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Abstract. The aim of this plenary lecture is to give an introduction to the topics of the spe-
cial session on “Applicable Hypercomplex Analysis”. These topics deal with extensions of the
complex numbers to “more complex numbers”, called hypercomplex numbers, involving an ar-
bitrary number of imaginary units, and with the function theories that one can build on algebras
of hypercomplex numbers. The motivation for studying this subject is the long-standing desire
to create a mathematical framework that is capable of modelling the geometric and analytic
content of higher dimensional physical phenomena.

After a basic general introduction to hypercomplex numbers, a more detailed overview of a
practical type of hypercomplex analysis, namely Clifford Analysis (CA), will be presented. Clif-
ford Analysis is a part of mathematical analysis where one studies a chosen subset of functions,
which take values in a particular hypercomplex algebra, called a Clifford algebra. We will first
see what a Clifford algebra is and then the geometrical importance of such algebras will be
explained. Thereafter, we will recall the key elements of the familiar Complex Analysis and
show how it can be generalized to higher dimensions. The definition of a typical Clifford Anal-
ysis, involving a first order vector derivation operator called Dirac operator, will be stated and
the physical relevant distinction between Euclidean and pseudo-Euclidean Clifford analyses is
discussed. Along the way, the mathematical formulations will be supplemented with interesting
physical interpretations, revealing the naturalness of Clifford Analysis and its potential for use
in physical applications. Especially, the particular Clifford Analysis based on the Clifford alge-
bra of signature (1, 3) will emerge as a tailor-made function theory describing electromagnetic
and quantum fields in Minkowski space.
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1 INTRODUCTION

We live in a multi-dimensional universe. The actual number of physical dimensions is still a
matter of debate among physicists, but of four dimensions we are already certain. This implies
that any mathematical framework, if it is to completely and efficiently model the geometric and
analytic content of any physical phenomenon, necessarily must incorporate its dimensionality.
The long-standing desire for such a mathematical tool has resulted in many attempts to develop
mathematical analyses that go beyond the two-dimensional complex numbers and Complex
Analysis.

The first question that arises is: “What is an appropriate number system to describe the laws
that structure our (and other conceivable) universe(s) ?” This question has been on the table
for several centuries and it is still of great interest today. It now appears that Clifford algebra
is one of the strongest candidates to qualify as an appropriate number system having physical
relevance. In addition, Clifford Analysis, the function theory constructed on top of Clifford
algebras, has emerged as a natural tool with applications in physics and engineering.

The development of the number concept has been long and arduous, as is well illustrated by
the semantics used in early algebra. To extend the “natural” numbers to “rational”, “irrational”,
“transcendental” and eventually to the “real” numbers took nearly two thousand years. It then
required a few more centuries before “imaginary” numbers were combined with real numbers
to produce, for the first time, a compound type of number, called a “complex” number. Once
the power of the complex numbers was established in algebra, analysis and the geometry of the
plane, the exploration of higher dimensional “more complex numbers” began.

It was in his search for a number system that could describe rotations in three dimensions as
easily as complex numbers do this for the plane, that the Irish mathematician William Rowan
Hamilton in 1843, not without some struggle, eventually discovered the quaternion algebra,
[18]. At about the same time, the German mathematician Hermann Günther Grassmann con-
structed algebras with an outer product, a work he published in 1844, [15]. It was only later
in his life that Grassmann realized how quaternions fitted in the framework of his own work.
At that moment, the English mathematician William Kingdon Clifford independently arrived at
the same unification of both developments. He introduced around 1878 a general set of alge-
bras, which he called geometric algebras and which are now named after him, which contained
the complex and quaternion algebras, [5]. Unfortunately, no immediate successor carried his
work further and geometric algebras gained little attention for almost a century. Later on, some
Clifford algebras were reinvented in quantum mechanics by Wolfgang Pauli and Paul Dirac, in
relation with the spin of the electron, [10]. Pauli’s algebra of sigma matrices is isomorphic to
the real Clifford algebra Cl3,0 and Dirac’s algebra of gamma matrices is isomorphic to the com-
plexified Clifford algebra C ⊗ Cl1,3. Earlier in 1884, in an attempt to construct an algebra of
oriented line segments in R3, the American physicist Josiah Willard Gibbs developed the now
familiar vector calculus, [7]. Such a calculus of oriented line segments is extended in a natural
way by the Clifford algebra for the underlying linear space, and then also includes higher di-
mensional objects such as oriented plane segments, etc. In particular, Gibbs’ vector calculus in
3-dimensional space is improved (i.e., simplified) and extended by the Clifford algebra Cl3,0.

Even today there is still a large proliferation of mathematical systems and nomenclature to
express geometrical objects and there interactions: vector calculus, dyadics, exterior differen-
tial forms, matrix algebra and tensor coordinate algebra being some of the most common. This
diversity reflects a kind of confusion that still exists about geometrical objects of higher di-
mensionality. This point was made very clear by David Hestenes, who has become one of the
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most prominent advocates in favour of the use geometrical algebras in physics and mathemat-
ics, [19], [21], [20]. His efforts to clarify and simplify the formulation of physics in terms of
Clifford algebras have demonstrated the naturalness of these number systems.

In the past 15 years many new contributions, extensions and applications of Clifford Analysis
have appeared in the literature. This field is now booming and exciting progress is made in many
diverse directions, e.g., [11], [6], [24], [16], [17], [14], [30], [31].

2 HYPERCOMPLEX NUMBERS

There are two main approaches leading to n-dimensional mathematics.
(i) Using n low-dimensional variables, such as real or complex variables, yielding Rn and

Cn, respectively.
(ii) Using a single variable that is itself an n-dimensional number.
The topics of the special session on “Applicable Hypercomplex Analysis” mainly belong to

approach (ii) (or a combination of (i) and (ii)). Such numbers are called hypercomplex numbers
and can be thought of as generalizations of the complex numbers, in the sense that they contain
several “imaginary” parts besides a unique real part.

