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The deterministic equations describing the dynamics of the atmosphere (and of the climate system)

are known to display the property of sensitivity to initial conditions. In the ergodic theory of chaos,

this property is usually quantified by computing the Lyapunov exponents. In this review, these

quantifiers computed in a hierarchy of atmospheric models (coupled or not to an ocean) are

analyzed, together with their local counterparts known as the local or finite-time Lyapunov expo-

nents. It is shown in particular that the variability of the local Lyapunov exponents (corresponding

to the dominant Lyapunov exponent) decreases when the model resolution increases. The dynamics

of (finite-amplitude) initial condition errors in these models is also reviewed, and in general found

to display a complicated growth far from the asymptotic estimates provided by the Lyapunov expo-

nents. The implications of these results for operational (high resolution) atmospheric and climate

modelling are also discussed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979042]

The models describing the dynamics of the atmosphere

(and of the climate system) display the property of sensi-

tivity to initial conditions, i.e., any small error introduced

in the initial conditions will grow in time until it reaches

a level at which the forecast becomes useless. The atmo-

sphere can therefore be considered as displaying a cha-

otic dynamics. In this review, the dynamics of the initial

condition errors is explored through their usual quanti-

fiers known as the Lyapunov exponents (valid for infini-

tesimally small initial errors and infinite times), together

with the analysis of the dynamics of finite-size errors, in a

series of atmospheric models of increasing complexity.

I. INTRODUCTION

In the early fifties, the development of digital computers

opened the possibility to perform weather forecasts using

equations based on the laws of hydrodynamics and thermody-

namics. The first successful attempts have been obtained using

a set of simplified equations based on two approximations, the

hydrostatic equilibrium and the approximate geostrophic bal-

ance, which, respectively, postulate that the vertical pressure

gradient force is equal to minus the gravitational force and the

Coriolis force is approximately balanced by the horizontal

pressure gradient force.1 These assumptions reduce consider-

ably the number of prognostic equations and are at the origin

of the well-known quasi-geostrophic system of equations.2,3

Since then important progress has been made and up-to-date

models based on primitive equations are used for forecasting

purposes covering a large range of space scales and vertical

levels.4 These are supplemented by a considerable amount

of physical parameterizations to simulate cloud, rain, and ice

development, radiative transfers, surface interactions, and the

impact of sub-grid scale dynamics, among others.

The prospect of weather forecasting has rapidly raised

the question of the limits of predictability. A lot of efforts

have then been devoted to answering this question whose

basic properties were already identified in Ref. 5. Thompson5

notably shows that the imperfect knowledge of the initial

conditions induces a progressive degradation of weather fore-

casts. In other words, a small error committed on the initial

conditions of the system will grow in time until it reaches the

size of the distance between two randomly chosen weather

situations. This property, presently known as the property of

sensitivity to initial conditions (or initial states), has been

subsequently discovered in the numerical integration of a

low-order deterministic system by Ref. 6—based on the con-

vection model originally developed by Saltzman7 and pres-

ently known as the Lorenz model—indicating the intrinsic

nature of this dynamical property. This pioneering work has

raised a lot of interest in the community of atmospheric and

climate sciences, and a lot of researches have been devoted to

the analysis of sensitivity to initial conditions in a hierarchy

of atmospheric and climate models, ranging from two-

dimensional (2D) barotropic models [Refs. 8–10], quasi-

geostrophic models [Refs. 11–20], global circulation models

based on primitive equations [Refs. 21–23], high-resolution

atmospheric (mesoscale) models [Refs. 24–26], operational

weather forecasting models [Refs. 27–35], and climate mod-

els [Refs. 36–47]. See also the reviews of Refs. 4 and 48–50.

These different works have explored this property and the

limit of predictability on a wide range of space and timescales

and they all reach the same conclusion that sensitivity to ini-

tial conditions is a generic property of models describing the

atmosphere and the climate system.

It was also realized that other sources of errors are

degrading the forecasts, namely errors associated with the

absence of description of a set of processes, errors related toa)svn@meteo.be
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the parameterizations of subgrid-scale processes, numerical

errors, boundary condition errors, and external forcing

errors. The three first sources are usually referred as model
error, while the boundary condition errors and external forc-

ing errors are considered separately. The impact of the pres-

ence of these errors on the forecasts has also been

investigated in atmospheric models of various complexities

[Refs. 23, 27–29, 33, 51, and 52], but it is only recently that

a theory has been developed,53–58 revealing the polynomial

nature of the short term error dynamics, contrasting with the

exponential-like behavior of initial condition errors.

In parallel to these investigations, the interest of mathe-

maticians and theoretical physicists for the problem of sensi-

tivity to initial conditions raised considerably and led to the

development of the ergodic theory of chaos for deterministic

dynamical systems [e.g., Refs. 59–61], and to the develop-

ment of important quantifiers of the property of sensitivity to

initial conditions, the Lyapunov exponents. One central result

of this theory is that in the double limit of infinitesimally

small initial errors and infinitely long times, the distance

between initially close trajectories increases (or decreases) in

an exponential fashion with a rate, referred as the (largest or

dominant) Lyapunov exponent, which is an intrinsic property

of the system’s attractor.61–65 Deterministic systems display-

ing a positive Lyapunov exponent, and therefore displaying

the property of sensitivity to initial conditions, are referred to

as chaotic systems.
The chaotic nature of atmospheric flows has been investi-

gated using tools of ergodic theory in a hierarchy of atmo-

spheric and/or oceanic models ranging from low-order,66,68–71

to more sophisticated, intermediate-order, models describing

barotropic (2-dimensional) flows10 and quasi-geostrophic

flows.13,15,20,67,72–74 All the results support the chaotic nature

of the atmospheric models, and by extension of the atmo-

sphere itself.

In the real world, one is usually dealing with the dynam-

ics of finite size errors during a finite time period. The double

limit appearing in the definition of the Lyapunov exponents

cannot be attained and leads inevitably to consider a behav-

ior related to the local properties of the attractor. Therefore

in order to get information independent of the choice of the

initial conditions, it is necessary to adopt a probabilistic

approach. This aspect has been extensively investigated in

the past few years and a systematic theory of error growth

has been developed in the context of atmospheric scien-

ces58,69,70,75–83—and also in parallel in the context of turbu-

lence84,85 and references therein. The key point of the

approach is to incorporate information on the inhomogeneity

of the dynamical properties of the solutions on the underly-

ing attractor.

In particular, it has been shown that this practical limita-

tion is responsible for a complex non-exponential initial

behavior of the mean error for short times.70 After this tran-

sient period, the error at all scales follows the dynamics of

the dominant Lyapunov vector associated with the dominant

Lyapunov exponents (provided the error is still sufficiently

small), and subsequently saturates when the nonlinearities

are playing a dominant role. Similar investigations have sub-

sequently been performed in more complex convection and

atmospheric models by investigating the local properties of

the Lyapunov vectors associated with each exponent,15,72,73,79

and the variability of their local finite-time counterparts

known as the singular vectors.86–89 This stream of ideas led to

the development of what is known nowadays as ensemble
forecasts that are operational in many weather centers around

the world and which provide probabilistic information on the

evolution of the atmosphere, as discussed in several reviews

on ensemble forecasts.4,48,49

The Lyapunov exponents (and the variability of their

finite-time counterparts along the attractor of the system) are

therefore key quantities for the understanding of the predict-

ability of the atmosphere (and of climate). In the present

paper, the computation of the Lyapunov exponents and of the

statistical properties of the finite-time (or local) Lyapunov

exponents in a hierarchy of atmospheric (and climate) models

is reviewed. Their relevance for the description of the predict-

ability in highly detailed atmospheric and climate models is

then discussed.

Section II is devoted to a general overview of the classi-

cal deterministic modelling of the atmospheric dynamics

(together with a very brief introduction of the large-scale

upper ocean dynamics) and Section III to the description of

the computation of the Lyapunov exponents. Results obtained

with a hierarchy of low-order to intermediate order atmo-

spheric (and climate) models are presented and discussed in

Section IV. The dynamics of the error is then described in

Section V. Section VI is devoted to the future challenges in

characterizing the predictability of atmospheric and climate

flows.

II. MODELING THE DYNAMICS OF THE ATMOSPHERE
AND THE OCEAN

Traditional atmospheric (and climate) models are based

on the classical set of conservation laws of hydrodynam-

ics.2,90 For the atmosphere, these include mass balance,

moisture balance, momentum balance, and energy balance.

