximation. 

Zero or non-zero normal 
electric field. 
Th ickness 

> CD (inner only); > p~ 
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that corresponds to Poisson distributions of the partial number densities in the 
electrostatic potential 

nu(<f>,ay,az) = s„ e x p t - ^ / T , , ) ^ ^ , a 2) (6) 

g(ay,az) = TT -1/&x^{-{vly->tvl^}Q l /{P l /y,Puz)dvUydvvz , vly^z={mv/2Tu)vlz. The 
functions Gv(Pvy,Pvz) represent cutoff factors in phase space to describe the fact 
that charged particles from one side cannot penetrate arbitrarily deeply into the 
other side of the current layer and that trapped particles are confined inside it. 
The form of G(PUy,Pvz) determines the gradient scale D„ of the partial current 
density of the i/'th species 

juy,uz(<f>,ay,az) = cTv(dn„ldaytZ) 

An isotropic Maxwellian distribution (with zero current velocity) corresponds 
to Qu = 1. The spatial variation of the density of such a population can only 
be controlled by the nonuniform electrostatic potential profile (that is, by the 
equilibrium electric field, Ex, inside the layer). 

The well known analytical Harris distribution, modified by a superposed 
constant By magnetic field component (6), is 

B = BR tanh ^ez + bey (7) 

az = -bx, ay = CBR In (cosh(x/£)) 

It is described by trapped particles (protons and electrons) with G(Puy,Puz) = 
exip(—ml,Vffl//2Tl/ + VHvPvy/Tl/) corresponding to Maxwellian distribution func-
tions shifted by the diamagnetic drift velocity {VHV = —2cTvlq„BnC) in the 
y direction : F„ = n{x) (m1//27rTt,)(3/2) exp{-m„[ t£+ (Vy - VHvf + v2

z]/2Tu} 
(n(x) = nocosh~2(x/£)). Other forms of trapped distributions were introduced 
in the papers by Nicholson [1963] and Lee and Kan [1979]. 

The cutoff factors Qu(Puy, Puz) for magnetosheath and magnetospheric popu-
lations are usually chosen in the form of step functions (e.g., Sestero [1964, 1966], 
Lemaire and Burlaga [1976], Roth [1976, 1978, 1979, 1980]) or error functions 
(e.g., Alpers [1966], Lee and Kan [1979], Roth et al. [1994]) because they lead 
to relatively simple analytical expressions for the moments n„, juy, and jvz of 
the distribution functions. The choice of error functions allows one to introduce 
arbitrary gradient scales D„ > pu (pu is the gyroradius of the i/'th species). Even 
for step-like cutoffs the characteristic thickness of the TD can not be less than 
one electron gyroradius pu_ = p~ (in electron-dominated layers, where ions are 
isotropic, i.e. Qu+ = 1, and the electric current is only carried by electrons), or 
one ion gyroradius pu+ = p+ (in ion-dominated layers, where the electric current 
is carried by ions). However, in symmetrical transitions of the Harris type (7), 
the minimum thickness can approach the Debye length. In the general case the 
characteristic thickness of the transition is determined by the gradient scales 
Du of all populations collectively. Thin electron layers appear to be extremely 
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unstable (Roth et al. [1993], Drake et al. [1994]), so it is usual to only consider 
layers with characteristic thickness of a few ion gyroradii. The choice of functions 
Gu{Puy,Puz) is of course not unique. 

In summary, the existing one-dimensional Vlasov models can be characterized 
by the following set of attributes: 

• The number of different particle populations (magnetosheath, magneto-
spheric, and inner). For instance, the models by Harris [1962] and Nicholson 
[1963] include only inner (i.e., trapped) populations of electrons and protons, 
while Sestero [1964, 1966] and Alpers [1969] introduced only magnetosheath 
and magnetospheric particles without .trapped populations. Both "inner" and 
"outer" populations were incorporated by Roth [1978, 1979, 1980], Lee and Kan 
[1979] and Roth et al. [1994]. Multi-species plasma with different densities, ion 
charges and temperatures were considered by Lemaire and Burlaga [1976], Roth 
[1976, 1978, 1979, 1980] (including asymptotic temperature anisotropics), and 
Roth et al. [1994]. 

• Assumptions about the charge neutrality. 
• The form of the cutoff functions Gv{Pvy,Puz) and corresponding gradient 

scales Du that control the thickness of the MCL. 
• The degree of asymmetry in boundary conditions that can be described 

by the model (e.g., the velocity shear; the angle of magnetic field rotation, 90; 
density and temperature asymmetries). For instance, models by Sestero [1966] 
and Roth [1976], where velocity shear was taken into account imply unidirectional 
magnetic fields (0O = 0). The model by Alpers [1969] without inner populations 
can describe MCLs with velocity shear but small magnetic shear (0q < 90°). 
The unified model by Lee and Kan [1979] can describe asymmetric MCLs with 
zero velocity shear and arbitrary magnetic shear (including 0o > 90°) as well as 
MCLs with finite velocity shear and small magnetic shear (0O < 90°), but due 
to different formalisms for inner and outer populations their model is unable to 
describe MCLs with both velocity shear and large magnetic shear (0o > 90°). 