When developing an analysis based on such an algebra, the aim is to select an interesting set
of functions, the value of which at any point is a hypercomplex number.

2.1 Three basic types of complex numbers

Before introducing hypercomplex numbers in full generality, let us first take a closer look at
the complex number system itself. One can define the following three basic types of complex
numbers.

2.1.1 Elliptic complex numbers

The field C−1 , {x + yi : i2 = −1, ∀x, y ∈ R} are just the ordinary complex numbers.
Let z = x + yi. Conjugation is defined as z , x − yi and the modulus as |z| ,

√
zz =√

x2 + y2. The modulus commutes with multiplication, |uv| = |u| |v|, and since it is positive
definite, it is a norm. The norm |z| models the Euclidean distance of z from the origin. There-
fore, C−1 describes the geometry of Euclid’s plane. The “unit circle” is x2 + y2 = 1. Any
number of the form ρ , exp (θi), ∀θ ∈ R, has unit modulus. Multiplication by ρ represents a
two-dimensional rotation. Non-zero numbers z such that |z| = 0 are called null elements. It is
clear that there are no null elements in C−1. Any non-zero z has a unique inverse z−1 = z/ |z|2,
hence C−1 is a division algebra. The complex numbers contain no non-trivial idempotents
(other than 0 and 1) and no zero divisors, hence C−1 is an integral domain. Consequently, C−1

is a field.
It will become clear, further on, that C−1 is isomorphic to the Clifford algebra Cl0,1 (R).

2.1.2 Parabolic complex numbers

The commutative associative unital ring C0 , {x + yi : i2 = 0,∀x, y ∈ R} are called dual
numbers.

Let z = x + yi. Conjugation is defined as z , x − yi and the modulus as ‖z‖ , zz = x2.
The modulus commutes with multiplication, ‖uv‖ = ‖u‖ ‖v‖, and since it is positive definite, it
is a norm. The “unit circle” is the two-bladed straight line x2 = 1. Any number of the form χ ,
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× 1 i1 . . . im

1 1 i1 . . . im
i1 i1 ∈ {−1, 0, +1} TBD TBD
. . . . . . TBD ∈ {−1, 0, +1} TBD
im im TBD TBD ∈ {−1, 0, +1}

Table 1: Multiplication table for a hypercomplex number system

exp (νi), ∀ν ∈ R, has unit modulus. Multiplication by χ represents a two-dimensional Galileo
transformation. Non-zero numbers z such that ‖z‖ = 0 are called null elements (yi, ∀y ∈ R).
Null elements are non-invertible, henceC0 is not a division algebra, and are zero divisors, so that
C0 is also not an integral domain. Any z such that ‖z‖ 6= 0 has a unique inverse z−1 = z/ ‖z‖.

The structure C0 describes the geometry of a superplane, consisting of one bosonic dimen-
sion (real part) and one fermionic dimension (imaginary part). With a modified definition of
norm, the “unit circle” can be turned into a parabola, [23].

2.1.3 Hyperbolic complex numbers

The commutative associative unital ring C+1 , {x + yi : i2 = +1,∀x, y ∈ R} are called
hyperbolic complex numbers or split-complex numbers, [32].

Let z = x + yi. Conjugation is defined as z , x − yi and the modulus as ‖z‖ , zz =
x2−y2. The modulus commutes with multiplication, ‖uv‖ = ‖u‖ ‖v‖, but since it is not positive
definite, it is not a (proper) norm. However, ‖z‖ models the squared Lorentzian distance of z
from the origin. Therefore, C+1 describes the geometry of Minkowski’s plane. The “unit circle”
is the two-bladed hyperbole x2 − y2 = 1. Any number of the form λ , exp (αi), ∀α ∈ R, has
unit modulus. Multiplication by λ represents a two-dimensional Lorentz (boost) transformation.
Non-zero numbers z such that ‖z‖ = 0 are called null elements ((x± xi) ,∀x ∈ R). Null
elements are non-invertible, hence C+1 is not a division algebra, and are zero divisors, so that
C+1 is also not an integral domain. Any z such that ‖z‖ 6= 0 has a unique inverse z−1 = z/ ‖z‖.

Unlike the complex numbers, the split-complex numbers contain nontrivial idempotents
(e± , (1± i) /2). Any z can be represented as z = (x− y) e− + (x + y) e+. With respect to
the basis of idempotents, multiplication reduces to (ae− + be+) (ce− + de+) = (ace− + bde+),
showing that C+1, as an algebra over the reals, is isomorphic to R ⊕ R (hence the name split-
complex numbers).

It will become clear, further on, that C+1 is isomorphic to the Clifford algebra Cl1,0 (R).

2.2 Definition of a hypercomplex number

The aforementioned three basic types of complex numbers suggests the following construc-
tion of an algebra of general hypercomplex numbers.

A (real) hypercomplex number z is an element of an (m + 1)-dimensional linear space over
R, with basis {1, i1, . . . , im}, of the form

z = a01 + a1i1 + . . . + amim, (1)

with 1 ∈ R, (a0, a1, . . . , am) ∈ Rm and with multiplication defined in Table 1.
In Table 1, TBD stands for a linear combination of basis elements that is “to be determined”.

Irrespective of the choices made for the non-specified entries in Table 1, these numbers form a
closed, unital and distributive algebra. In order for an algebra of hypercomplex numbers to be
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interesting and/or of practical value, additional properties are usually required. The challenge
then consists in discovering which multiplication rules to use.

