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On the origin of molecular oxygen in cometary
comae
K.L. Heritier 1, K. Altwegg2, J.-J. Berthelier3, A. Beth1, C.M. Carr 1, J. De Keyser 4, A.I. Eriksson5,

S.A. Fuselier6,7, M. Galand 1, T.I. Gombosi 8, P. Henri9, F.L. Johansson5, H. Nilsson10, M. Rubin 2,

C. Simon Wedlund11, M.G.G.T. Taylor12 & E Vigren3

Molecular oxygen was detected1 in the coma of 67P by the on-
board Rosetta Orbiter Spectrometer for Ion and Neutral Analysis
(ROSINA)–Double Focusing Mass Spectrometer (DFMS)2. It had
a high volume mixing of about 1–10%. Primordial O2 within the
nucleus of comet 67P is compatible with the instrumental
observations1,3. Yao and Giapis4 proposed an alternative
mechanism. The Eley–Rideal (ER) reactions of energetic water-
group ions with Si/Fe oxides, or other minerals present on the
surface of the nucleus, can generate O�

2 . Yao and Giapis4 sug-
gested that O�

2 and energetic O2 (after photo-detachment) gen-
erated through ER reactions can be detected by ROSINA–DFMS
and must be an important contributor of the O2 reported. In this
correspondence paper, we do not disregard the fact that ER
reactions can happen on the surface of the nucleus. However, we
demonstrate that the amounts of O�

2 produced through ER
reactions cannot explain a significant fraction of the O2 detected
by ROSINA–DFMS. In addition, we find that O�

2 and energetic
O2 generated through ER reactions could not be efficiently con-
verted into the ROSINA–DFMS instrument and are therefore not
responsible for the reported measurements.

To estimate the maximum amount of oxygen produced
through ER reactions, we first consider the amount of ions,
produced within the coma, that could impact the comet nucleus.
Consistently with the multi-instrument analysis of Rosetta
Plasma Consortium (RPC) and ROSINA sensors5,6, the number
density of the expanding gas at a cometocentric distance r is7:

nðrÞ ¼ Q
4πur2

ð1Þ

where Q is the total outgassing rate and u, the outflow velocity.
We assume a maximum global Q to estimate the maximum
amount of ions produced at a given time. The global ionization

frequency is taken to be ν= 10−6 s−1, which is an upper-bound
based on measurements8. The production rate, dP, of ions in each
spherical shell of thickness dr is constant:

dP ¼ νnðrÞ4πr2dr ¼ ðνQ=uÞdr ð2Þ

Once produced, ions retain the velocity of their parent neutrals
for several kilometers5. Eventually these ions are picked up by the
solar wind and have been observed moving anti-sunward9. The
impact rate Q* onto the nucleus of radius r0 (2 km) for uni-
directional motion can thus be estimated as:

Q� ¼
Z 1

r0

πr20
4πr2

� �
νQ
u

dr ¼ νQr0
4u

ð3Þ

This calculation also holds for random motion of ions (Fig. 1). It
is somewhat simplistic but still provides an order of magnitude of
the number of ions hitting the nucleus. Furthermore, even coupled
with a uniform circular gyration induced by the magnetic field, the
amount of ions hitting a spherical target would remain the same.
The farther away an ion is, the less-likely it is to return to the target.
In addition, the presence of ambipolar electric fields to maintain
ion-electron neutrality may repel ions approaching the nucleus10.

Let us assume that every collision leads to an ER reaction with
100% yield. The production rate of O�

2 through this process is
therefore directly approximated by Q*. We assume a realistic (but
slow, to obtain an upper bound) neutral outflow velocity of 500
m s−1. Q* can be related to QO2

, the total production rate of O2

observed by ROSINA–DFMS, assuming low O2 mixing ratio (1%)
for our upper-bound estimation1:

Q� ¼ QER
O2

’ 10�6Q ’ 10�4QO2
� QO2

ð4Þ
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The maximum fraction of O�
2 anions produced through ER

reactions, followed by photo-detachment—process which is asso-
ciated with small cross sections11—is therefore insignificant with
respect to the observed QO2

1. Furthermore, extrapolating the lab
samples4 as surrogates of the cometary surface is highly speculative
given the nucleus porosity (30–65%12) and the presence of C and N
bearing refractory species13 within the surface composition.