These equations are complemented by a number of diagnos-

tic relations such as the equation of state. The typical set of

equations used for describing the dynamics of the atmo-

sphere are the conservation of momentum

d~v

dt
¼ �2~X �~v �rU� 1

q
~rp� 1

q
~r �~~r ; (1)

where ~v, q, p, ~X; U, and ~~r are the three-dimensional (3D)

velocity field, the atmospheric density, the pressure, the

angular velocity of the Earth, the geopotential, and the stress

tensor, respectively; the conservation of mass

1

q
dq
dt
¼ � ~r �~v; (2)

the ideal gas law

p ¼ qRT; (3)

where T is the temperature and R, the ideal gas constant; the

thermodynamic equation
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cp
d

dt
T � 1

q
d

dt
p ¼ Q; (4)

where Q is the rate of heat per unit mass added to the fluid

and cp, the specific heat at constant pressure; and the conser-

vation equation for the water vapor content, q

dq

dt
¼ E� C; (5)

where E and C are the evaporation rate and the condensation

rate, respectively. This set of equations are often known as

the primitive equations.4,91 They are further complemented

by appropriate boundary conditions and with complicated

radiative forcings and heat exchanges, all contained in the

term Q, and known as diabatic processes. In realistic numer-

ical weather prediction, Q, E, and C play a crucial role, and

should be complemented by physical packages describing

the formation of clouds, the development of rain, the chemi-

cal reactions, etc., and their interaction with the dynamics

described above.

These equations are usually mapped to a spherical

geometry at a global scale or on a regional domain of inter-

est, and often simplified by assuming the vertical scale of the

motion to be small compared with the horizontal one. The

equations are further reduced to a set of ordinary differential

equations (ODEs) through spatial discretization using finite

difference schemes or truncation of the infinite expansion of

the field in an appropriate functional basis, or both.2

Starting from this set of equations, the process of fore-

casting consists first of identifying the phase space point that

represents most adequately the initial condition available

from observation based on data assimilation techniques.92

The next step is to compute numerically, by additional discre-

tization in time, the trajectory of the dynamical system in

phase space, also known as numerical model integration. To

reach a high spatial resolution, one includes the maximum

number of degrees of freedom compatible with the computing

power available. Usually the complication of the structure of

operational atmospheric and climate models precludes reli-

able statistical analysis or a systematic exploration of the

behavior in terms of the parameters.

An important class of models of the atmospheric circula-

tion which have been used extensively for forecasting pur-

poses is provided by the quasi-geostrophic models.3,93 These

models are obtained by adopting a number of assumptions in

the full set of balance equations, the most important of which

are: (i) the atmosphere is in hydrostatic equilibrium; (ii) the

wind and pressure fields are in approximate geostrophic

equilibrium so that the horizontal advection is essentially

described by the non-divergent velocity field; (iii) the

dynamical equations contain only the dominant contributions

of a Taylor expansion of the Coriolis force.

More formally, these approximations are justified

through the natural scaling of the dominant large scale flows

in both the atmosphere and the ocean at mid-latitudes, for

which the pressure gradient is in approximate balance with

the Coriolis force. The predominance of this approximate

balance is associated with a non-dimensional number known

as the Rossby number, Ro ¼ U=ðfLÞ, where U and L are the

typical horizontal velocity and length scales of the large

scale flows and the coriolis parameter f ¼ 2X sinð/Þ, where

X is the amplitude of the angular velocity of the Earth and /
is the latitude. For the atmosphere at midlatitudes, this num-

ber is of the order of 0.1 and for the ocean of the order of

0.01, see Ref. 93 for a more detailed discussion on these

scalings.

These simplifications led to an equation of conservation

for the potential vorticity in pressure coordinates

q ¼ r2wþ f þ f0
2 @

@p
r�1 @w

@p
; (6)

where w is the streamfunction, f0, the dominant contribution

of the Coriolis force estimated at /0 ¼ 45�, and r, the static

stability parameter

@q

@t
þ ~v � ~rð Þq ¼ F; (7)

where~v ¼ ð�@w=@y; @w=@xÞ is the non-divergent horizontal

velocity field and F contains all the dissipative and forcing

terms. This conservation law and the notion of potential vor-

ticity have been considerably exploited for the understanding

of the large scale atmospheric dynamics, see e.g., Ref. 94.

Note that in this setting, the temperature in the atmosphere is

given by

Ta ¼ �
f0p

R

@w
@p

� �
p

: (8)

Based on similar approximations, one can also deduce a

conservation equation (7) for the large scale dynamics of the

upper layer of an ocean (considered as homogeneous) in

which the potential vorticity q is now

q ¼ r2Wþ by� 1

L2
d

W; (9)

where b ¼ df=dy at /0 ¼ 45� and Ld ¼
ffiffiffiffiffiffiffiffi
g0H
p

=f0 with H, the

depth of the water layer, and g0 ¼ gðq0 � qÞ=q, the reduced

acceleration of gravity where q and q0 are the densities of two

superimposed ocean layers, the lower one being an

infinitely deep layer at rest.93 Note also that an important forc-

ing of the ocean dynamics (present in the term F in the right

hand side of 7) is the wind stress at the ocean surface

expressed as

curlz~s
qH

¼ C

qH
r2 wlower �Wupperð Þ; (10)

where the wind stress is proportional to the relative velocity

between the wind in the lower atmospheric layer,~vlower and

the flow in the ocean upper layer, ~vo;upper, namely, ~s
¼ Cð~vlower �~vo;upperÞ. The drag coefficient, C, characterizes

the strength of the mechanical coupling between the ocean

and the atmosphere and is a key bifurcation parameter in the

coupled model that will be discussed later.

The dynamical systems analysis presented below con-

sists first to embed the evolution of the system just described
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above in a space spanned by the ensemble of relevant varia-

bles, known as the phase space. Typical phase space varia-

bles are the values of the meteorological fields at grid points,

or the coefficients of their expansions in an appropriate func-

tional basis. Their number is usually very high (108 or so in

operational forecasting), unless drastic truncations leading to

low-order or intermediate-order models are performed. Let

us now focus on the specific models that will be used in the

analyses that will follow.

A. Low-order models

Low-order models have flourished in various fields of

science,64 and in particular in atmospheric and climate scien-

ces [Refs. 95–114]. These simplified models containing key

ingredients of the physics of the atmosphere and/or the ocean

allow for clarifying important features of the underlying

dynamical properties in phase space.

For the present illustrative purpose, we will make use of

a model of the atmospheric dynamics at midlatitudes devel-

oped by Charney and Straus,98 referred to as the CS model in

the following, and a recent extension of this model devel-

oped for the understanding of the coupled ocean-atmosphere

dynamics.115,116 The latter is first presented in some detail

and the simplifications leading to the CS model will be

outlined.

The atmospheric model is based on the vorticity equa-

tion (7) defined at two superimposed atmospheric levels, say

1 and 2, which constitutes a minimal representation for the

development of the so-called baroclinic instabilities at the

origin of the main variability of the weather at midlatitudes.3

The ocean dynamics confined to a single homogeneous layer

is based on a vorticity equation with the potential vorticity

given by (9). Finally, an advection equation for the tempera-

ture in the ocean considered as a passive scalar is incorpo-

rated into the model

@To

@t
þ ~vo � ~r
� �

To ¼ �k To � Tað Þ þ ER tð Þ; (11)

where ~vo is the (non-divergent) ocean velocity, ERðtÞ is the

radiative input in the ocean, and �kðTo � TaÞ is the heat

exchange between the ocean and the atmosphere. For more

details on the equations of the model and the parameters, see

Refs. 115 and 116.

The model is forced by short-wave radiations coming

from the Sun and an energy balance scheme is redistributing

the energy through long-wave radiation emissions and heat

transfer between the two components of the system. The

energy entering into the ocean is

ERðtÞ ¼ �rBT4
o þ �arBT4

a þ RoðtÞ; (12)

where �a is the emissivity of the atmosphere, rB, the Stefan-

Boltzman constant, and RoðtÞ, the net radiative input entering

the ocean coming from the Sun. While for the atmosphere

the radiative input is

Ea;RðtÞ ¼ �arBT4
o � 2�arBT4

a þ RaðtÞ; (13)

where RaðtÞ is fixed to RoðtÞ=3. It is assumed that the temper-

ature fields can be linearized around a reference temperature

in both the atmosphere and the ocean as

Ta ¼ Ta;0 þ dTa; (14a)

To ¼ To;0 þ dTo; (14b)

where Ta;0 and To;0 are spatially uniform temperatures. It is

also assumed that the atmosphere is dry and is not affected

by effects associated with the development of rain, ice, and

clouds.