2.3 Algebra generating sequences

2.3.1 Generalized Cayley-Dickson sequence

A systematic procedure that generates an infinite sequence of algebras of hypercomplex
numbers is the following generalized Cayley-Dickson construction.

Denote a hypercomplex number by the couple (a, b) and conjugation by a.
Consider the recursive process:
(i) for n = 0, initialize with a ∈ R, a = a and (a, 0) = a,
(ii) ∀n ∈ Z+ and with εn ∈ {−1, 0, +1}, define

(a, b) = (a,−b) , (2)
(a, b)× (c, d) =

(
a× c + εnd× b, a× d + c× b

)
. (3)

This produces a sequence of algebras over R, An, each characterized by (ε1, . . . , εn), with
dim An+1 = 2 dim An.

The original Cayley-Dickson sequence corresponds with εn = −1, ∀n ∈ Z+, and generates
the algebras: C, H, O, S, etc. This sequence generates algebras having a conjugate and norm,
such that the product of an element and its conjugate equals the square of its norm, and each
non-zero element has an inverse.

The drawback of the original Cayley-Dickson scheme is that interesting algebraic properties
are quickly lost. E.g.:

a real number is its own conjugate – lost by the complex numbers C,
the complex numbers are commutative – lost by the quaternion numbers H,
the quaternion numbers are associative – lost by the octonion numbers O,
the octonion numbers are alternative – lost by the sedenion numbers S.
From the sedenion numbers on, every Cayley-Dickson algebra is power associative and pos-

sess zero divisors.

2.3.2 An alternative sequence

Another procedure that generates an infinite sequence of algebras of hypercomplex numbers
with interesting properties is the following alternative construction, [26], [8].

Again denote a hypercomplex number by the couple (a, b) and conjugation by a.
Consider the recursive process:
(i) for n = 0, initialize with a ∈ R, a = a and (a, 0) = a,
(ii) ∀n ∈ Z+ and with εn ∈ {−1, 0, +1}, define

(a, b) = (a,−b) , (4)
(a, b)× (c, d) = (a× c + εnd× b, a× d + c× b) . (5)

This produces a sequence of algebras over R, Bn, each characterized by (ε1, . . . , εn), with
dim Bn+1 = 2 dim Bn.

Every algebra Bn has the following properties.
(i) (a, b)× (c, d) = (a, b)× (c, d).
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(ii) Every element (a, b) has a modulus defined by ‖(a, b)‖ , (a, b)×(a, b) = (a× a− εnb× b, 0)
which is in general not a norm.

(iii) Commutative and associative.
(iv) Every element (a, b) : ‖(a, b)‖ 6= 0 has a unique inverse (a, b)−1, given by (a, b)−1

= (a, b) / ‖(a, b)‖, and every element (a, b) : ‖(a, b)‖ = 0 is a zero divisor.
This construction produces an infinite sequence of algebras of hypercomplex numbers which

inherits the commutative and associative properties from the reals. E.g., if εn = −1, ∀n ∈
Z+, we get the algebras: C, H′, O′, S′, etc. For instance, H′ is determined by the following
multiplication table (z = a + bi1 + ci2 + di3)

× i1 i2 i3
i1 −1 +i3 −i2
i2 +i3 −1 −i1
i3 −i2 −i1 +1

(6)

and this algebra is isomorphic to the bicomplex numbers (complex numbers over complex num-
bers).

3 CLIFFORD ALGEBRAS

Another interesting sequence of algebras of hypercomplex numbers, which also have a pro-
found geometrical importance, are the Clifford algebras.

3.1 Introduction

Clifford defined the algebras Clp,q, based on previous work of Hamilton and Grassmann,
around 1878 at University College London. Examples of Clifford algebras are R,C,H, but
not O,S, . . .. Clifford algebras naturally form a triangular sequence, with dim Clp,q = 2n,
n , p + q.

n

q

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

C
H
D

R P M

Figure 1: Clifford algebras

This is a truncated schematic overview of the infinite set of Clifford algebras, each dot stand-
ing for an algebra. Over each quadratic inner product space of finite dimension n one can define
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n + 1 Clifford algebras, one for each signature with 0 to n negative signs.

3.2 Definition

Let Rp,q , (Rn, P ) denote the n-dimensional linear space Rn together with an inner product
given by the canonical quadratic form P of signature (p, q), and {e1, . . . , en} an orthogonal
basis. The universal (real) Clifford algebra Clp,q over Rp,q is defined by, [2], [25], [1],

e2
1 = . . . = e2

p = +1 and e2
p+1 = . . . = e2

n = −1, (7)
eiej + ejei = 0, i 6= j, (8)

together with linearity over R and associativity.
The Clifford product (for two vectors) decomposes into the sum of the inner (ei · ej ,

P (ei, ej)) and outer (ei ∧ ej , 1
2
(eiej − ejei)) products,

eiej = ei · ej + ei ∧ ej. (9)

Clifford algebras can also be defined over n-dimensional complex space Cn, but we will not
consider these here.

