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FULL OPTICAL CHARACTERISATION OF BIOLOGICAL DETECTORS 

Abstract 

D. GILLOTAY AND D. BOLSEE 

Belgian Institute for Space Aeronomy 
3, Avenue Circulaire B-1180 Brussels, Belgium 

There is particular concern for the risk of increased environmental UVB radia­
tion as consequence of continuing ozone depletion with regard to human 
health. To assess the risk of increased human skin cancers, accurate and reli­
able dosimetric system that weight the relevant irradiance according to the 
biological response are required. The UV-dosimeters offer a real potential for 
field or personal dosimetry and they were studied in the frame of the BIODOS 
EC project (ENV4-CT95-0044). The main objective was to select the most suit­
able biological dosimeter according to a standard protocol. We have developed 
forthat a flexible and powerfull characterisation facility based on a solar simu­
lator in order to perform the complete radiometric characterisation including the 
determination of monochromatic or polychromatic action spectrum and the 
measurements of linearity, angular response and potential wavelength interac­
tions. The BIODOS facility, presented hereafter has been used for the charac­
terisation during the second laboratory intercalibration campaign included in the 
BIODOS project. The results of UV exposures of different dosimeters are not 
yet available (in charge of the BIODOS partners). 

1. Introduction 

The global climatology of UVB solar irradiance at the Earth's surface is affected 
by the significant stratospheric ozone reduction observed at mid and high lati­
tudes in both hemispheres during the last decade because the interval 280-315 
nm is strongly absorbed by stratospheric ozone. UVB wavelength interval in­
duces important photo-reactions on biological system, therefore important ef­
forts have been made since the mid-eighties to quantify future UVB changes on 
global and regional scales in order to investigate the modifications induced on 
the biosphere. The UV biological and chemical detectors offer a real potential 
for field and personal dosimetry because their spectral response is close to the 
other biological spectral responses (human skin). To transform UV biological or 
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chemical detectors into UVB dosimeters, a complete optical characterisation is 
required in order to determine accurately and in detail the own optical and an­
cillary characteristics of each type of detector. Without this characterisation, it 
is impossible to deduce from the biological or chemical processes involved in 
the detector an absolute UVB dose useful for other applications. Among the 
indispensable optical characteristics to be quantify, let us mention: 

The action spectrum 
The reciprocity law (linearity) 
The angular response 
The absolute response 
The potential polychromatic interactions. 

It will be also useful to obtain accurate information on the temperature depend­
ence, the humidity dependence and the long term stability of these detectors 
before they are qualified as UVB dosimeters. This important job has to be per­
formed in a specialised optical laboratory where a specific facility is available. 
This specific calibration facility was developed during the EC project EV5V-
CT93-0342 (biologically weighted dosimeter based on the biofilm [1]) and re­
built for the BIODOS EC project (ENV4-CT95-0044). The objectives were to 
establish the state of the art for the potential of existing biological UV-
dosimeters to measure the integrated biologically effective irradiance (Een) for 
key target and to characterise radiometrically the most suitable dosimeter for 
field or personal measurements. The characterisation was performed according 
to a protocol standardised during the BIODOS project including the following 
tasks: 

Determination of the absolute responsivity of the dosimeters under poly­
chromatic radiation. Broadband filters in the UVA, UVB and global UV or 
special filters for the solar spectrum simulation were used for this purpose. 
Measurement of the relative spectral response (action spectrum) with in-
terferentiel narrowband filters. 
Examination of the dosimeter linearity by means of neutral density filters. 
Measurement of the angular response of biological detectors, i.e. the de­
viation to the cosine law for solid flat (2 rcsr) receivers. 
Detection of potential wavelength interactions (for example, synergistic 
effects between UVA and UVB) in the biological response by means of a 
special filtering system. 
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Instrumentation and Discussion 

2.1. DESIGN OF THE CALIBRATION FACILITY 

2.1.1. Illuminating Area and Artificial Light Sources 
The existing dosimeters involved in the BIODOS EC project presented a wide 
diversity of shape and size. Most of them are solid, flat detector (biofilm, uracil 
thin layer, spore dosimetry [2­4]) but some of them are operating in liquid 
phase and hold in a quartz vessel (4 nsr detectors as vitamin D dosimeter, 
spore suspension [5, 6]). Nevertheless, the common characteristic of their ge­
ometry is the small size (maximum diameter of about 50 mm) as they were 
generally designed for personal dosimetry so that a collimated beam with such 
diameter is simply required for the characterisation. At the opposite, for plant 
UV exposure experiments where three dimensional biological "objects" are 
illuminated, the UV light sources must provide a wide illuminating area [7] 
simulating the real global (2 nsr) UV irradiance of the sky. In that case, artificial 
UV light sources as metal halide or Phillips TL12 lamps for example are more 
indicated.· These lamps were not adequate for the BIODOS facility for which we 
had severe requirements about the homogeneity, stability, absolute calibration 
of the beam and a spectral composition providing a continuum in the UV as 
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Figure 1. Comparison between the arc Xenon lamp and common standards of spec­
tral irradiance. 
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Figure 2. Schematic diagram of the collimating system. 

much as possible free of spectral lines. These quality criteria conjugated to the 
small size of the biological receptors have turned the choice into other kind of 
lamps : standards of spectral irradiance (deuterium and Quartz-Halogen lamps) 
or 1000 W Xenon arc lamp. The Figure 1 shows the comparison between the 
typical spectra produced by the three selected lamps. 

