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BRAMS is a Belgian network consisting of one beacon and 26 receiving stations to detect radio meteors by 
forward scattering. Because of the large amount of data generated by these stations, a good automatic detection 
algorithm is needed. In this paper, four algorithms currently under test are briefly described. Application of three 
of them to an example of BRAMS data is shown with a comparison to manual count in order to emphasize the 
advantages and disadvantages of each method. 

1 Introduction 

The BRAMS (Belgian RAdio Meteor Stations) network 
consists of one beacon located in Dourbes and 26 
receiving stations spread over Belgium. Each station 
records continuously a bandwidth of 2.5 kHz more or less 
centered on 49.97 MHz, the beacon frequency. The data 
are stored in WAV (sound) files of 5 minutes each. In 
total about 7500 files (288 files per station) are generated 
per day. Checking all those files manually for meteors is 
too much time-consuming, so an automatic detection 
algorithm is mandatory. In this article, a quick overview 
of four different automatic detection methods of radio 
meteors in BRAMS data files is provided. Each method 
works either on the raw data obtained in the time domain 
or on a spectrogram. 

 

Figure 1 – A typical spectrogram from a BRAMS receiving 
station. Frequency range is 200 Hz centered on the beacon 
frequency. Duration is 5 minutes. Power is color coded. The 
horizontal line in the middle of the spectrogram is the direct 
reception of the BRAMS beacon, the inverse S-shaped lines are 
reflections on airplanes moving on a straight line and the short 
vertical lines are meteor echoes. The complex shapes on the left 
hand side of the spectrogram are also produced by airplanes 
which change directions. Manual count gives 17 underdense 
meteors. 

 
A spectrogram is a visual representation of the spectrum 
of frequencies in a signal as it varies with time. It is 
obtained from the time signal using a FFT (Fast Fourier 
Transformation). 

The result is a two-dimensional representation of the 
signal, where the horizontal axis represents time, the 
vertical axis is frequency and the color indicates the 
power of the signal. Figure 1 shows a typical BRAMS 
spectrogram. 

Three of the four methods are currently under evaluation 
by the BRAMS team by comparing their results to 
manual counts. An example is provided below for each 
method. So far the comparison is made only for short-
lived underdense meteor echoes with a typical duration of 
a few tenths of seconds at most. These meteor echoes 
constitute the majority of meteor echoes detected in 
BRAMS data. 

2 Image recognition on spectrograms (I) 

The first method, developed by Pierre Ernotte, uses 
image recognition on spectrograms. The first step in the 
algorithm is the binarization of the spectrogram. Only 
pixels above a certain threshold are kept to filter out noise 
and their values are set to 1. It means that the information 
about the variations in the signal power is lost. Then the 
algorithm applies a vertical erosion (Gonzalez and 
Woods, 2007) using the fact that underdense meteor 
echoes appear mostly vertical in spectrograms while the 
beacon frequency and the plane echoes have a dominant 
horizontal component. The erosion operator 
superimposes a mask to each pixel with a value of 1 and 
keeps its value if all pixels underneath the mask are equal 
to 1, otherwise it is set to 0. In our case, the mask is a 
vertical line whose length is chosen to be larger than the 
typical frequency width of plane echoes or of the beacon 
frequency. This vertical erosion may divide some meteor 
echoes in different parts. Dilation (Gonzalez and Woods, 
2007) along columns and adjacent lines is then performed 
to reconnect them. 

Since this technique is performed on spectrograms, it is 
easy to compare the results with manual counts which are 
also made on spectrograms (Calders et al., 2014). Planes 
are removed decently well, and the method provides good 
results for short meteors which appear mostly vertical 
(see Figure 2). However, some faint meteor echoes can 
be missed, when their vertical/frequency signature is 
discontinuous and hence they may not survive the 
erosion. The method does not work for long lasting 
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meteors (not present in the example in Figure 1) which 
have a large horizontal component and/or a complex 
structure.  Also the creation of the spectrogram as well as 
the erosion/dilation are very time consuming operations. 
Finally, the method contains several empirical parameters 
which may have to be adapted for different BRAMS 
stations. 

 

Figure 2 – Application of Ernotte's method to the example 
spectrogram of Figure 1. Units for the axes are here given in 
pixels. The method detects 11 meteors (white dots) but six faint 
meteors do not survive the erosion and are missed. 

3 Image recognition on spectrograms 

(II) 

Another method using spectrograms has been developed 
by Emil Kraaikamp. First, an horizontal median filter is 
applied to the spectrogram to remove the direct reception 
of the beacon signal (and possibly other local 
transmitters). Then a set of oblique median fil ters is used 
to remove the airplane echoes, because those signals can 
be approximated by a set of straight lines with different 
inclinations and lengths. Finally a detection threshold 
using the median and the MAD (median absolute 
deviation) is used to distinguish between meteors and 
noise. 

Figure 3 – Application of Kraaikamp's method to the same 
example  in Figure 1. The method detects 18 meteors. Some 
parts of the complex airplane echoes (on the left side of the 
picture) are not fully removed and incorrectly detected as 
meteors (3 cases). 1 faint meteor is not detected. 