3.3 Some properties

Each Clifford algebra Clp,q is a non-commutative associative unital algebra over R, which
naturally forms a graded linear space of dimension 2n, Clp,q = ⊕n

k=0Clkp,q. More explicitly,
a (real) Clifford number (“cliffor”, “multivector”) x is a hypercomplex number over R, with
2n − 1 imaginary units, of the form (with Einstein’s summation convention)

x = a1︸︷︷︸
1

+ aiei︸︷︷︸
(n

1)

+
1

2!
ai1i2 (ei1 ∧ ei2)︸ ︷︷ ︸

(n
2)

+ . . . +
1

n!
a1,...,n (e1 ∧ . . . ∧ en)

︸ ︷︷ ︸
1

. (10)

With [x]k the k-grade projector, x =
∑n

k=0 [x]k. A pure grade component [x]k represents an
oriented subspace segment of dimension k, called a k-vector. A Clifford number thus extends
the idea of an oriented line segment (i.e., an ordinary vector) by incorporating all possible ori-
ented subspace segments of Rn, with dimensions ranging from 0 to n. E.g., [x]2 represents an
oriented plane segment, whereby its

(
n
2

)
components determine its direction in Rn and its mag-

nitude corresponds to its surface area. Each Clifford number encodes a collection of different
oriented subspace segments that possibly can exist in Rn. The Clifford product encodes all the
natural geometrical constructions that are possible with oriented subspace segments and that re-
sult in one or more other oriented subspace segments. E.g., the Clifford product of two 1-vectors
(i.e., ordinary vectors) results in a scalar, which represents their scalar product, and a 2-vector,
which represents the oriented parallelogram that is naturally constructed from two vectors and
is represented by their wedge product. This is the reason why Clifford algebras are also called
geometrical algebras. The above interpretation also shows that in order to describe all possible
geometrical relations between oriented subspace segments in an n-dimensional space requires
numbers with 2n components.

In particular, the Clifford algebra Cl3,0 (numbers with 8 components) is an extension of
Gibbs’ 3-dimensional vector algebra (numbers with 3 components). The latter can evidently
not represent for instance, 2-vectors (bivectors) and is therefore too restrictive to faithfully code
certain physical phenomena, such as e.g., a static magnetic field which has the geometric nature
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of an oriented plane segment in R3. In Gibbs’ vector algebra such quantities are represented by
their normal (which is unique in 3 dimensions once a preferred orientation is chosen). How-
ever, by neglecting the true geometrical character of such objects and their natural geometrical
interactions, a more complicated algebra results (lacking the associative property).

The Clifford product of two numbers of pure grade, x = [x]k and y = [y]l, is given by

xy =
k+l∑

i=|k−l|,2
[xy]i , (11)

with the sum stepping by 2.
A Clifford algebra is also a Z2-graded algebra, consisting of an even part, made up by the

direct sum of the even grade subspaces, and odd part, made up by the direct sum of the odd
grade subspaces. The even part of Clp,q is again a Clifford algebra, called the even subalgebra
Clep,q.

Clifford algebras are isomorphic to matrix algebras in the following ways.
If p − q 6= 1 mod 4, Clp,q is a simple algebra, isomorphic to M (d,K) with K ∈ {R,C,H}

for some dimension d.
If p− q = 1 mod 4, Clp,q is a semi-simple algebra, isomorphic to M (d,K)⊕M (d,K) with

K ∈ {R,H} for some dimension d.
Clifford algebras acquire their unique geometrical meaning by embedding the reals R ↪→

Clp,q by its grade 0 part and Rp,q ↪→ Clp,q by its grade 1 part. These identifications give
Clifford algebras more structure than their corresponding matrix algebras.

The following involutions are defined in any Clifford algebra.
(i) The grade (or main) involution: êi , −ei and (̂xy) , x̂ŷ, which induces an algebra

automorphism.
(ii) The reversal (or transpose) involution: ẽi , ei and (̃xy) , ỹx̃, which induces an algebra

anti-automorphism.
(iii) The conjugation involution: ei , −ei and (xy) , yx, which induces an algebra anti-

automorphism.
Conjugation usually serves to define a norm. However, there are signatures (p, q) for which

no norm can be defined. Also, an inverse can not be defined ∀x ∈ Clp,q in general. Inverses
can sometimes be defined for certain elements in the algebra. For instance, those x ∈ Clp,q :
x̃x ∈ R\ {0} have a (left and right) inverse x−1 = x̃/ (x̃x). In the Euclidean Clifford algebras
Cln,0 and the anti-Euclidean Clifford algebras Cl0,n a norm can be defined as |x| , √

[x̃x]0 and
|x| , √

[xx]0, respectively.

3.4 The Clifford group and its subgroups

3.4.1 Clifford group

The Clifford group Γ (p, q) is the set of invertible Clifford numbers defined by

Γ (p, q) ,
{
s ∈ Clp,q : svŝ−1 ∈ Rp,q,∀v ∈ Rp,q

}
. (12)

Its importance stems from the fact that any s ∈ Γ (p, q) induces an isometry of Rp,q, i.e.,
P (svŝ−1, svŝ−1) = P (v,v). It can be shown that any element of Γ (p, q) consists of a finite
products of invertible vectors, i.e., s ∈ Γ (p, q) ⇔ s = s1 . . . sr : si ∈ Rp,q and P (si, si) 6= 0.

The map χs : Rp,q → Rp,q such that v 7→ svŝ−1, with s ∈ Rp,q, is the reflection of v with
respect to the (n− 1)-dimensional hyperplane orthogonal to the invertible vector s.
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For further convenience, one also defines the subgroup Γe (p, q) , Γ (p, q) ∩ Clep,q, whose
elements consist of an even finite product of invertible vectors.

3.4.2 Subgroups of the Clifford group

The Pin group Pin (p, q) is the normal subgroup of Γ (p, q) defined by

Pin (p, q) , {s ∈ Γ (p, q) : ss = ±1} . (13)

Its elements consist of a finite product of unit vectors.
The Spin group Spin (p, q) is the normal subgroup of Γe (p, q) defined by

Spin (p, q) , {s ∈ Γe (p, q) : ss = ±1} . (14)

Its elements consist of an even finite product of unit vectors.
The Spin plus group Spin+ (p, q) is the normal subgroup of Spin (p, q) defined by

Spin+ (p, q) , {s ∈ Spin (p, q) : ss = 1} . (15)

3.4.3 Group coverings

The famous Cartan-Dieudonné theorem states that any rotation (resp., anti-rotation) in Rn

can be decomposed as at most n reflections, with the number of reflections being even (resp.,
odd). This result explains why the Clifford group and its subgroups, being reflection groups,
are useful to describe rotations and anti-rotations in Rp,q.