Also let

RaðtÞ ¼ Ra;0ðtÞ þ dRaðtÞ; (15a)

RoðtÞ ¼ Ro;0ðtÞ þ dRoðtÞ; (15b)

with Ro;0ðtÞ and Ra;0ðtÞ, time dependent spatially uniform

shortwave radiative forcings, and dRaðtÞ and dRoðtÞ, the spa-

tially varying counterparts.

In order to mimick as close as possible the radiative

input coming from the sun at midlatitudes, RoðtÞ, used in the

low-order model, is approximated as

Ro ¼ Ro;0 þ dRo ¼ Soð1þ a sinðxðt� fÞÞÞ
þjSo cosðy0Þð1� 2a sinðxðt� fÞÞÞ; (16)

where x ¼ 2p=365 days–1, f¼ 80 days, and y0 is the latitude

in non-dimensional units varying from ½0; p�. j is a free

parameter varying between �0; 1� and a is fixed such that the

radiative input is never negative in the whole domain,

a ¼ minððð1=jÞ � 1Þ=ðð1=jÞ þ 2Þ; 0:5Þ. This choice also

implies that the energy input in the non-autonomous case is

reaching 0 at y ¼ p at t � 355 days (Winter solstice). Two

free parameters are present in this relation: So, the energy

input, and j, the latitudinal contribution. Figure 1 displays

Ro for different values of j, the smaller the value of j, the

larger the seasonal variations. For j¼ 0.3, the seasonal vari-

ation is very similar to the actual evolution as discussed in

Ref. 115.

A second important parameter largely influenced by the

seasonal variations of the radiative input is the depth of the

upper ocean layer, known as the mixed layer, interacting

FIG. 1. Analytical expression (16) of the radiative input as a function of lati-

tude and time for different values of j, j¼ 1 (green), j ¼ 0:5 (blue), and

j ¼ 0:3, (red), with So¼ 310 W m�2. The latitude is displayed in adimen-

sional units in the domain ½0; p�. The unit along the vertical axis is W m�2.
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directly with the atmosphere as discussed in Ref. 115. In this

context, we choose the following relation for the ocean

depth:

H tð Þ ¼ Dref ln 1þ 500

Ro;0 tð Þ

� �3
 !

; (17)

where Dref is fixed to 100 m in most of the integrations per-

formed below, unless it is explicitly stated.

The atmospheric and oceanic fields are expanded in

Fourier series over the domain, ð0 � x0 � 2p=n; 0 � y0 � pÞ,
where n is the aspect ratio between the meridional and the

zonal extents of the domain, n ¼ 2Ly=Lx, and x0 ¼ x=L and

y0 ¼ y=L.

One retains the following set of modes for the dynamics

within the ocean:

/1 ¼ 2 sinðnx0=2Þ sinðy0Þ;
/2 ¼ 2 sinðnx0=2Þ sinð2y0Þ;
/3 ¼ 2 sinðnx0Þ sinðy0Þ;
/4 ¼ 2 sinðnx0Þ sinð2y0Þ;
/5 ¼ 2 sinðnx0=2Þ sinð3y0Þ;
/6 ¼ 2 sinðnx0=2Þ sinð4y0Þ;
/7 ¼ 2 sinðnx0Þ sinð3y0Þ;
/8 ¼ 2 sinðnx0Þ sinð4y0Þ:

(18)

For temperature, the same set is used, except the modes /1

and /5 for which the spatial average is different from 0. This

allows us to interpret the reference temperature within the

ocean as a spatial temperature average.

For the atmosphere, we keep the same set of modes as in

Ref. 100

F1 ¼
ffiffiffi
2
p

cosðy0Þ;
F2 ¼ 2 cosðnx0Þ sinðy0Þ;
F3 ¼ 2 sinðnx0Þ sinðy0Þ;
F4 ¼

ffiffiffi
2
p

cosð2y0Þ;
F5 ¼ 2 cosðnx0Þ sinð2y0Þ;
F6 ¼ 2 sinðnx0Þ sinð2y0Þ;
F7 ¼ 2 cosð2nx0Þ sinðy0Þ;
F8 ¼ 2 sinð2nx0Þ sinðy0Þ;
F9 ¼ 2 cosð2nx0Þ sinð2y0Þ;
F10 ¼ 2 sinð2nx0Þ sinð2y0Þ:

(19)

All equations are then projected onto these sets of modes

after linearizing the temperature equations around reference

spatially averaged temperatures. The projection is performed

using the usual scalar product

hf ; gi ¼ n

2p2

ðp

0

dy0
ð2p=n

0

dx0f x0; y0
� �

g x0; y0
� �

; (20)

for the non-dimensional equations. It leads to 8 ordinary dif-

ferential equations (ODEs) for the dynamics within the ocean,

one equation for the spatially averaged ocean temperature,

and 6 equations for the anomaly temperature field within the

ocean. In addition, 20 ODEs are obtained for the atmosphere,

10 for the barotropic streamfunction field ðw1 þ w2Þ=2, and

10 for the baroclinic streamfunction field h ¼ ðw1 � w2Þ=2

(also often referred to temperature due to its direct link with

Eq. (8) in this setting). An additional equation for the spatially

averaged atmospheric temperature is also deduced. It forms a

set of 36 ODEs which is fully described in the Supplement of

Ref. 115.

The CS model98 is a simplified atmospheric version of

the model just described above without ocean, for which the

radiative input is directly introduced as a forcing of the baro-

clinic streamfunction equation in the form of a Newtonian

relaxation toward an equilibrium baroclinic streamfunction

field, h	. The equilibrium solution, h	, is chosen as

h	 ¼ h	1F1; (21)

in adimensional units and constant in time. This model ver-

sion is supposed to mimick the dominant dynamics of the

atmosphere over a land surface with an idealized orography,

which is given as

h ¼ h2F2; (22)

also in non-dimensional units. The development of the fields in

Fourier modes is limited to the first 6 modes of (19), leading to

12 ODEs. A full description of the model is given in Ref. 98.

The model equations are integrated in time using a sec-

ond order Heun method.

B. An intermediate-order model

Intermediate order models have been developed in order

to alleviate the limitations of high-resolution climate models

whose computer time demand is very high, but still provid-

ing a realistic dynamics of the processes of interest. These

are typically truncated model versions with a horizontal reso-

lution of a few hundreds of kilometers for the atmosphere.

Such a global model based on Equation (7) (and denoted

as QGT21L3 in the following) involving three levels along

the vertical has been proposed in Ref. 117. Thanks to the rel-

ative manageability of this model (1449 variables), an exten-

sive analysis can be performed.

The model describes the evolution of the potential vor-

ticity (7) at three vertical levels, 200 hPa, 500 hPa, and

800 hPa.117 The horizontal fields Z are expanded in a series

of spherical harmonics Ym;n truncated triangularly at wave-

number 21

Zðk;/; tÞ ¼
X21

n¼0

Xm¼n

m¼�n

Zm;nðtÞYm;nðk;/Þ; (23)

where k, /, m, and n are the longitude, the latitude, the zonal,

and total wavenumbers, respectively. The index n character-

izes the size of the two-dimensional horizontal structures on

the sphere. The prognostic equation at each level, i, can then

be written in terms of the streamfunction w and the potential

vorticity q as
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@qi

@t
¼ �J wi; qið Þ � D wið Þ þ Si; (24)

where Jðw; qÞ is the nonlinear Jacobian operator, @w=@x @q=
@y� @q=@x @w=@y. The linear term D accounts for the

effects of Newtonian relaxation of temperature, a scale selec-

tive horizontal diffusion of vorticity and temperature and a

drag on the wind at the lower level whose coefficient

depends on the properties of the underlying surface. Finally,

the time-independent spatially varying source term, Si, con-

strains the solution of the model to an averaged, statistically

stable, observed winter climatology (“perpetual winter” con-

ditions). Note that all the fields are computed in non-

dimensionalized units: the length unit is the earth radius

(6371 km) and the time unit is half the inverse of the angular

velocity of the earth (7:29210�5 s�1). The model equations

are integrated in time using a leapfrog scheme (together with

a Robert-Asselin filter) with a time step of 1 h starting from

a realistic potential vorticity field. The model is fully

described in Appendix A of Ref. 117.

