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I. INTRODUCTION 

We would like to discuss some aspects of the long term response of 
I the earth-atmosphere system, in relation to major climatic changes. In 

view of this, we will use simple energy-balance models of one space 
dimension (I-d) like the models developed by Budyko l ), Sellers2) and 
North3). The important feature of these models is to predict a 
multiplicity of solutions, whose stability properties change as the 
parameters take different values. For instance, for values of the solar 
constant close to the present-day one, in addition to the present day 
climate one has another stable state corresponding to an ice-covered 
earth. These two climates are separated by a third one, which is 
unstable and whose ice boundary is situated at an intermediate latitude. 

Most of these qualitative features are well reproduced when the 
temperature field is developed in Legendre series, and a two mode 
truncation is performed : 

( I) 

+1 
where x is the sine of the latitude, TO(t) = I_I dx T(x,t) and T2(t) 
provides a measure of the equator to pole thermal gradient. One can 
easily show that TO and T2 obey to the following set of equations : 

dt 
(2a) 

dt 

with Xs expressed ~n terms of TO' T2 through the ~ce boundary 
condition 

(2b) 

Here C is the heat capacity, A and B are infrared cooling coefficients, 
Q is the solar constant divided by 4, D the turbulent heat diffusion 
coefficient and HO' H2 are known functions of the latitude of the ice 
boundary, xs' Hereafter we normalize the time scale so that the value 
of C is equal to unity. 

As well known,the characteristic times involved in the 
deterministic balance equations (2) are, typically, of the order 
of the year. This is much shorter than all known scales of major 
climatic changes, of which quaternary glaciations provide one of 
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h 'k' 1 . f 4,5). d t e most strl lng examp es. In a serles 0 recent papers we pOlnte 
out that the study of statistical fluctuations may provide the missing 
mechanism of climatic change, and presented detailed calculations for 
zero-dimensional (a-d) energy balance models. It is the purpose of the 
present communication to extend our previous results to the more 
realistic case of )-d energy-balance models. 

A fluctuation can couple to a system in many ways . If it modifies 
randomly the rate of change of a variable independently of the state 
of the system, it will be an additive fluctuation. If on the other 
hand it is associated with the random variation of one of the parameters 
appearing in our equations (such as Q, D, etc. in eqs. (2)), it will be 
a multiplicative fluctuation . We discuss these cases successively below. 

2. ADDITIVE FLUCTUATIONS 

In order to describe the dynamics of fluctuations, we have to 
extend the meaning of eqs. (2) and speak of stochastic differential 
equations. In the case of additive fluctuations one has : 

dT
O 

C
dt 

dt 

(3) 

where Fi(t) (i = 0,2) are random forces expressing the strength of 
the stochastic effects. Consequently TO, T2 themselves become random 
processes. To analyse their characteristics, it is necessary to 
specify the nature of Fi(t). A common assumption is that they define 
a multi Gaussian white noise 

> = < F (t) > = a 2 

< FO(t) F2 (t') > a 

q2 S(t - t') (4) 

where q2 is the variance of the random force F(t). It can then be 
shown that the pair (TO' T2) becomes a Markovian process whose 
probability distribution is a solution of a bivariate Fokker-Planck 
equation. Thanks to eqs. (4) the latter can be solved exactly at the 
steady-state. The solution displays the exponential of a climatic 
potential U(TO' T2)4, 6), which generates the deterministic evolution 
in all its details. It is a minimum at the present and the ice
covered climates, and maximum at the intermediate, cold climate. 

Having U, one can also express the mean transition time, T for 
leaving the present climate and evolve to the other stable state by 
running across the potential barrier ~U provided by the difference 
between the values of U at the intermediate unstable state and the 
present-day one : 
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2 
T ~ exp ( 2 ~U) (5) 

q 

The pre-exponential factors involve the curvature of the surface 
U(TO' T2) near the above two states, and are given in detail 
elsewhere7) . 