More precisely, it is found that the Clifford group and its subgroups are the following cover-
ings of the classical indefinite orthogonal groups,

Γ (p, q) /R\ {0} ' O (p, q) , (16)
Γe (p, q) /R\ {0} ' SO (p, q) , (17)

Pin (p, q) / {−1, +1} ' O (p, q) , (18)
Spin (p, q) / {−1, +1} ' SO (p, q) , (19)

Spin+ (p, q) / {−1, +1} ' SO+ (p, q) . (20)

Herein is O (p, q) the indefinite Orthogonal group, SO (p, q) the indefinite Special Orthogonal
group, preserving volume orientation and SO+ (p, q) that subgroup of SO (p, q) that preserves
both orientations (the identity component of SO (p, q)).

Applied to p = 1, q = 3, O (1, 3) is the full Lorentz group, SO (1, 3) is the volume orien-
tation preserving Lorentz subgroup (with determinant +1) (called the “proper Lorentz group”)
(but containing both ortho-chronous and anti-chronous elements) and SO+ (1, 3) is the vol-
ume orientation and time-orientation preserving Lorentz subgroup (the “proper ortho-chronous
Lorentz group”).

3.4.4 Lie algebras

The groups Γ (p, q), Pin (p, q), Spin (p, q) and Spin+ (p, q) are Lie groups. It is well-known
that any element of a Lie group can (locally) be obtained as the exponential of an element of its
Lie algebra. One shows that:
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(i) the Lie algebra of Γ (p, q) is the sub Lie algebra of Clp,q consists of the scalars and
bivector space Cl0p,q ⊕ Cl2p,q;

(ii) the Lie algebra of Pin (p, q), Spin (p, q) and Spin+ (p, q) consists of the bivector space
Cl2p,q.

E.g., s = exp( 1
2!
ai1i2 (ei1 ∧ ei2)) ∈ Spin (p, q).

3.5 Rotation in Euclidean space

Define Spin (n) , Spin (n, 0), SO (n) , SO (n, 0) and Rn , Rn,0. A rotation Ra : Rn →
Rn such that v 7→ w by an a ∈ SO (n) is classically calculated as wj = aj

iv
i. The rotation of

v by an s ∈ Spin (n) is given by
w = svs−1, (21)

wherein s = exp
(

1
2
θu

)
with u = 1

2!
ui1i2 (ei1 ∧ ei2) a unit bivector (u2 = −1). The unit bivector

determines the plane which is left invariant by the rotation and θ is the rotation angle. To any
a ∈ SO (n) corresponds an s ∈ Spin (n), both related by

aj
iej = seis

−1. (22)

This makes the twofold covering of SO (n) by Spin (n) explicit, as we can use either s or −s
in (22).

Using an element of Spin (n) we can not only rotate vectors, but any multivector x ∈ Clp,q as
y = sxs−1. In particular, for any k-vector xk = 1

k!
xi1...ik (ei1 ∧ . . . ∧ eik) we have (orthonormal

basis),

yk , sxks
−1,

=
1

k!
xi1...iks (ei1 ∧ . . . ∧ eik) s−1,

=
1

k!
xi1...iks (ei1 . . . eik) s−1,

=
1

k!
xi1...iksei1s

−1 . . . seiks
−1. (23)

Using (22) this becomes

yk =
1

k!
xi1...ikaj1

i1
ej1 . . . ajk

ik
ejk

,

=
1

k!

(
aj1

i1
. . . ajk

ik
xi1...ik

)
ej1 . . . ejk

,

=
1

k!

(
aj1

i1
. . . ajk

ik
xi1...ik

)
(ej1 ∧ . . . ∧ ejk

) , (24)

which reproduces the classical transformation of a tensor of order k, yj1...jk = aj1
i1

. . . ajk
ik

xi1...ik .
The rotation operation, when expressed in the form (21), is independent of the dimensionality

of the space and of the object to be rotated. It is the generalization to n dimensions of the
familiar rule for rotation in the complex plane, expressed by multiplying by eθi (i2 = −1).
This spinor representation of rotation has found many applications, e.g., in video games, virtual
reality, robotics, aeronautics, crystallography, etc.
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4 COMPLEX ANALYSIS

We end our exploration of the algebra side and now turn to the question how to select an in-
teresting subset of Clifford algebra valued functions. We first recall how this is done in complex
analysis.

4.1 Choice of a subset of functions

Let Ω ⊆ C be non-empty, connected and open and f : Ω → C such that z = x + iy 7→
f (z) = u (x, y) + iv (x, y).

Historically one questioned the existence of functions f , having a unique complex derivative
f ′ (z0) at z0, given by f ′ (z0) , limz→z0

f(z)−f(z0)
z−z0

and which is independent of the direction
used to calculate the limit, ∀z0 ∈ Ω. Somewhat surprisingly, such functions do exist and they
constitute the subset MΩ of complex monogenic functions on Ω. It is easy to shown that for f
to be in MΩ it is necessary and sufficient that u, v ∈ C1 and that they satisfy in Ω the Cauchy-
Riemann (CR) conditions:

∂xu− ∂yv = 0 and ∂yu + ∂xv = 0, (or (∂x + i∂y) (u + iv) = 0) . (25)

It was further found that these complex functions have more interesting properties.
(i) Cauchy’s theorem. Each f ∈ MΩ satisfies

∮

C

f (w) dw = 0, (26)

for all simple, counter-clockwise oriented, closed curves C ⊂ Ω that are inside C. A complex
function that satisfies Cauchy’s theorem is said to be complex holomorphic.