III. THE LYAPUNOV EXPONENTS

The instantaneous fields of these models are represented

by points in phase space and as time elapses the phase space

trajectories followed by the system’s solutions tend to an

invariant manifold, to which one refers as the attractor. This

reflects the dissipative character of meteorological and cli-

mate phenomena. As we are interested in characterizing the

instability of the flows generated by these models, let us

focus on the dynamics of (infinitely) small amplitude errors

and the computation of the Lyapunov exponents.

The evolution laws of a dynamical system like the ones

presented in Section II can be written in the synthetic form

d~x

dt
¼ ~f ~x; kð Þ; (25)

where~x is a vector containing the entire set of relevant varia-

bles~x¼ðx1; :::; xnÞ such as temperature, wind velocity,., pro-

jected on the relevant set of modes (or grid points) as

discussed in Section II. The functions ~f represent the effect

of dynamical processes responsible for the change of ~x, and

k denotes a set of parameters such as emission or absorption

coefficients, turbulent viscosity, etc.

As mentioned in the Introduction, the initial state is

never known exactly since the process of measurement and

data assimilation is always subject to finite precision. To

clarify the implications of the presence of such an error, we

consider an initial state displaced slightly from~xðt0Þ ¼~x0 by

an initial error d~x0. This perturbed initial state generates a

new trajectory in phase space and we define the instanta-

neous error vector as the vector joining the points of the ref-

erence trajectory and the perturbed one at a given time,

d~xðtÞ. Provided that this perturbation is sufficiently small, its

dynamics can be described by the linearized equation

dd~x
dt
¼ @~f

@~xj~x tð Þ
d~x; (26)

and a formal solution can be written as

d~xðtÞ ¼Mðt;~xðt0ÞÞd~xðt0Þ; (27)

where the matrix M, referred as the resolvent matrix, plays

an important role in error growth dynamics as revealed when

writing the Euclidean norm of the error

Et ¼ jd~xðtÞj2 ¼ d~xðtÞTd~xðtÞ
¼ d~xðt0ÞTMðt;~xðt0ÞÞTMðt;~xðt0ÞÞd~xðt0Þ: (28)

One immediately realizes that the growth of Et is condi-

tioned by the eigenvalues of the matrix MTM, where ð:ÞT
indicates transposition (and complex conjugation in complex

space if necessary).

In ergodic theory of chaotic systems, the double limit of

infinitely small initial errors and infinitely long times is usu-

ally considered [e.g., Ref. 60]. In this limit, the divergence of

initially closed states is determined by the logarithm of the

eigenvalues of the matrix ðMTMÞ2ðt�t0Þ that are referred to

as the Lyapunov exponents. The full set of Lyapunov expo-

nents of a system is called the Lyapunov spectrum, which

are usually represented in decreasing order. In the limit of

t!1, the eigenvectors of matrix MTM, which are local

properties of the flow and depend on the initial time t0, are

called the Forward Lyapunov vectors.118

Notice that the eigenvalues of the matrix S ¼
ðMTMÞ2ðt�t0Þ obtained for t!1 are equivalent to the ones

of the matrix S0 ¼ ðMMTÞ2ðt�t0Þ when t0 ! �1. On the

contrary, the eigenvectors of these two matrices S and S0—
denoted as ~l

þ
i and ~l

�
i , respectively—are not equivalent due

to the asymmetric character of the resolvent M. The eigen-

vectors of S0 are called the Backward Lyapunov vectors.

Several techniques have been developed to numerically

evaluate these Lyapunov exponents.119 One of the most pop-

ular methods consists of following the evolution of a set of

orthonormal vectors ~si chosen initially at random in the tan-

gent space of the trajectory ~xðtÞ. This basis is regularly

orthonormalized using the standard Gram-Schmidt method

to avoid the alignment of all the vectors along the unstable

direction associated with the largest Lyapunov exponent.

After a rapid transient, the first vector of this set, free of any

constraint, will tend to the direction of maximal stretching

associated with the largest Lyapunov exponent; the second

vector, orthogonal to the previous one, will tend to the

second most unstable direction; and so on. This set of ortho-

normal vectors evolving in the tangent space correspond

asymptotically to the Backward Lyapunov vectors.

These vectors and their properties were extensively

discussed in recent years in the literature [e.g., Refs. 15, 72,

89, and 118], in particular with respect to the significance

of the eigenvectors of the matrices S and S0. Note that these

vectors are not perturbations that are covariant with the

dynamics of the error in the tangent (linearized) space of

the phase space trajectory. Other subspaces were then intro-

duced, Wi

Wið~xðtÞÞ ¼~l
�

1 �:::�~l
�

i \~l
þ

i �:::�~l
þ

N ; (29)

where � is the direct product.20,59,119,120 Any vector in this

new subspace is covariant with the (linearized) dynamics as
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Mðs;~xðt0ÞÞ~gið~xðt0ÞÞ ¼ riðs;~xðt0ÞÞ~gið~xðsÞÞ; (30)

where riðs;~xðt0ÞÞ is the amplification factor, and s > t0. Note

first that the basis f~gig does not form an orthogonal basis

and also that in the long time limit, the amplifications give

access to the Lyapunov exponents

ri ¼ lim
s�t0ð Þ!1

1

s� t0
ln ri s;~x t0ð Þ

� �� �
: (31)

The vectors f~gig are called the Covariant Lyapunov vectors.

The three approaches based on the Forward, Backward,

or Covariant Lyapunov vectors give the same Lyapunov spec-

trum. However, higher order properties like the variance of

the local amplification rates are not equal whether the

Forward, Backward, or Covariant Lyapunov vectors are used,

see Ref. 120, except for the first Backward and last Forward

Lyapunov vectors that have identical statistical properties to

the first and last Covariant Lyapunov vectors, respectively.

Since we will focus in the present review on the

Lyapunov spectra and the properties of the dominant

Lyapunov exponent and vector, we will not discuss further

the properties of the Covariant vectors and will leave the

interested reader to explore the recent literature on that sub-

ject.20,119–123 We will however illustrate what is the variabil-

ity (inhomogeneity) of the instability properties on the

attractors of the different models by investigating the ampli-

fication rates, a1ðs; tÞ ¼ 1=ðs� tÞlnðr1ðs;~xðtÞÞÞ, along the

dominant Backward (or Covariant) Lyapunov vector in the

spirit of Refs. 15, 70, 120, 124, and 125.

IV. LYAPUNOV INSTABILITIES OF ATMOSPHERIC
FLOWS

This section is devoted to the description of the

Lyapunov properties of chaotic solutions found so far in the

hierarchy of models discussed in Section II. The purpose is

to illustrate the modifications of these properties when the

number of variables of a model is increased and when deal-

ing with a multi-scale system, and to highlight some open

questions arising nowadays in atmospheric and climate sci-

ences concerning the problem of predictability.

A. Lyapunov exponents of the low-order atmospheric
system

Let us focus on the Lyapunov properties of the 12-

variable low-order system introduced in Section II A, the CS

model.

Figure 2 displays the Lyapunov spectra as obtained after

an integration of 10 000 days for parameter values h	1
¼ 0:20; h2 ¼ 0:1 and for 2 different values of n. Note that the

other parameters defined in the original paper of Charney and

Straus98 will not be discussed here for conciseness and are

fixed to 2k ¼ k0 ¼ h00 ¼ 0:0114; r0 ¼ 0:2, L ¼ 5000=p km.

A clear picture emerges with 2 positive exponents, one

0, and 9 negatives ones for the two different aspect ratios

explored, n¼ 1.5 and 1.77, the latter being originally used in

Ref. 98. The solution is (hyper)chaotic and displays a

Lyapunov spectrum typical of low-order systems such as the

ones studied in the atmospheric context,13,70 or in a more

general physical context.64 Note that the dominant Lyapunov

exponent for n¼ 1.77 is of the same order as the amplitude

of the dominant Lyapunov exponent found in more sophisti-

cated atmospheric models as discussed later in Section IV B.

Interestingly, the spectrum is highly sensitive to the

aspect ratio—i.e., a smaller domain size in the zonal direc-

tion corresponds to a larger value of the aspect ratio—indi-

cating that instability properties of the flow depends

crucially on the typical wavelengths present in the dynamical

system. This is reminiscent of the sensitivity of the classical

baroclinic instabilities as a function of the dominant wave-

length of the perturbation.3

This specific dependence on n is also visible when the key

parameter h	1 associated with the meridional variations of the

radiative input in the domain is varied as illustrated in Fig. 3,

with a higher instability for the parameter n¼ 1.77 correspond-

ing to a smaller domain size in the zonal direction. Windows

of periodic solutions are also visible reflecting the complicated

structure of the bifurcation diagram for this model as usually

found in other low-order models, [e.g., Ref. 62].

