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ABSTRACT

Context. Compensated-current systems are established in response to hot ion beams in terrestrial foreshock regions, around supernova
remnants, and in other space and astrophysical plasmas.
Aims. We study a non-resonant reactive instability of Alfvén waves propagating quasi-parallel to the background magnetic field B0 in
such systems.
Methods. The instability is investigated analytically in the framework of kinetic theory applied to the hydrogen plasmas penetrated
by hot proton beams.
Results. The instability arises at parallel wavenumbers kz that are sufficiently large to demagnetize the beam ions, kzVTb/ωBi & 1 (here
VTb is the beam thermal speed along B0 and ωBi is the ion-cyclotron frequency). The Alfvén mode is then made unstable by the imbal-
ance of perturbed currents carried by the magnetized background electrons and partially demagnetized beam ions. The destabilizing
effects of the beam temperature and the temperature dependence of the instability threshold and growth rate are demonstrated for the
first time. The beam temperature, density, and bulk speed are all destabilizing and can be combined in a single destabilizing factor αb
triggering the instability at αb > α

thr
b , where the threshold value varies in a narrow range 2.43 ≤ αthr

b ≤ 4.87. New analytical expressions
for the instability growth rate and its boundary in the parameter space are obtained and can be directly compared with observations.
Two applications to terrestrial foreshocks and foreshocks around supernova remnants are briefly discussed. In particular, our results
suggest that the ions reflected by the shocks around supernova remnants can drive stronger instability than the cosmic rays.
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1. Introduction

Diluted ion beams propagating along the background magnetic
field B0 are widespread in space and astrophysical plasmas, in-
cluding solar wind (Marsch 2006, and references therein), terres-
trial foreshocks (Paschmann et al. 1981, and references therein),
supernova remnants (Bell 2005, and references therein), and
many other astrophysical environments (Zweibel & Everett
2010, and references therein). As the plasmas are typically
quasi-neutral, the background electrons tend to follow the beam
ions compensating their current. Depending on particular set-
tings, the compensating currents can also be provided by other
plasma components, like co-streaming electron beams injected
simultaneously with the ion beams. Plasma instabilities devel-
oping in such compensated-current systems not only regulate
the plasma and beam parameters keeping them close to the
marginally unstable states, but can also be important sources for
the background plasma heating, energetic particle acceleration,
and amplification of the background magnetic field.

Plasma waves in the compensated-current systems can be
driven unstable by resonant (Duijveman et al. 1981; Gary 1985;
Vojtenko et al. 1990) and non-resonant (Winske & Leroy 1984;
Bell 2004; Achterberg 2013) wave–particle interactions. Res-
onant kinetic instabilities of various wave modes, driven by
the beam ions, have been studied extensively in the past.
Parallel-propagating Alfv én and fast waves have been found

to be strongly unstable for beam velocities higher than a few
Alfvén velocities (e.g., Gary 2005; Marsch 2006, and references
therein). Concurrent instabilities of oblique (kinetic) Alfvén
waves come into play at lower (but still super-Alfvénic) beam
velocities (Voitenko 1998).

The above-mentioned instabilities can be driven directly
by the beam ions (Sentman et al. 1981; Winske & Leroy 1984;
Gary 1985) or by the electron return currents (Winske & Leroy
1984; Bell 2004; Chen & Wu 2012, and references therein).
The non-compensated electron currents flowing along B0, may
also drive both the resonant (Voitenko 1995) and non-resonant
(Malovichko & Iukhimuk 1992; Malovichko 2007) instabilities
of Alfvén waves. The simplest case of purely parallel propa-
gating Alfvén waves has been considered in application to the
current-carrying coronal loops (Malovichko & Iukhimuk 1992),
where these waves appeared to always be unstable. Later on, the
analysis was extended by accounting for the oblique propaga-
tion (Malovichko 2007) and the currents curried by low-density
beams (Malovichko 2010), and applied to the terrestrial magne-
tosphere and coronal loops.

Self-consistent modifications of the background
magnetic field by the electric currents, neglected by
Malovichko & Iukhimuk (1992), Malovichko (2007); and
Voitenko (1995), may reduce or even stabilize current insta-
bilities. This issue does not concern instabilities developing in
compensated-current systems. Such systems, formed around
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supernova remnants by high-energy streaming cosmic rays
(CRs), were studied by Bell (2004), who found a new non-
resonant Alfvénic instability (hereafter Bell instability). Since
then, the Bell instability and its modifications have attracted
a lot of interest (see, e.g., Amato & Blasi 2009; Bret 2009;
Zweibel & Everett 2010; Schure et al. 2012; Achterberg 2013;
Kobzar et al. 2017, and references therein). Following Bell
(2004), the primary focus was on the unstable modes with finite
kzV̄bz/ωBi propagating along B0 (where V̄bz is a characteristic
velocity of the beam ions along the mean magnetic field B0 ‖ z;
kz is the parallel wavenumber; and ωBi is the ion-cyclotron fre-
quency). Compensated currents can also drive an oblique Alfvén
instability (Malovichko et al. 2014) for which the perpendicular
wave dispersion due to finite k⊥VTb⊥/ωBi is essential (k⊥ and
VTb⊥ are the perpendicular wavenumber and beam thermal
velocity in the plane ⊥ B0).