A generalized one-dimensional kinetic multi-species model of MCLs was de-
veloped recently by Roth et al. [1994]. In this model all particle populations 
(from both outer regions and from inside the layer) are described using a unique 
formalism for the velocity distribution functions. Most of the previous models 
can be retrieved as special cases. The model also describes current layers with 
velocity shear and large angles of magnetic field rotation. 

As illustrated by figure 1, such a model with a large number of free parameters 
and different gradient scales can in principle illustrate many observable features 
of the MCL, including its multiscale fine structure. 

3 Discussion 

A number of problems associated with the one-dimensional, time-independent 
Vlasov approach should be kept in mind: 
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Figure 1: Simulation of an ISEE magnetopause crossing. Top panels: (left) elec-
tric structure and plasma flow; (right) plasma structure. Labels e and p refer to 
electron and proton populations. Subscript sh identifies particles originating in 
the magneto sheath, while sp refers to particles from the magnetosphere. Super-
scripts c and h refer to cold and hot populations. Bottom panels: (left) magnetic 
field and total current density; (right) magnetic field hodogram. 

7 



• Vlasov theories of plane TD's yield non-unique solutions. On a macroscopic 
scale, any pressure profile p(x) and magnetic field B(x) related by p + B2/8n = 
Const define an allowable equilibrium solution. On a microscopic scale, this non-
uniqueness shows up in the arbitrariness with which particle velocity distribution 
functions can be chosen. Only consideration of particle accessibility (i.e. tracing 
the origin of the populations) can remove this non-uniqueness; the plane TD 
models themselves are inadequate to solve the problem of particle accessibility, 
both to the current layer itself, and more specifically to different phase space 
regions [Whipple et ai, 1984]. The accessibility question is, of course, also related 
to the temporal behavior of the sheet (see Morse [1965]). 

• The large number of free parameters obscures the relation between bound-
ary conditions and the internal structure of the layer. 

• One-dimensional current layers with magnetic sheax axe thermodynamical 
nonequilibrium systems [Kuznetsova et ai, 1994b] that have an excess of free 
energy and are potentially unstable with respect to the excitation of large scale 
electromagnetic perturbations, resulting in the destruction of magnetic surfaces. 
Therefore, MCLs most likely are in a state of turbulence rather than in a state 
of one-dimensional Vlasov equilibrium. 

A reasonable application of these one-dimensional Vlasov models is to adopt 
them as an initial unperturbed state and then consider the temporal and spatial 
evolution of the system caused by superposed perturbations. In Kuznetsova and 
Roth [1994], the stochastic percolation model by Galeev et al. [1986], based on 
the symmetrical charge-neutral Harris equilibrium, was generalized for MCLs 
with asymmetrical B field profiles. It was demonstrated that the asymmetry 
factor, KB = \(B2 - B\)/B2\, strongly modifies the dependence of the marginal 
MCL thickness (below which the MCL is subjected to percolation) on the an-
gle of magnetic field rotation 9Q. In realistic asymmetrical cases (KB >0.3), the 
marginal thickness should be thinner for 0O < 90° (northward IMF) than for 
6Q > 90° (southward IMF). For southward IMF (0O > 90°) the marginal thick-
ness depends only slightly on KB and on plasma /? in the magnetosheath. For 
northward IMF the marginal thickness is likely to be thinner for larger values of 
/? in the magnetosheath. 

If the MCL thickness is much larger than the marginal one, a large domain 
of stable magnetic surfaces should exist within it, which should prevent particles 
diffusion across the layer. Note that microscopic plasma turbulence (e.g., lower 
hybrid drift instability that could provide diffusion when the magnetosheath 
and magnetospheric fields are parallel) is strongly stabilized by the magnetic 
shear when 6Q is substantial. In this case a one-dimensional slab TD could be 
considered as a good model for the MCL. 

When the thickness is close to the marginal value, the MCL can be modeled 
as a tangential discontinuity "spoiled" (in the first approximation) by embedded 
percolated magnetic filaments. In this case the MCL is likely to have a pore-like 
fractal structure, where percolated magnetic filaments (common for both sides 
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of the MCL) are surrounded by closed magnetospheric and open magnetosheath 
field lines. 

When the MCL thickness is much less than the marginal one, a large num-
ber of tearing modes are allowed to grow together. This large-scale magnetic 
turbulence leads to a diffusive broadening of the current layer. 
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