FIG. 2. Lyapunov spectra of the CS model as obtained after 10 000 days of inte-

grations for two different aspect ratios, n¼ 1.5 (red filled circles) and n¼ 1.77

(blue triangles). The values of the Lyapunov exponents are given in day�1.

FIG. 3. First Lyapunov exponent of the CS model as a function of the ther-

mal forcing h	1 for three different aspect ratios, n¼ 1.06 (red filled circles),

n¼ 1.5 (green stars) and n¼ 1.77 (blue triangles). The values of the

Lyapunov exponents are given in day�1.

032101-7 St�ephane Vannitsem Chaos 27, 032101 (2017)



Another important aspect of the instability properties of

this system is the high variability of the local Lyapunov

exponents on the attractor. This is illustrated in Fig. 4 where

the local amplification rate a1ðs; tÞ is plotted as a function of

t with s� t ¼ 0:0056 days and sampled every 28.4 days

(corresponding to 250 non-dimensional time units). A very

large variability of this amplification is visible covering val-

ues from ½�1; 1� day�1. The standard deviation of this series

is equal to 0.41 day�1, a value twice as large as the value of

the first Lyapunov exponent itself.

This variability on the attractor of the system indicates

that the predictability of atmospheric flows highly depends

on the specific underlying atmospheric situation. This natural

variability of the weather skill is also experienced in real

forecasts, see e.g., Refs. 49 and 126, but to a lesser extent

than in the current model. This point will be taken up further

in Section IV B while investigating a higher resolution atmo-

spheric model.

B. Lyapunov exponents of the QGT21L3 model

Let us now turn to a more sophisticated atmospheric

model described in Section II B. This model has 1449

degrees of freedom,15 and its solution is thus embedded in a

phase space of fairly high dimension.

In Fig. 5, the first 700 Lyapunov exponents obtained

after 3000 days of integration of the standard version of the

model (24) with sH ¼ 2 days are displayed. For a value of

the dissipation timescale of sH ¼ 2 days controlling the scale

selective dissipation in the model (see Appendix A of Ref.

117), the first 102 exponents are positive, the 103th is very

close to zero and the next ones are negative (red filled circles

in Fig. 5). This result shows that the QG model lives on a

high-dimensional chaotic attractor displaying sensitivity to

initial conditions. Furthermore, in view of the large number

of close positive exponents, it suggests that the Lyapunov

spectrum is practically continuous. The amplitude of the first

exponent is equal to 0.23 days�1 corresponding to a doubling

time of small errors of the order of lnð2=0:23Þ � 3 days, a

realistic order of magnitude for the error doubling time in

more sophisticated models at large scales [e.g., Ref. 49].

The second curve (blue triangles) in Fig. 5 displays the

Lyapunov spectrum for a smaller value of sH ¼ 1:5 days,

inducing a higher dissipation in the atmospheric model, see

Refs. 15 and 117. In this case, the number of positive expo-

nents is reduced but the overall structure of the spectrum

remains the same.

In order to figure out what is the sensitivity of the

Lyapunov properties as a function of the forcing, Si, a multi-

plicative coefficient, a, is introduced into the model equation

(24) as aSi. Figure 6 displays the variations of the amplitude

of the dominant exponent and of the Lyapunov dimension as

a function of a, as obtained with a set of experiments of

6000 days of integrations. The Lyapunov dimension is

defined as

DL ¼ j	 þ

Xj	

j¼1

rj

jrj	þ1j
;

where j	 is the largest j such that
P

j rj > 0.

The dependence of the Lyapunov instability properties

as a function of a is smooth with an increase of the

FIG. 4. Temporal variability of the local amplification rate a1ðs; tÞ for the

CS model with n¼ 1.77, h	1 ¼ 0:2, and s� t ¼ 0:0056 days. The values are

sampled every 28.4 days.

FIG. 5. Lyapunov spectra (the 700 first exponents) of the atmospheric model

described in Section II B, as obtained after an integration of 3000 days in

perpetual winter conditions. Two different dissipation timescales were used,

sH ¼ 2 days (red filled circles) and sH ¼ 1:5 days (blue triangles).

FIG. 6. Dependences of the dominant Lyapunov exponent, a1 (red filled

circles), and of the Lyapunov dimension, DL (blue triangles), as a function of

the coefficient a, multiplying the forcing, aSi, of the atmospheric model (24).
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Lyapunov dimension up to about 450. This smoothness con-

trasts with the one found in low-order models, and in particu-

lar with the CS model discussed in Section IV A, but is in

agreement with the results highlighted recently in Refs. 20

and 74 in other intermediate-order models.

The variability of the first exponent is represented in

Fig. 7(a). The variability of the dominant exponent is now

mainly confined to positive values except in rare occasions.

This variability contrasts with the one found in the CS model

for which the variability is much larger. In order to check

whether this variability is due to the specific sampling chosen,

we have computed the variability of a1ðs; tÞ as a function of

s� t (Fig. 7(b)), as suggested in Ref. 80. This variability

seems already close to convergence when s� t is of the order

of 1 h. One can therefore conclude that the variability of the

dominant Lyapunov exponent is weaker in the intermediate

order atmospheric model than in the low-order CS model.

These results highlight the contrast of the instability prop-

erties between low-order and intermediate order atmospheric

models. In particular, a decreased variability of the local

Lyapunov instabilities on the attractor of the model is observed.

This feature is opening an important question to know whether

this variability still decreases when the number of variables is

further increased. The question is closely related to the open

problem of the effective hyperbolicity (or partial hyperbolicity)

of high-dimensional systems as discussed in Refs. 120 and 127.

This question is not purely academic but could have

important implications for operational weather forecasts since a

variability of the local instability properties of high resolution

models is experienced.48,49 Is this variability already present at

the level of the large scale dynamics of atmospheric flows (as

described by the quasi-geostrophic equations) or rather to pro-

cesses that are not represented in this type of model, such as

large scale divergent flows, convection, precipitation, gravity

waves, interfering with the large scale dynamics?

C. Lyapunov exponents of the low-order coupled
ocean-atmosphere system

The atmosphere is also subject to boundary forcings

coming from the other components of the climate systems

that could presumably affect its predictability properties.

Obvious candidates are the oceans that are interacting with

the atmosphere through exchanges of momentum, mass,

heat, and radiations. This question is now addressed through

the analysis of a low-order coupled ocean-atmosphere model

described in Section II A, see also Refs. 115 and 116.

The three-dimensional projections along the variables

ðwa;1;wo;2; To;2Þ of the attractors are illustrated in Fig. 8 for

two different values of C¼ 0.010 and C¼ 0.015 kg m–2 s�1

where the subscripts ‘a’ and ‘o’ refer to the atmospheric and

oceanic variables, respectively. These attractors show funda-

mentally different properties, one of them displaying a

dynamics around a well defined unstable periodic orbit iden-

tified in Ref. 116 (green dots). As discussed in detail in Ref.

116, the development of the attractor around this unstable

orbit is inducing a low-frequency variability on decadal

timescales and allows for long term predictions beyond the

usual 10–15 days weather forecasts. This point will be fur-

ther discussed in Section V.

Figure 9 displays the Lyapunov spectra for the two

attractors. A first remarkable result is the presence of a large

set of Lyapunov exponents close to 0. These are associated

with the presence of the ocean whose typical dissipative

timescale, 1=r, is much longer than for the atmosphere, as

discussed in Ref. 120. The Covariant Lyapunov vectors asso-

ciated with this group of exponents display angles with the

tangent vector to the trajectory that are small (as compared

FIG. 7. (a) Temporal evolution of local amplification rate a1ðs; tÞ for s� t ¼ 1 h; (b) Variance of a1ðs; tÞ as a function of s� t.

FIG. 8. Three-dimensional projection ðwa;1;wo;2;To;2Þ of the attractors of the

solutions of the low-order coupled ocean-atmosphere model described in

Section II A, for parameters So¼ 310 W m�2, Dref¼ 100 m, with two differ-

ent values of C¼ 0.010 (red dots) and C¼ 0.015 kg m�2 s�1 (green dots).