(ii) For each f ∈ MΩ is f (k) ∈ MΩ, ∀k ∈ Z+ and f is said to be complex smooth.
(iii) Each f ∈ MΩ can be represented in Ω by a complex Taylor series

f (z + z0) =
+∞∑

k=0

f (k) (z0)
(z − z0)

k

k!
, (27)

and f is said to be complex analytic.
(iv) Each f ∈ MΩ : f ′ 6= 0 in Ω generates a conformal map from Ω → C.
When attempting to extend complex analysis to a higher dimensional analysis, it is not a

priori clear which of these properties can be preserved. Which property shall we use as criterion
to generate an interesting function set in Clifford Analysis ? Trying the various properties, we
end up with function sets which are either too small or too large to be interesting. There is one
property however, holomorphy, which appears to be a valid criterion to select functions by. For
this reason, we take a closer look at this property, to see what it really means.

4.2 Holomorphy

The following is an equivalent formulation of the property of holomorphy.

Theorem 1 (Cauchy’s integral formula). For any f ∈ MΩ holds that

f (z) =

∮

C

(
i

2π

1

z − w

)
f (w) dw, (28)

for all simple, counter-clockwise oriented, closed curves C ⊂ Ω and ∀z ∈ Ω that are inside C.
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The function
i

2π

z

|z|2 (29)

is called Cauchy’s kernel.
An expression such as (28) is also called an integral representation of f . It states that it is

sufficient to know a complex function, holomorphic in Ω, only at the boundary C of an arbitrary
domain inside Ω, in order to reconstruct this function everywhere inside this domain.

5 CLIFFORD ANALYSIS

Clifford Analysis can, from a practical point of view, be divided in two parts:
(i) Clifford Analysis over (anti-)Euclidean spaces. This is now a mature part of mathematical

analysis that was developed about 30 years ago by Delanghe, Brackx, Sommen, Souček, et al.,
[2], [9], [6], [27].

(ii) Clifford Analysis over pseudo-Euclidean spaces. This is a much more complicated theory
that is deeply rooted in distribution theory, [34]. For instance, the explicit characterization of
the Cauchy kernels of Rp,q requires a detailed study of certain complicated distributions, whose
properties are at present still insufficiently known. Much work is to be done to develop this part
of mathematical analysis and increase its practical use.

Some authors have studied Clifford Analysis over complex spaces Cn, as a precursor for
studying (ii), [3], [28], [29]. The idea is then to take a multi-limit to p real and q imaginary axes
in Cn in order to arrive at Rp,q. The relevant distributions based on Rp,q are then obtained as
boundary values of the more regular complex distributions based on Cn. The major difficulty
of this approach resides in how to deal with the complicated nature and singularities of these
boundary value distributions.

5.1 Generalized Cauchy-Riemann condition

Holomorphy in complex analysis is a consequence of the Cauchy-Riemann equations. We
therefore try to generalize these equations.

There is a lot of freedom in choosing generalized Cauchy-Riemann conditions. The follow-
ing are just two possibilities.

(i) Define D , ∂0 +
∑n

i=1 ei∂i, let F : Ω ⊆ Rn+1 → Clp,q and consider

DF = 0. (30)

D is called the generalized Cauchy-Riemann operator in Rn+1. This is the straightforward
generalization of the complex CR conditions.

(ii) Define ∂ ,
∑n

i=1 ei∂i, let F : Ω ⊆ Rn → Clp,q (n = p + q) and consider

∂F = 0. (31)

∂ is called the Dirac operator in Rn. We will further use choice (ii).

5.2 Clifford Analysis over Euclidean spaces

5.2.1 Cauchy kernel

The distribution C ∈ Cl1n,o, defined by

∂C = δ = C∂, (32)
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is also called a Cauchy kernel for Rn,0.
The importance of the Cauchy kernel stems from the fact that the convolution operator C∗

(resp., ∗C) is a right (resp., left) inverse of the Dirac operator ∂, (since ∗δ = Id = δ∗).
The grade 2 part of eq. (32) implies, by Poincaré’s lemma, that C = ∂g, with g a scalar

distribution satisfying
∇2g = δ. (33)

The Cauchy kernel C is then obtained, after operating with the Dirac operator ∂ on a funda-
mental solution g of the Poisson equation (33), as the regular distribution

C (x) , 1

An−1

x

|x|n , with An−1 , 2πn/2

Γ (n/2)
. (34)

5.2.2 Holomorphy

The property of holomorphy generalizes to Euclidean Clifford Analysis as is expressed by
the following.

Theorem 2 (Cauchy’s integral formula). For any F : Ω ⊆ Rn → Cln,0 : ∂F = 0 and any
chain Σ ⊂ Ω holds that

F (x) =

∫

δΣ

C (y − x) dσyF (y) ,∀x ∈ Σ, (35)

wherein dσy is the surface element on the orientable boundary δΣ.