Due to the low sensitivity of existing biological dosimeters, both deuterium and 
Quartz-halogen lamps were rejected in spite of their very good stability and 
absolute calibration and the BIODOS facility was finally built around the 1000 
W Xenon arc lamp (ORIEL solar simulator). 

2.1.2. Collimation of the Beam 
The diverging beam produced by the Xenon arc lamp is collimating by the fol­
lowing lens combination: first, the image of the arc is focused onto a pinhole by 
the solar simulator condenser and one additional UV grade lens to minimise of 
optical aberrations (Figure 2). Only the central and uniform part of the arc im­
age is transmitted by the pinhole and the diverging beam is finally defocused 
into a parallel beam by another UV grade lens. The homogeneity of the beam 
spot is of course greatly dependant of the pinhole alignment onto the centre of 
the arc image. Uniformity of the beam spot irradiance of about 10% can be 
easily obtained. 

2.1.3. Stabilisation and calibration of the light source 
Xenon arc lamps are not as stable as Quartz-halogen lamps. Even if the arc 
lamp is rated at constant power, a short term noise of about 4 or 5% peak to 
peak can be observed (Figure 3). A long term trend is also unavoidable due to 
the ageing of the lamp (electrodes erosion) which reduces gradually the UV 
irradiance of the arc. Moreover, any change in arc position (between the elec­
trodes) due to this ageing will influence the uniformity and global UV irradiance 
of the beam spot through the arc image misalignment on the pinhole ! It is then 
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Figure 3. Schematic diagram of the photofeedback system. 

absolutely necessary to stabilise the lamp and to balance the ageing effects. A 
very powerful and recent solution is the use of a photofeedback system oper­
ating as follows: an UV enhanced silicon photodiode monitors a part of the 
lamp output. The controller of this photodiode constantly compares the re­
corded signal to the set level. If necessary, the power supply settings are 
changed to keep the measured signal at the set level. In our device, around 5% 
of the lamp output is reflected by a wedged beamsplitter and monitored by the 
Silicon detector head (Figure 3). The remaining ­95% are transmitted to the 
dosimeters under calibration. By this way, the irradiance of the beam can be 
stabilised within 1 or 2% during many hours and the short term noise is also 
reduced up to 2 or 3% pp (Figure 4). 
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Figure 4. Photofeedback system: typical residuals observed at a single wavelength 
(300 nm) with and without the stabilisation. 
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The radiometric characterisation according to our protocol implies a very accu­
rate determination of the spectral ¡rradiance of the beam because of the neces­
sity to know exactly the doses and dose rates transmitted to the dosimeters. 
Unfortunately, the Xenon arc lamp is not a standard of spectral irradiance 
which means that a physical radiometer is required for the calibration of the 
collimated beam. We used an absolute calibrated double monochromator pro­
viding at least 6 orders of magnitude for the dynamical range as benefit of the 
very high straylight rejection. The entrance slit was aligned exactly in the same 
spatial position than the dosimeter by means of a He-Ne laser. The absolute 
measurements were essential for the detection of possible side transmission 
and accurate determination of the cut-off of the broadband and narrowband 
filters. The estimations of the exposure times required before any dosimeter 
characterisation were obtained from the measured spectral irradiance convo­
luted by the action spectrum of the dosimeter under investigation. 

2.1.4. Monitoring of the Beam 
When the selected lamp is stabilised, any dose transmitted to biological do­
simeters becomes proportional to the exposure time because of the constant 
dose rate assumption. In our protocol of measurement, the dose rate was de­
termined from the spectral irradiance of the beam measured by the spectrora-
diometer just before the beginning of the exposures and we assumed effec­
tively that the dose rate remained constant during the exposures. This was 
generally proved by the signal of the photofeedback detector head. Neverthe­
less it was only a spectrally integrated signal from the photodiode. Spectral 
information's about the stability of the lamp is more interesting and for that 
reason we have integrated the possibility to check the main beam spectral irra­
diance by means of a monitoring system as follows: a part of the beam derived 
from the photofeedback system is collected and transmitted to the double 
monochromator by a fiber optic. Scans in relative units are recorded for exam­
ple every 10 minutes during the dosimeter exposure. Common results shown a 
stability as good as 2 or 3% for all wavelength during many hours. Neverthe­
less, it was observed that some Xenon arc lamps were less stable than the 
other ones. It is also clear that the secondary beam reflected by the wedged 
beamsplitter and used for the photofeedback and the monitoring system must 
be take after passing through the filtering system described hereafter to take 
into account the ageing of the filters. The schematic diagram off all the BIO-
DOS facility is presented in the Figure 5. 