These attractors will be referred to as the red and green attractors,

respectively.
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to the other vectors), and form a near-neutral manifold of

high dimension in which the error amplification (or contrac-

tion) is small. The presence of a large number of near zero

exponents also implies that the Lyapunov dimension, DL, of

the system is large, even if the dimension of the unstable

subspace is small. This feature may in particular have an

important impact on the development of data assimilation

schemes exploiting the separation of stable and unstable-

neutral manifolds as proposed in Refs. 50, 128, and 129.

Another important result is the small amplitude of the

positive exponents when the low-frequency variability is

developing in the system (green attractor of Fig. 8). In this

case, the system is stabler due to the strong influence of the

ocean dynamics. In the climate community, these two types

of dynamics are usually referred to as passive or active ocean

dynamics.107 In the dynamical system framework, these

qualitative changes of dynamics are explained through a

bifurcation from which new types of solutions are emerging

that would not be present without the ocean-atmosphere cou-

pling.116 This qualitative change of dynamics has also con-

siderable implications for the predictability of the coupled

ocean-atmosphere system. This important aspect will again

be addressed in Section V, where the error dynamics is

discussed.

Figures 10(a) and 10(b) display the dependence of the

1st Lyapunov exponent and the Lyapunov dimension of the

coupled system as a function of the surface friction coeffi-

cient, C, for one specific value of So¼ 310 W m�2. For val-

ues of C smaller than 0.011 kg m�2 s�1, the solutions are

converging toward an apparently unique attractor, e.g., the

red attractor of Fig. 8. When C is further increased and for a

quite substantial range of C ¼ ½0:011; 0:014� kg m�2 s�1, the

FIG. 9. Lyapunov spectra for the red (red filled circles) and green (blue tri-

angles) attractors displayed in Fig. 8.

FIG. 10. First Lyapunov exponent (a) and Lyapunov dimension (b) as a function of the friction parameter C for the coupled ocean-atmosphere model with

So¼ 310 W m�2, Dref¼ 100 m, and j¼ 1. The green pluses represent the results obtained with long transient trajectories that have not converged toward the final

attractor yet, and living close to the red attractor of Fig. 8. (c) and (d) as (a) and (b) but as a function of So for C¼ 0.01 kg m�2 s�1, Dref¼ 100 m and j¼ 1.
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system displays solutions that can show very long transients

around the attracting set present for smaller values of C that

eventually end up in a very different region of the phase

space for which the attracting set displays a shape similar to

the green attractor of Fig. 8. The Lyapunov spectra and

dimensions were also computed for these long transient

dynamics and displayed as green pluses in Figures 10(a) and

10(b). Beyond that range, the convergence is faster and the

attracting set of the attractor of the solution resembles the

green one displayed in Fig. 8.

A second result of interest is the presence of a maximum

in the amplitude of the dominant exponent and of the

Lyapunov dimension when the surface friction coefficient is

decreased. Below a friction coefficient of about 0.0015 kg

m�2 s�1, the amplitude of the dominant Lyapunov exponent

decreases.

In order to understand this result, one must first realize

that when C is decreased both the momentum and heat trans-

fers between the two sub-systems are decreased,115 reducing

the coupling between the two systems and the dissipation

within the atmosphere. This implies that the instability prop-

erties of the flow dominated by the atmospheric dynamics

are increased. When C is becoming too small, a qualitative

change of dynamics seems to occur but the slow conver-

gence of the trajectories does not allow us to clarify the spe-

cific nature of the dynamics yet. This problem is left for a

future study.

Interestingly, the variations of the dominant exponent

and of the Lyapunov dimension in the range of interest for

climate modelling, C ¼ ½0:005; 0:020� kg m�2 s�1, look

smooth, except in the transition zone ½0:10; 0:11�. A similar

picture can be drawn when changing So for a fixed value of

C, as illustrated in Figs. 10(c) and 10(d), with smooth varia-

tions of the Lyapunov instability properties as a function of

the radiative forcing. This result contrasts with the usual pic-

ture that can be drawn from very low-order systems (typi-

cally of 3–4 variables) for which much more complicate

bifurcation diagrams are obtained. As discussed in Ref. 74, it

seems to be a natural property when the phase space dimen-

sion of the system increases.

Figure 11 illustrates the variance of a1ðs; tÞ as a func-

tion of s� t for the ocean-atmosphere coupled model. A

picture intermediate between the results obtained with the

CS model and the QG3T21 model emerges, with a variance

of a1ðs; tÞ converging toward a value of about 0.07 day�2

for s� t! 0.

Until now, the focus was put on the autonomous version

of the low-order models but the atmosphere is strongly influ-

enced by the natural seasonal variability. This can be taken

into account in the present model by introducing realistic

seasonal variations as discussed in Section II A.

Figure 12 shows the Lyapunov spectra as obtained with

two different values of the friction parameter C¼ 0.007 and

C¼ 0.005 kg m�2 s�1, corresponding to attractors with and

without low-frequency variability, respectively. Both attrac-

tors are chaotic but the amplitude of the dominant Lyapunov

exponent is relatively small in both cases. The main reason

is the fact that when the seasonality is imposed the meridio-

nal gradient of radiative input has a smaller amplitude than

in the autonomous case considered above whatever is the

time of the year.

A more interesting finding is the temporal variability of

the local Lyapunov exponents, a1ðs; tÞ with s� t ¼ 0:005

days, sampled every 5 days. These are displayed in Fig. 13

for the two parameter values C¼ 0.005 (a) and C¼ 0.007 (c)

kg m�2 s�1. A zoom on a 10-year time series is also provided

at panels (b) and (d) for the two parameter values. For

C¼ 0.007 kg m�2 s�1, the local Lyapunov exponents display

large modifications of their variability on a timescale of

about 20 000 days with long quiescent periods as already

found in the autonomous version when the low-frequency

variability is setting up, contrasting with the results obtained

with C¼ 0.005. When zooming in on a 10-year period (pan-

els (b) and (d)), a seasonal signal is clearly visible with low

local instabilities in summer and high in winter. This result

is in agreement with the common view that the weather

(large-scale flow pattern) is more predictable in summer than

in winter at mid-latitudes in the Northern hemisphere.

FIG. 11. Variance of a1ðs; tÞ as a function of s� t for the ocean-atmosphere

model, with parameters So¼ 310 W m�2, Dref¼ 100 m, C¼ 0.01 kg m�2

s�1, and j¼ 1.

FIG. 12. Lyapunov spectra as obtained with two different values of the fric-

tion parameter C¼ 0.007 (blue triangles) and C¼ 0.005 (red filled circles)

kg m�2 s�1, corresponding to attractors with and without low-frequency var-

iability, respectively. The other parameters used are So¼ 310 W m�2,

Dref¼ 100 m, and j ¼ 0:3.
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In summary, the results presented above reveal a com-

plicate picture of the instability properties of multi-scale

(autonomous and non-autonomous) systems. As the multi-

scale nature of the dynamics is ubiquitous in the climate sys-

tem (and in environmental modelling in general), we suspect

that such properties are generic in the real world.

V. ERROR DYNAMICS

As mentioned in the Introduction, the growth of small

initial errors arising from the finite precision of the observa-

tional data and of the process of data-assimilation is an

intrinsic property of atmospheric flows. It introduces irreduc-

ible limitations in the possibility to forecast its future states

beyond a predictability horizon, which may depend on the

type and scale of the phenomenon under consideration. We

turn now on the analysis of the error dynamics in the hierar-

chy of models introduced in Section II.

A. Error dynamics: Generalities

As mentioned in Section III, the Lyapunov exponents

characterizing the predictability of chaotic systems are

defined in the limit of infinitely small errors and infinitely

long times. In reality, these limits are never reached and one

must investigate the dynamics of finite-size initial errors on a

finite-time horizon. One starts with the definition already

introduced at Eq. (28) in which the classical L2 norm is

used. Since one is dealing with finite-size errors, one must

perform an ensemble average over the attractor of the system

hE2
t i ¼

ð
d~�0q�ð~�0Þð

d~x0qxð~x0Þd~xðtÞTKð~x0ðtÞ �~xðtÞÞ; (32)

where q�ð~�0Þ and qxð~x0Þ are the invariant probability distri-

bution of the initial errors and of the initial conditions on the

attractor of the system (provided that the system is ergodic).