5.3 Clifford Analysis over pseudo-Euclidean spaces

5.3.1 Cauchy kernel

The distribution Cx0 ∈ Cl1n,o, with parameter point x0, defined by

∂Cx0 = δx0 = Cx0∂ (36)

is a Cauchy kernel for Rp,q.
Again, Cx0 = ∂gx0 , with gx0 a scalar distribution satisfying

¤p,qgx0 = δx0 , (37)

wherein ¤p,q = ∆p−∆q is the generalized d’Alembertian (or wave operator) of signature (p, q).
The Cauchy kernel is no longer a regular distribution and its form depends profoundly on

the parity of p and of q. If and only if (p, q) ∈ H , {(p, q) ∈ Zo,+ × Zo,+ : (p, q) 6= (1, 1)},
called the Huygens cases, the Cauchy kernel Cx0 reduces to the following, somewhat simpler
form, [12],

Cx0 =
(x− x0)

S
(
δ
((n−2)/2)
(P (x−x0))

)
0

((q − 2) /2)((n−2)/2)

. (38)

Herein stands δ
(k)
(P (x−x0)) for a k-multiplet delta distribution supported on the null-space P (x− x0) =

0 and
(
δ
((n−2)/2)
(P (x−x0))

)
0

the analytic finite part, the superscript S means spatial conjugation ((xt,xs)
S ,

(xt,−xs)) and z(k) denotes the falling factorial polynomial. The Huygens cases correspond to
universes wherein undisturbed communication is possible, i.e., where initial sharp pulses re-
main sharp pulses after propagation and are not smeared out by dispersion. Equivalently stated,
these are universes where “light” only exists on the null-space, relative to its source point.
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5.3.2 Holomorphy

See [13] for the following.

Theorem 3 For any F : Ω ⊆ Rn → Clp,q : ∂F = −J and a chain Σ ⊂ Ω (satisfying a
technical condition) holds that

F (x0) = 〈Cx0 , J〉S + 〈Cx0|δΣ, n F |δΣ〉S , ∀x0 ∈ Σ, (39)

wherein n is the outward normal field on the orientable boundary δΣ.

Much work is still to be done to fully characterize Cx0 and its restriction(s) for arbitrary
(p, q).

6 PHYSICAL RELEVANCE

In this section we will see some examples of the appropriateness of Clifford Analysis to
describe real world physical phenomena.

6.1 Electromagnetism

Consider as generalized Cauchy-Riemann condition in Cl1,3,

∂F = −J, (40)

with J a given smooth compact support Cl1,3-valued function.
Now assume that F in (40) is a pure grade 2 function (having 6 scalar components) and that

J has zero even grades. Writing out eq. (40) in its scalar components reveals that, under these
assumptions, it reproduces the Maxwell-Heaviside equations for the electromagnetic (EM) field
in vacuum, generated by a charge-current density function J , provided that we identify the EM
field with the function F , [22], [33]. The grade 1 part of J contains the electric monopole
sources (i.e., the electron charges and currents) and the grade 3 part of J can accommodate any
magnetic monopole sources (if they will ever be discovered).

The merit of the model (40) for EM not only lies in its extreme simplicity and compactness,
but especially in its analytical tractability, by the methods of Clifford Analysis, for solving EM
source problems in vacuum and homogeneous dielectrics. Clifford Analysis over R1,3, with the
CR condition (40), so becomes a function theory of EM fields!

The fact that a mathematical product, independent conceived by Clifford and unrelated to
the emerging insights in electromagnetism at that time, models so beautifully and efficiently
the structure of electromagnetism, is by all the odds a clear indication that physical electromag-
netism indeed possesses a deeper number structure. Inversely, one could say that the Clifford
numbers in Cl1,3 form a kind of “natural” number system for the universe in which we live,
especially because this algebra occurs in many other physical contexts (also see below), [19].

6.2 Correspondences

The above physical interpretation can be readily generalized. Choose any Clifford algebra
Clp,q, let F be general Clp,q-valued function and J a given smooth compact support Clp,q-
valued function. Then eq. (40) becomes a model for a generalized EM in a universe Rp,q, with
p time dimensions and q space dimensions! Although this may look somewhat farfetched, it
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CA EM
Cauchy-Riemann eq. Equation of EM
Clifford-valued functions Generalized EM fields
Holomorphy Holography
Singularities, Residues Source fields
Cauchy/Integral theorems Reciprocity theorems
Riemann-Hilbert problems EM scattering problems
etc. etc.

Table 2: Correspondences between CA and EM.

has the benefit that we can now interpret CA as a function theory of generalized EM fields, and
use our physical insight in EM to guide us in the development of CA over pseudo-Euclidean
spaces. This leads to the correspondences summarized in Table 2.

6.2.1 Holomorphy versus Holography

A particular striking correspondence is the analogy between holomorphy and holography in
Table 2.

We have seen that the holomorphic property of Clifford-valued functions satisfying ∂F = 0
generalizes to any signature (p, q) and dimension n = p+q. A physicist or engineer would prob-
ably call this property the possibility to perform holography (popularly called 3-dimensional
imaging). That this property would exist for light was postulated by D. Gabor in 1947 and later
experimentally verified (in 1963), once the laser as coherent light source became available (Ga-
bor got the Nobel prize for Physics for this in 1971). Remark that our model (40), based on the
Clifford algebra Cl1,3 together with Cauchy’s integral formula, immediately leads to the same
conclusion. It is fascinating to see how a mere mathematical reformulation of EM immediately
leads to such a far reaching physical insight.