For typical values of ~U and q2, T 1S a very long time, of the 
order of tens of thousands of years. We have therefore found a 
natural and completely general mechanism operating on a long time 
scale, comparable to that of glaciations. 
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Curve (a) : time evolution of the mean value ~s averag~d 
over 50 samples for an additive noise with q = 6 yr- I / oK. 
Curve (b) : time evolution of a typical stochastic sample 
under the same conditions. In both cases x is plotted 

s every 500 yrs. 
Parameters used throughout this work are the following 
Q = 340 Wm- 2 , A = 214.2 Wm- 2 , B = 1.575 Wm- 2 and D 
0.591 Wm- 2 • Initial conditions: TO = 14.9°C, T2 = - 28.2, 
x = 0.96. 

s 

We have studied the transient behavior of the system by 
simulating numerically the stochastic dynamics, eqs. (3), using 
·an improved Euler method. Fig. 1 describes the time evolution 
of the statistical mean ~s of the ic~ line averaged over 50 samples, 
all starting from the present value xs(O) ~ 0.96, for q = 6 yr-1 / 2 oK. 
We see that the present climate is progressively destabilized by the 
fluctuations_(even though it is stable deterministically). At T ~ 

24,000 yrs, xs reaches a value of 0.39, close to the value 
corresponding to the intermediate unstable state. This is in complete 
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agreement with the theoretical prediction, eq. (5). On Fig. 1 we also 
give a typical stochastic run. We see that the system remains at 
relatively high values of Xs most of the time, until it undergoes an 
abrupt transition across the potential barrier and reaches the ice 
covered earth. 

Fig. 2.""' 
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Curve (a) : time evolution of the mean value Xs averaged over 
50 samples for an additive noise with q = 7 yr- I / 2 oK. 
Curv,e (b) : time evolution of t!!e variance of KS under the 
same conditions. In both cases x is plotted every 200 yrs. 

s 

Fig. 2 gives the results of a second series of stochastic simula
tions for q = 7 yr- I / 2 oK. The transition ·time T is now shorter, but 
remains in complete agreement with eq. (5). A noteworthy feature is 
the enhancement of the variance of the fluctuations of x as the ~ystern 

s 
runs across the potential barrier. 

3. MULTIPLICATIVE FLUCTUATIONS 

In addition to the randQm imbalances it generates and which give 
rise to the additive fluctuations analyzed in the preceding Section, 
the climatic system is subject to a complex external environment. As 
well known, the mean annual solar influx Q is far from keeping a 
constant value. Moreover, the very nature of turbulence implies that 
the transport coefficient D should also fluctuate around some mean. 
Consequently, we set 

142 



Q Q (J + F(t» 
( 6) -

D D ( I + F (t) ) 

with 

< F (t) > = 0 

< F (t) F(t'»=q2 0 (t - t') 
(7) 

and replace eqs. (2) by the corresponding stochastic differential 
equations and the associated Fokker-Planck equations. Contrary to the 
additive fluctuation case, these equations can no longer be solved at 
the steady state because there exists no climatic potential associated 
with these situations. We therefore resort, for most of this Section, 
to numerical simulations of the stochastic equations for TO and T2 . 
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- Fig. 3.- Time evolution of the mean value Xs averaged over 50 samples 
for different values of the variance q2, in the case of a 
fluctuating solar constant Q. Here ~s is plotted every 100 yrs. 

Fig. 3 describes the main results in the case of fluctuating Q. 
We plot against time the2mean value of Xs for 50 samples and for various 
values of the variance q . In all cases we see that the fluctuations of 
Q give rise to a systematic cooling, in agreement with an earlier result 
for a O-d energy balance modelS). For small q's the cooling is merely a 
shift of ~s to a lower lever. For higher q's however a tendency of the 
system to evolve to the ice-covered state is observed. 
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We come now to the fluctuations of D. Fig. 4 describes the results of 
the numerical simulations. We have plotted this time, the time average of 
a single typical sample, over a period of 20,000 yrs, against q. We see 
that for small q there occurs a slight warming. For q beyond about 2% the 
tendency is inverted and one observes a cooling, which for higher q's 
attains catastrophic proportions. 
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Fig. 4.- T-ime average of a single typical sample, < Xs > , over 20,000 yrs 
for different values of the variance q2 in the case of a 
fluctuating coefficient D. 

The warming trend for small q has also been confirmed by an analytic 
calculation based on the truncation of the infinite hierarchy of moments 
generated by the Fokker-Planck equation, to the second order ones. The 
truncated system also predicts that for large values of q both the present 
and the ice-covered climate become stochastically unstable, even though 
they are deterministically stable. This is in qualitative agreement with 
the results of the numerical simulations. 
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