 
Like for Ernotte’s method, comparison with manual 

counts is easy. The method does not use binarization, 
which gives the possibility to use the signal power in the 
final detection step. It removes quite well the plane 
echoes as long as the shape is simple (i.e inverse S-
shaped lines). But it can produce false meteor detections 
when complex airplane echoes are present in the 
spectrogram (see Figure 3). Another drawback is again 
that the method is CPU intensive. 

4 Meteor detection using only the time 

signal 

Tom Roelandts is developing a method based only on the 
signal in the time domain. First, an adequate fil tering is 
applied to keep only frequencies within 200 Hz below or 
above the beacon frequency (where all meteor echoes 
appear). This strongly reduces the noise in the data. Then 
the method computes running averages on a short and a 
long timescale (typical of the duration of an underdense 
meteor resp. plane echo) and divides them to obtain an 
indicator signal. The basic idea is that an underdense 
meteor echo will contribute strongly to the short running 
average but not to the long one, hence creating a peak in 
the indicator signal. An appropriate threshold is used to 
detect these peaks. More information about this method 
can be found in Roelandts (2014). Here we only provide 
in Figure 4 the results of the application of this method to 
the raw data used to compute the spectrogram in 
Figure 1. The method may miss faint meteor echoes 
appearing at the same time as the brightest part of an 
airplane echo. In this case the resulting peak of the 
indicator signal can be lower than the threshold and the 
meteor is missed. 

Since this method does not compute spectrograms, its 
main advantage is that it is much faster than the previous 
ones. Also the duration of a meteor can be measured 
more accurately in the time domain than in a 
spectrogram.  It also has only three parameters.  The 
choice of the threshold is however currently empirical 
and varies from station to station. 

 

Figure 4 – Application of Roelandts ‘method to the raw data  
used to compute the spectrogram in Figure 1. The method 
detects 14 meteors whose locations have been added to the 
spectrogram a posteriori for comparison with the previous 
methods. Three meteors are missed as they appear at the same 
time as the brightest (red) part of airplane echoes (see text). 
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5 Meteor detection using neural 

networks 

This method is developed by Victor Roman and is based 
on two different types of artificial neural networks. 
Firstly, the Self-Organizing Map, SOM, (Kohonen, 1998) 
is a type of neural network that produces a low-dimension 
(typically two) representation (map) of the input signals 
(in our case, a vector containing the power or amplitude 
recorded in WAV files). A SOM consists of components 
called neurons whose spatial location in the map 
corresponds to a particular domain of the input signal 
patterns. SOM operates in two successive modes: training 
builds the map using input examples while the mapping 
automatically classifies a new input vector. The idea 
behind using this method is that meteor echoes will be 
mapped on specific meteor neurons, while plane echoes 
or noise will be mapped to different locations of the map. 
The SOM is trained using unsupervised learning 
(meaning, in our case, that the user does not tell the 
network that a meteor is given as input). 

Another type of artificial neural network considered is the 
Multi -Layer Perceptron, MLP (Gardner and Dorling, 
1998) which consists of multiple layers of interconnected 
neurons, representing a non-linear mapping from an input 
vector to an output vector. Each neuron in a given layer is 
connected to all neurons from the previous and 
subsequent layers with weights that are calculated using a 
non-linear transfer/activation function. For this study, a 
feed forward architecture was chosen, meaning that the 
data is only propagated from the input to the output layer. 
Training such a neural network requires a supervised 
algorithm, the one used here being the back propagation 
algorithm. In both methods input data can be taken either 
from the (fil tered) raw data (e.g. a vector with power 
samples taken during 0.1 sec) or from spectrograms (e.g. 
a vector with pixel intensities taken as one of the 
spectrogram's vertical li nes). 

More information about these methods and preliminary 
results can be found in (Roman, 2014). The results are 
not discussed here as they cannot easily be compared to 
the other methods. 

6 Conclusion and further work 

We have briefly presented four different algorithms 
considered for the automatic detection of radio meteors in 
the BRAMS data. Two of the methods are based on 
image recognition on spectrograms, one uses neural 
networks and one detects the meteors using only the time 
signal. 

These methods have been applied to one test case for 
comparison only and to illustrate the strengths and 
weaknesses of each method. No firm conclusion can be 
reached from this test case only. Statistical studies on a 
large set of data are necessary and currently carried out 
by the BRAMS team. All methods work relatively fine 
for short-lived (underdense) meteors except when many 
plane echoes with complicated shapes are superimposed 

on them (e.g. in the left part of Figure 1). The longer 
(overdense) meteor echoes (not present in Figure 1) pose 
another real challenge. Their automatic detection will be 
considered in a later phase of the project. 

Results from the various automatic detection methods 
must be assessed by comparing with manual counts. At 
the moment, there is only a single day of manually 
detected meteors for one receiving station. We plan to 
extend our manual count dataset to more stations, several 
days, with and without high meteor stream activity, in 
order to better assess the different automatic detection 
algorithms. 
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