A matrix K is introduced in this relation allowing for choos-

ing the specific norm of interest, for instance the energy

norm or the enstrophy norm [e.g., Ref. 15]. Numerically, the

error evolution can be evaluated by sampling a large set of

initial conditions along a reference trajectory running along

the ergodic attractor of the system under consideration, and

to perform additional integrations starting from slightly per-

turbed initial conditions.

In the following, the amplitude of the perturbations~�0 is

taken sufficiently small in order to get information on the

different regimes of error growth. In this case, three main

regimes are expected, an exponential-like, a linear, and a

FIG. 13. Temporal variability of the local Lyapunov exponents, a1ðs; tÞ, as obtained with s� t ¼ 0:005 days and sampled every 5 days, for the two parameter

values (a) C¼ 0.005 and (c) C¼ 0.007 kg m�2 s�1. A zoom on a 10-year time series is also provided at panels (b) and (d) for the two parameter values. The

other parameters used are So¼ 310 W m�2, Dref¼ 100 m, and j ¼ 0:3.
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saturation regime, see Refs. 70 and 79. This dynamics can be

empirically described by a simple logistic law of the form28

dE

dt
¼ aE� bE2; (33)

where E is the mean amplitude of the distance, e.g., (32),

between two fields, and a and b some regression coefficients.

This description is, however, a rough approximation that does

not take into account the natural variability of the local ampli-

fication rates along the attractor of the system discussed in

Section IV, nor the differential behavior of the error among

spatial scales for which more detailed descriptions are needed,

see Refs. 8, 9, 22, 27, 29, 32, 50, 70, and 77.

Moreover, this description is only valid provided that a

short-time linearized description of the error evolution can

be performed. A very enlightening analysis on the predict-

ability of turbulent flows based on statistical arguments sug-

gests that the propagation of small initial errors in a three-

dimensional (3D) flow considerably differs from the one in a

two-dimensional (2D) flow.93,132 Specifically, if an error is

introduced at small spatial scales in the spectral domain, the

error in a 3D turbulent fluid is predominantly characterized

by a nonlinear local cascade propagation that will rapidly

contaminate the largest scales. For 2D turbulence, the picture

is different with an error dynamics involving both a local

nonlinear cascade propagation and the direct amplification of

errors along the large spatial scales on the same typical time-

scale. This implies that a linearized description of the error

dynamics at large spatial scales is valid provided that the ini-

tial error is small at these large scales.

This feature can be exploited in the current analysis

since the models discussed so far are based on the potential

vorticity equation which provides a 2D description of the

large-scale dynamics of the atmosphere. This result also jus-

tifies the use of the Lyapunov exponents for the characteriza-

tion of the error dynamics in such models.

B. Error dynamics in the CS model

Figure 14 displays the error evolution and the growth

rate, 1=2 d=dt lnðhE2
t iÞ, as a function of time, as obtained

with a very small initial error perturbing each variable and

sampled from a Gaussian distribution of mean 0 and variance

10�16. The averaging is performed based on 100 000 realiza-

tions starting from different initial conditions on the attractor

of the system. The key parameter values used here are h	1
¼ 0:18 and n¼ 1.77.

The overall behavior is indeed in agreement with the

general description presented above with an exponential-like

phase, followed by a linear regime before the final saturation.

But when investigating in detail the error growth rate (dotted

blue curve of Fig. 14), the picture that emerges is quite dif-

ferent with a complicate error behavior during the

exponential-like regime. This complicated behavior is char-

acterized by an initial very short error decrease phase for

about 0.08 days (not visible on the picture), followed by

important variations of the growth rate which reaches a max-

imum of 0.53 day�1 after 1.34 days. This maximum value is

more than two times larger than the dominant Lyapunov

exponent (0.23 day�1). This feature—usually referred to as

superexponential—has been discussed in detail in Refs. 70,

75, and 120 and is mainly associated with the variability of

the local Lyapunov exponents.

C. Error dynamics in the QGT21L3 model

Let us now focus on the error dynamics in the QG3T21

model. Figure 15 displays the mean error evolution (red con-

tinuous curve) together with the error growth rate (blue dotted

curve), as obtained from 1000 realizations starting from dif-

ferent initial conditions on the attractor of the model. The ini-

tial error introduced in the model is a small amplitude error

uniformly distributed in the spectral domain as in Fig. 16(a).

A picture similar to the one found in the CS-model can

be drawn, with an exponential-like behavior, a linear amplifi-

cation of the error, and a final saturation phase. The growth

rate is however quite different to the one obtained with the

CS-model, with a maximum not very much larger than the

value of the dominant Lyapunov exponent. This difference is

the result of several competing effects: (i) the variability of

the local Lyapunov exponents associated with the inhomoge-

neity of the solution’s attractor, (ii) the quasi-continuous

Lyapunov spectrum, and (iii) the choice of the initial error

(and in particular of its spectral properties). The first effect is

inducing a super-exponential behavior as already illustrated

for the CS model. The second one is responsible for the

development of a sub-exponential error dynamics as dis-

cussed in Refs. 130 and 131. The third one is modulating the

initial decrease of the error and the (nonlinear) transfer of

errors across scales.

In the present model, the third effect plays a dominant

role as illustrated in the comparison of growth rates for dif-

ferent random initial errors in Fig. 15(b). In this case, when

errors are introduced at large spatial scales (black dashed

curve), the growth rate of the error is slowly increasing and

reaches the value of the dominant Lyapunov exponent after

about 10 days. When errors are introduced at small spatial

scales (blue dotted curve), the growth rate increases rapidly

and reaches a maximum after about 1.5 days which is larger

FIG. 14. Mean square error (red continuous curve) evolution and error growth

rate (blue dotted curve) for the CS model, averaged over 100 000 realizations

starting from initial conditions sampled on the attractor of the model.
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than the one obtained with a uniform initial error (red contin-

uous curve).

This dynamics is better analyzed in the spectral domain.

Figure 16 shows the error evolution as a function of the total

wave number n at 500 hPa. The norm used to evaluate the

error is the kinetic energy norm. A first interesting feature is

the decrease of the error at very large and very small spatial

scales, while the error increases at intermediate scales. As

stated in Ref. 15, these intermediate scales are the ones at

which the dominant (Backward) Lyapunov vectors are oper-

ating, while the stable (Backward) Lyapunov vectors are

mostly acting at very large and small spatial scales, inducing

the specific error behavior observed in this figure.

When the initial error is confined to the very small spatial

scales, a transfer (through nonlinear interactions) is occurring

toward larger scales, together with the amplification along the

dominant (backward) Lyapunov vectors, inducing a larger

amplification rate of the error as illustrated by the blue dotted

curve in Fig. 15(b). When the initial error is essentially con-

fined at large spatial scales, the error evolution essentially dis-

plays an amplification according to the Lyapunov instabilities,

without important transfer toward smaller scales. These behav-

iors are illustrated in Figs. 16(b) and 16(c).

The error dynamics is considerably dependent on the

specific scale at which it is introduced as illustrated in Fig.

16, with a faster growth when located at small spatial

scales. This feature has been exploited in the development

of probabilistic forecasts in the 90s, for which strong

growth was searched for in order to get a sufficient variabil-

ity in the multiple integrations of the ensemble forecasting

systems made by the meteorological centers, e.g., Refs. 72

and 86–89.

D. Error dynamics in the ocean-atmosphere model

Until now, the error dynamics has been discussed for a

system—the atmosphere—displaying a variability on a range

of timescales relatively close to each other, i.e., typically

from a few hours up to a few days. When this system is

coupled to an ocean, highly different timescales are involved

as already illustrated in the Lyapunov spectra of Section

IV C. The question is therefore to know what is the nature of

the error dynamics in these different sub-systems and what is

the impact of the ocean-atmosphere coupling on predictabil-

ity. As in Section IV C, we will focus on the two parameter

sets explored, with and without low-frequency variability.

Figure 17(a) displays the mean square error evolution

for the different fields present in the coupled ocean-

atmosphere model, namely, the atmospheric barotropic

streamfunction (blue line referred to as “Atmos stream”), the

atmospheric temperature (magenta line with open squares

referred to as “Atmos temp”), the ocean streamfunction

(green curve with crosses referred to as “Ocean stream”),

and the ocean temperature (red curve with pluses referred to

as “Ocean temp”). These curves are obtained with the

parameter values corresponding to the red attractor of Fig. 8.

The error rapidly amplifies for both atmospheric fields and

saturates at a constant value after about 1 month (1/12 years).

For the ocean, the picture is very different with an increase

of the error that persists beyond 100 years revealing a high

potential of predictability.