An alternative approach is to compute the energetic ion fluxes
that could potentially strike the nucleus. Nilsson et al.9 computed
24-h average time series of the cometary energetic ion fluxes
measured by RPC-Ion Composition Analyzer (ICA)14 over the 2-
year mission. The maximum cometary energetic ion flux measured
was about 1013m−2 s−1. It leads to a total surface production rate
QER

O2
of O�

2 of the order of 1020 s−1. It is still too low to reach
volume mixing ratios of 1–10%: even for a low QO2

(1% mixing
ratio of O2 and low Q of 1026 s−1)1,7, QER

O2
is about 10�4QO2

.
Figure 2 shows a time series of the energetic cometary water-

group ion fluxes measured by RPC–ICA close to the nucleus from
5 to 23 March 2016. After correction for the negative spacecraft
potential measured by the Rosetta dual Langmuir Probe
(RPC–LAP)15, the flux is integrated over the 50–300 eV energies
that are efficient to trigger the ER reactions4. The maximum value
is 1011 m−2 s−1. The number densities of O2 and H2O derived
from ROSINA–DFMS and ROSINA–COPS are over-plotted in
Fig. 2. The fluctuations are essentially seasonal16 with high out-
gassing over the summer hemisphere and low outgassing over the
winter hemisphere. There is a clear anti-correlation between O2

densities and the energetic ion fluxes, drivers of ER reactions.
With a high outgassing, the flux is weakened by the time it
reaches the nucleus due to ion-neutral collisions. The highest
neutral densities of O2 are therefore not driven by energetic ions
through ER reactions on the surface. In addition, O2 and H2O are
strongly correlated16 (Fig. 2) and follow a r−2 Haser law7. This is
incompatible with an extended source of O2 through ER reactions
that could happen on dust grains or the spacecraft itself.

As for the instrumental detections, Yao and Giapis4 claim that
O�

2 and energetic O2 may hit the gold-coated surfaces of the
ROSINA-DFMS and be efficiently converted into Oþ

2 .
ROSINA–DFMS2 has two operation modes (neutral and ion)
which differ by only the electrostatic bias and filament emission.
In neutral mode, the ionization box is biased relative to spacecraft
potential by +200 V to keep primarily cometary ions out and the

filament emits electrons to ionize incoming neutrals. In ion mode,
ROSINA–DFMS primarily measures thermal ions with no bias
voltage on the ionization box and the filament is heated below the
electron emission threshold (sub-emission). The angular accep-
tance of the electrostatic analyser is 5° and the energy acceptance
is 1% of the nominal ion energy which depends on the mass
measured. For mass 32 Da, this voltage is −1900 V: only species
with energies below 19 eV pass the electrostatic analyser.

In neutral mode, O�
2 anions with energies higher than the

spacecraft potential (varying between 0 and −30 V15) would enter
the instrument and be accelerated to about 200 eV. The impact of
the gold surface to convert into Oþ

2 would have to be accom-
panied by the loss of the 200 eV with minimal scattering to fit
into the narrow angular acceptance angle. It is rather unlikely.

In the case of energetic O2, following the suggested conversion to
Oþ

2 via collisions with the gold surface, these ions, with energy below
19 eV and minimal angular scattering (<5°), could enter the sensor
equally well in neutral and ion modes. As such, the peak height for
mass 32Da would be the same in both modes. In neutral high
resolution mode, the peak was continuously strong, normally
exceeding 104 ions. However, in the ion mode, the signal was below
detection limit for mass 32Da in high resolution. This precludes the
possibility that O�

2 and energetic O2 are efficiently ionized in the
DFMS sensor by hitting the surfaces of the instrument. These
observations are much more consistent with a thermal neutral O2

population, partially ionized8. If the ER mechanism is in action, its
contribution to the O2 peak in the neutral mode is very minor.

Conclusions
We have used generous assumptions in terms of production rates
and ion fluxes to assess the production of O�

2 through ER reactions
as a mechanism to explain Rosetta observations. Even with these
assumptions, the amount of O2 produced is insignificant (by several
orders of magnitude) with respect to what was detected by
ROSINA–DFMS. There are not enough ions in the coma and the
series of events required to trigger these processes are individually
too rare. Furthermore, cometary ion fluxes are anti-correlated to the
O2 densities observed by ROSINA. Finally, in terms of the instru-
ment itself, there is little evidence of the production and detection of
products O�

2 and energetic O2 by ROSINA–DFMS. While ER
reactions may occur, they cannot explain the amounts of O2

dr

S = πr2
0

r

� ≈ �
r0

r

2

r0

S = cometary cross section

Fraction of ions crossing the comet =
S

4�r2
=

r0

2r

2

� [str]: cometary solid angle seen by the ion

Probability to hit the comet ≈
�

4�
=

r0

2r

2

Fig. 1 Schematic of the ion motion and their probability of returning to the nucleus. Shown for unidirectional motion (left side) and random motion (right
side). In both case, the probability for an ion (red dot), created at r, to return to the nucleus is r0

2r

� �2
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detected. Primordial O2
1,3 remains compatible with the quantities

and trends of molecular oxygen measured by ROSINA–DFMS,
while other theories17 discuss other plausible sources.
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Fig. 2 Time series of oxygen and water neutral number densities. Time series of the O2 (orange) and H2O (blue) neutral number densities (left y-axis) from
March 6 to 23, 2016. The spacecraft was located at about 10 km from the nucleus. Note that the H2O neutral densities have been multiplied by 10−2 to fit
on this scale. Time series of the total RPC–ICA energetic water-group ions (H2O+, H3O+, OH+) of cometary origin (green), corrected for the RPC–LAP
spacecraft potential15 and integrated over the effective energy range of the Eley–Rideal reactions (50–300 eV)4 (right y-axis)
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