The insight provided by eq. (40) is actually more far reaching than a mere reproduction of
Gabor’s conjecture. Gabor suggested that, in order to arrive at a perfect imaging, one should
register not only the intensity of the light but also its phase. This is only approximately achieved
in any holography experiment, since the registration of the phase of light is limited by techno-
logical factors. Typically the phase is recorded by registering the intensity of the interference
pattern between an incident light beam and the light scattered off the object of which one wants
to make a hologram. This may cause the impression that holography is a technical result, re-
sulting from applying interference. The essence of the message, contained in eq. (40), is that
the possibility of holography is an intrinsic property of light that resides in the geometrical
character of the EM field. This is a very fundamental property of the EM field and has noth-
ing to do with interference. Interference is just a technological aid that is invoked in order to
indirectly record phase information by recording intensity information. We need interference
in the physical recording of holograms, because we can not record phase information directly.
The intrinsic holographic property of the electromagnetic field however is still present in those
fields for which the concept of phase cannot be defined. It is present in each field configuration,
whether being a static EM field, a non-propagating evanescent field or a very brief transient
field. This immediately also implies that there is no such thing as a physical resolution limit
(assuming here that we can extend our classical model of EM to the infinitely small), but just a
technological resolution limit. The latter is the limit one encounters when using monochromatic
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waves in holographic imaging and it obviously corresponds to the wavelength of the light used.
This wavelength sets a lower limit for the scale of the details that the interference pattern can
reproduce. If we would be able to record the time varying value of each EM field component
with arbitrary resolution on some boundary surface enclosing some region in three-dimensional
space, then eq. (40) tells us that we can reconstruct the full electromagnetic field inside this
region with the same arbitrary resolution (provided there are no sources of this field inside this
region).

One can argue that an experimental verification of this property, based on current technology,
can not be performed and that therefore this property is of marginal practical relevance. Its rel-
evance however lies on the theoretical side, in the sense that this insight shows us the direction
along which we must improve our mathematical analysis tools. One could try to construct a
hologram for a particular scene, for instance on a closed surface around an object, by computa-
tion. If done analytically, the hologram would be known with infinite precision (or resolution).
If we could then propagate the information in this hologram into the region outside and inside
the hologram, we would have in essence solved an EM scattering problem. The mathematical
tools that allow to do exactly this, belong to Clifford Analysis over pseudo-Euclidean space.

It should now be clear that the analytical methods that are appropriate for solving EM field
problems are generalizations of the theory of complex holomorphic functions. The algebra of
the complex numbers is to be replaced with the Clifford algebra Cl1,3 and the complex holo-
morphic functions with holomorphic Clifford-valued functions over 4-dimensional Minkowski
space.

Complex holomorphic functions over the complex plane can be regarded as a mathematical
model for the EM field of a kind of (nonphysical) mini electromagnetism, existing in a universe
that looks like the 2-dimensional Euclidean plane. The appellation “holomorphic”, given by
mathematicians in the 19-th century to the main property of the functions occurring in this
model, and the independent appellation “holography”, given by physicists in the 20-th century
to a related physical property of electromagnetic fields in our universe, displays a remarkable
and fortunate resemblance.

6.3 Domains of applicability

6.3.1 Clifford Analysis over (anti-) Euclidean space

Here ∂2 = ±∆n, ±∆ng = δ (+: Rn,0 or −: R0,n) and any Cauchy kernel C = ∂g is a
potential vector field. We have the following interpretation.

(i) A holomorphic function of grade 1, e.g., f ∈ Cl13,0 : ∂f = 0 = f∂, describes in R3,0 an
incompressible (∇· f = 0)

and irrotational (∇ ∧ f = 0) fluid without sources nor sinks.
(ii) Elliptical (potential) problems: electrostatics, magnetostatics, Newtonian gravity, fluid

problems, etc.
(iii) Is the natural mathematical tool to use in a static universe.
Clifford Analyses over (anti-) Euclidean space is a function theory of holographic static

fields, living in a universe with n time dimensions (or with n space dimensions).

6.3.2 Clifford Analysis over pseudo-Euclidean space

Here ∂2 = ¤p,q, ¤p,qgx0 = δx0 and any Cauchy kernel Cx0 = ∂gx0 is a wave vector field.
We now have the following interpretation.
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(i) A holomorphic function of grade 1, e.g., f = (ρet, ρv) ∈ Cl11,3 : ∂f = 0 = f∂, describes
in R1,3 a mass conserved (i.e., ∂tρ−∇ · (ρv) = 0) 4-dimensional irrotational (i.e., (et∂t,∇) ∧
(ρet, ρv) = 0) fluid without sources nor sinks (with ρ: fluid density and v: fluid velocity).

(ii) Hyperbolic (wave) problems: full EM, acoustics, etc.
(iii) Is the natural mathematical tool to use in a dynamic universe.
Clifford Analysis over pseudo-Euclidean space is a function theory of holographic dynamic

fields living in a universe with p time dimensions and q space dimensions.

6.4 The time-space algebra

The naturalness of Cl1,3 for physical applications is further demonstrated by the ease with
which one derives all the classical Lorentz-invariant (source) free field equations devised in
quantum physics.

(i) m 6= 0. By factorization of the Klein-Gordon equation ∂2φ = −m2φ, describing a scalar
(spin-0) field with mass m, we get:

(i.1) Dirac’s equation describing a spin-1/2 field with mass m,
(i.2) Proca’s equation for a spin-1 field with mass m.
(ii) m = 0. By factorization of the wave equation ∂2φ = 0, describing a massless scalar

field, we get:
(ii.1) The equation for a massless spin-1/2 field,
(ii.2) Maxwell-Heaviside’s eqs. for a massless spin-1 field (EM).
Furthermore, Clifford Analysis is also useful to describe higher spin fields (spin-3/2 Rarita-

Schwinger’s eq. and generalizations), [4].
All this then raises the question: “Why is Cl1,3 so natural ?” A hint at the answer is given by

the following observations.
(i) The four dimensionality of our universe.
(ii) The presence of a indefinite quadratic structure of signature (1, 3) (metric), manifesting

itself as gravity (according to Einstein’s general theory of relativity).
(iii) The observation that physical laws are in essence expressing geometrical (symmetry)

relationships.
(iv) The fact that Clifford algebras are designed to model all (oriented) geometrical construc-

tions that possibly can exist in a linear space.
So it appears that maybe... Nature’s favorite analysis is Clifford Analysis?
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