2.1.5. Filtering System 
Many different filters had to be used for a complete radiometric characterisa­
tion according to the protocol described before. The BIODOS facility was then 
designed with a very flexible filtering system in order to achieve all the calibra­
tion work package with the same optical bench. The device has been equipped 
with a filtering system operating in two modes. 
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Figure 5. Schematic diagram of the BIODOS characterisation facility. 
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Figure 6. Filtering system in 'direct beam configuration' (single optical path). 
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The first mode called 'direct beam configuration' presents a unique and linear 
optical path for which the different filters are inserted in serial (Figure 6). 
This configuration was especially dedicated to the biological spectral response 
(with broadband or narrowband filters), cosine response and linearity meas­
urements (items 1 ­> 4). For example, for the determination of the linearity in 
the UV, a combination of broadband UV and additional neutral density filters 
were used (Figure 7). 

For the action spectrum determination, the set of interferentiel filters, shown in 
Figure 8 are available 
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Figure 7. Irradiance produced by global UV filter and combined neutral density filters. 
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Figure 9. Filtering system in 'beam conjoiner configuration' (split optical beam). 

The real shape of the solar spectrum (mainly the ozone cut­off) can also be 
simulated by means of a cellulose di­acetate foil combined with the unfiltered 
xenon irradiance. The main disadvantage Is the fast changes in transmission 
characteristics of the cellulose di­acetate during UV exposure [8], in contradic­
tion with the stabilisation (constant dose rate) required for the collimated beam. 
The simulation of the solar spectrum should be improved by means of solid 
glass cut­off filters 

The filtering system was improved for the detection of potential wavelength 
interactions (item 5) and a second mode called 'beam conjoiner configuration' 
[9] has been implemented (Figure 9). 
In that case, two beamsplitters are used to equally divide the beam in two parts 
so that two series of filters may be inserted in parallel allowing the addition of 
their respective bandpass. Both secondary beams are finally recombined in a 
main colllmating beam by means of an optical component. The addition of two 
bandpass filters is a very powerful tool for the studies of possible synergistic 
effects in any dosimeter response, for example, between the UVA and UVB 
spectral range. These effects can not be taken Into account when the action 
spectrum Is determined by a monochromatic and tuneable light source. The 
consequences are evident for field intercomparlson campaign where measured 
and calculated biological effective doses are compared. Even if the entrance 
optic between the physical spectroradiometer used for the intercomparison and 
the dosimeter exposure box are the same, even if the radiometer is well cali­
brated and the monochromatic action spectrum is accurately determined, the 
ratio between calculated and measured dose will never be equal to 1 if syner­
gistic effects exist [1]. The beam conjoiner configuration offers then an unique 
opportunity to quantify these effects for example, between global UVB and 
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Figure 10. Example of spectra produced by the combination of two filters. 

UVA radiation or between one UVC nominal wavelength and global UVA (Fig­
ure 10), etc. The non­additivity is detected in the laboratory when the biological 
response under UV dose coming from the channels A+B (opened together) is 
different to the response obtained from the same global dose but transmitted 
by the channels A and Β opened separately. 

3. Results 

The second laboratory intercalibration campaign for biological dosimeters in­
cluded in the BIODOS program was hold in Brussels during 1997 and 1998. 
The different dosimeters have been characterised according to the standard 
protocol described in the introduction as follows: 

Biofilms from DLR (Germany) [2] : items 1, 2, 3 and 5 
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Spores suspension from IMP/HI (Austria) [6] : items 1 and 2 
Spore dosimeters from NCCRI (Japan) [3] : items 1, 3 and 5 
Vitamin D dosimeter from IP (Ukraine) [5] : items 1, 2 and 4 

In opposite to electronic detectors, the biological response of the dosimeter is 
never available immediately due to the specific biological process (incubation, 
etc.) required for the analysis of each dosimeter. The results of the ¡ntercalibra­
tion campaign are now evaluated by each respective BIODOS partners and will 
be published in the next future. 

4. Conclusions 

We have tested and proved the ability of solar simulator equipped with arc 
Xenon lamps for performing very accurate and reliable radiometric characteri­
sation of biological dosimeters. The very high UV irradiance produced by these 
lamps can ideally balance the generally low absolute sensitivity of biological 
detectors (in comparison with electronic receivers). Nevertheless, it is abso­
lutely necessary to stabilise the output of the lamp to remove or reduce any 
long term trend and short term noise. Moreover, the beam must be calibrated 
in absolute radiometric units by a spectroradiometer. We also have a severe 
geometrical requirement induced by the size of commercial filters used in the 
powerful filtering system: only biological receivers of about 2 or 3 cm of di­
ameter can be characterised by the BIODOS facility. We will keep this optical 
bench operational for the future and opened for any collaboration with phoiobi­
ologist after the BIODOS EC project. 
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