If now one considers cases for which an attractor is

developing around an unstable periodic orbit as the green

attractor of Fig. 8, the picture is very different as illustrated

in Figure 17(b) displaying the mean square error evolution

of the first barotropic mode, wa,1, of the atmosphere. The two

lower curves associated with the error dynamics when the

attractors are developing around an unstable periodic orbit

(typically the green attractor of Fig. 8) are still increasing

beyond the 30 days limit detected in Fig. 17(a). The behavior

of the mean square error is in this case linear as a function of

time suggesting a diffusive dynamics. If now we assume that

the mean square error evolution can be modelled as Dðt�
t0Þ for t > t0 ¼ 30 days, the diffusion parameter, D, is larger

when the reference depth of the ocean Dref is larger.

This finding suggests that when the attractor is develop-

ing around the long unstable periodic orbit arising from the

FIG. 15. (a) Mean square error evolution (red continuous curve) and growth rate (blue dotted curve) as obtained from 1000 realizations of the error evolu-

tion starting from different initial conditions on the attractor of the QGT21L3 model. (b) Growth rate of the error, (red continuous curve) for a uniform

initial error in the spectral domain, (black dashed curve) for an initial error predominantly located at large spatial scales, and (blue dotted curve) for an ini-

tial error predominantly located at small spatial scales. See also Fig. 16 for the specific repartition of the error in the spectral domain.
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coupling between the ocean and the atmosphere,115,116 some

atmospheric modes can be predictable for periods much lon-

ger than the timescale of a few days (or weeks) typical of the

atmospheric dynamics. This feature provides some hope in

performing long term forecasts of specific observables in the

atmosphere at seasonal, interannual, and decadal timescales.

VI. CONCLUSIONS AND PERSPECTIVES

The Lyapunov instability properties and the error

dynamics in large scale flows of the atmosphere, coupled or

uncoupled to the ocean, have been explored in a hierarchy of

models from low-order, O(10) variables, up to intermediate

order, O(1000). Two major trends are emerging when the

number of variables is increased: (i) the Lyapunov spectrum

can have a number of positive exponents of the order of

O(100) (in the standard version of the QGT21L3

intermediate-order model), implying that the attractor dimen-

sion of the modelled atmosphere is high dimensional, and

(ii) the variability of the local instability properties associ-

ated with the largest Lyapunov exponent decreases.

The first trend is in line with the mathematical findings

on the bounds of the attractor dimension, indicating that the

atmosphere is living on a finite but high dimensional attrac-

tor.133,134 The second one is suggesting a smoothing of the

inhomogeneity of the attractor when the number of variables

FIG. 16. (a) Mean square error evolution for the QGT21L3 model, averaged

over 1000 realizations, as a function of the total wavenumber n for different

forecasting lead times from 1 h up to 1081 h. The initial error is uniformly

distributed as a function of n in the energy norm. (b) and (c) As in (a)

but for an initial error dominating the smallest and largest spatial scales,

respectively.

FIG. 17. (a) Mean square error evolution for the ocean-atmosphere model, for

the atmospheric barotropic streamfunction (blue stars), the atmospheric temper-

ature (magenta open squares), the ocean streamfunction (green crosses), and

the ocean temperature (red pluses). The model parameter values used are

So¼ 310 W m�2, Dref ¼ 100 m, j¼ 1, and with C¼ 0.010 kg m�2 s�1. (b) as

in (a) but for the first barotropic streamfunction mode, wa,1, only and for param-

eters: So¼ 310 W m�2, Dref¼ 100 m, j¼ 1, and C¼ 0.010 kg m�2 s�1 already

used in Fig. 17(a) (red continuous curve), So¼ 310 W m�2, Dref¼ 100 m,

j¼ 1, C¼ 0.015 kg m�2 s�1 (green dashed curve), and So¼ 310 W m�2,

Dref¼ 200 m, j¼ 1, and C¼ 0.015 kg m�2 s�1 (blue dotted curve).
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is increased, and it opens important questions on the charac-

teristics of the instability properties of the solutions in the

limit of an infinite number of modes, i.e., for the continuous

partial differential equations (quasi-geostrophic equations)

discussed in Section II.

From a practical point of view, it is well known that the

predictability of large-scale weather patterns is highly depen-

dent on the specific initial weather situation selected.48,49

This suggests that this inhomogeneity is also present in high

resolution atmospheric models but to which extent it resem-

bles the one described in the quasi-geostrophic model or not

is still open. A possible way to address this question is to

extend the Lyapunov analysis to high-dimensional quasi-

geostrophic models of the order of Oð10 000; 100 000Þ
variables.

Yet, even if this analysis would provide interesting

information on the smoothness of the attractor’s instability

properties, it is not the end of the story. When the resolution

of such models is increased, their validity in describing the

dynamics of the atmosphere (and the ocean) is questionable.

In this case, one must go back to the original primitive equa-

tions discussed in the beginning of Section II, and to study

the impact of the dynamics of the additional variables.

In this perspective, one particularly interesting work has

been done by Uboldi and Trevisan26 in which they have

studied the full primitive equations integrated at the cloud-

resolving scale of 2.2 km resolution, with 50 vertical levels.

In this context, they have studied the Bred vectors that are

finite-size unstable structures emerging along the model tra-

jectory. If their amplitudes are sufficiently small, these are

providing information on instability properties of the flow

closely related to the Backward Lyapunov vectors.72 In the

case of small-amplitude Bred vectors, they found that the

dominant ones describe small convective-scale instabilities

and that their number is very large. Moreover, their growth

rates are much larger than any perturbation acting at the

large spatial scales of the flow (and much larger than the

ones displayed in the present review). This result is consis-

tent with the theoretical considerations presented by

Vallis,93,132 indicating that the dynamics of the error in a

three-dimensional turbulent system—as it is the case in the

high-resolution experiment of Uboldi and Trevisan—is satu-

rating rapidly at all the scales below 10 km, and that predict-

ability is limited to a few hours.

These results are obviously suggesting that the develop-

ment of very high resolution models at 1 km or smaller

would lead to a very small gain in terms of predictability due

to the rapid saturation of the error at small spatial scales, and

one should therefore tempered us in developing such models

except if the forecast at a lead time of one or two hours is

providing important information for the society. In such a

case, a very performant data assimilation system would also

be needed in order to reduce considerably the actual level of

error. This is a very expensive process in terms of mainte-

nance (man power), high-quality observing systems, and

computer power. In the sake of reducing the potential cost, it

might be better to avoid such high resolution forecasts. Yet,

these very high resolution forecasts should be necessary in

some very specific and dangerous weather situations arising

from time to time. In an operational environment, a proce-

dure should be developed in order to evaluate the necessity

to perform very high resolution forecasts. This procedure

could be based on storminess warnings that can be gathered

from lower resolution model integrations.

Nowadays, operational forecasting systems contain sto-

chastic schemes emulating the presence of model errors.

This approach allows for getting more reliable ensemble

forecasts as discussed in Refs. 34 and 135, but also for

improving climatological aspects of the models such as cor-

recting the mean or the variance of specific variables [e.g.,

Ref. 136]. This however implies that an increase of uncer-

tainty is introduced, inducing in particular, a larger error for

short times.55,56 Another important issue is therefore to

understand the role of stochastic forcings on the predictabil-

ity of atmospheric and oceanic flows. Theoretical and practi-

cal analyses are therefore necessary in the line of the works

of Refs. 137–140.

Finally, the problem of forecasting atmospheric phe-

nomena on timescales longer than the typical limit of

weather forecasts, say 10 days, is a challenging problem for

our society. As we demonstrate in the present review in the

context of an idealized coupled ocean-atmosphere model,

long term forecasts of specific atmospheric variables are pos-

sible, provided the atmosphere is (strongly) coupled to cli-

mate components with longer typical timescales. This

increase of forecast skill at seasonal and interannual time-

scales is already well known in the Tropical regions due to

the strong coupling between the ocean and the atmosphere

[e.g., Ref. 141]. Several climate forecasting models are also

currently suggesting that there is some skill of the climate

system at midlatitudes at seasonal and interannual time-

scales, although the signal is rather weak [e.g., Ref. 142].

The understanding of the origin of this long term skill and

our ability to improve the long term forecasts are still fields

of research in their infancy. The exploration of the coupling

between the ocean and the atmosphere (and other climate

components) in the context of low and intermediate order

models are important steps in that direction.115,116,143,144
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