Other electrostatic and electromagnetic instabilities may
develop in compensated-current systems (see, e.g., Gary 2005;
Bret 2009; Brown et al. 2013; Marcowith et al. 2016, and refer-
ences therein). Which wave modes grow fastest critically
depends on the beam and plasma parameters. In the case of
cold diluted proton beams propagating along B0, the electro-
static two-stream and Buneman instabilities are much faster than
the electromagnetic Alfvénic instabilities (see, e.g., Fig. 44 in
Bret et al. 2010). Nevertheless, as is noted by Bret et al. (2010),
these electrostatic instabilities are quickly saturated, and then
electromagnetic Alfvénic/Bell instabilities come into play. In the
hot beam/plasma systems, where the two-stream/Buneman
instabilities cannot develop, the electromagnetic Alfvénic/Bell
instabilities dominate.

The Bell instability has a maximum growth rate
γBell ' 0.5 j̄bωBi, where j̄b = nbVb/ (n0VA) is the beam cur-
rent normalized by the Alfvén current. This maximum is
attained at the parallel wavenumber |kzm|VA/ωBi = 0.5 j̄b and
the perpendicular wavenumber k⊥ = 0. These expressions
are exactly the same as for the instability studied earlier
by Winske & Leroy (1984) in application to the terrestrial
foreshock. The difference is that the role of V̄bz in the setting
considered by Winske & Leroy (1984) is played by the bulk
velocity of the beam Vb rather than the large velocity spread of
CRs. Both the Winske–Leroy and Bell instabilities grow fastest
when the wave vector k is parallel to B0; they are physically
the same instability that can be named the compensated-current
parallel instability (CCPI).

The physical mechanism of the CCPI is related to the fact
that for sufficiently small parallel wavelengths and sufficiently
high V̄bz, the beam protons become partially demagnetized
(unfrozen off the perturbed magnetic field). The demagnetization
reduces the beam contribution to the fluctuating currents δ j ⊥
B0 flowing along the twisted perturbed magnetic field lines,
whereas the electron currents remain magnetized, thus providing
the non-compensated fluctuating transversal currents. These cur-
rents amplify the initial perturbations via the positive feedback
loop giving rise to CCPI. This kind of instability is sometimes
called reactive.

Surprisingly, despite its importance in astrophysical applica-
tions, the CCPI theory is still poorly developed. Many impor-
tant properties of the instability (the wavenumber dependence
of the instability growth rate, behavior of the maximum growth
rate in the parameter space, instability boundaries in the param-
eter spaces, etc.) have not been fully investigated. In the present
paper, we study CCPI of Alfvén waves in more detail in the
framework of kinetic theory. We consider a simple model of
the compensated-current system where the hydrogen plasma is

hydrogen plasma is penetrated by the low-density proton beam
and the beam current and charge are compensated by the back-
ground electrons. Despite its simplicity, this model is applicable
to the reactive CCPI driven by compensated currents in many
space and astrophysical environments.

2. Plasma model and dispersion equation for Alfvén
waves

We consider a three-component plasma consisting of the back-
ground steady ion component (i), the low-density ion beam (b)
propagating with velocity Vb along z ‖ B0, and the electron com-
ponent (e) providing the neutralizing current and charge:

neVe = nbVb; (1)

ne = ni + nb ≡ n0. (2)

We assume here that the beam ions (b) and the background
ions (i) are protons. All plasma components are modeled by the
shifted Maxwellian velocity distributions

f0s =
ns

(2π)3/2V3
Ts

exp
− v2

⊥

V2
Ts

−
(vz − Vs)2

V2
Ts

 , (3)

where ns, Vs, VTs =
√

Ts/ms, Ts, and ms are the mean num-
ber density, parallel bulk velocity, thermal velocity, temperature,
and particle mass of the plasma species s, and v =

(
vx, vy,vz

)
–

velocity-space coordinates. The subscripts z and ⊥ indicate
directions parallel and perpendicular to B0. The plasma model
defined by Eqs. ((1)–(3)) has been extensively used in the past
(see, e.g., Gary 2005, and references therein). The neutraliz-
ing current can also be provided by the co-propagating electron
beam (see, e.g., Zweibel & Everett 2010 and references therein);
however it does not alter the reactive CCPI for low-density ion
beams nb � n0 (Amato & Blasi 2009).

The non-trivial solutions to the Maxwell–Vlasov set of
equations exist if the wave frequency ω and the wave vector
k = (kx, ky, kz) satisfy the following dispersion equation (see, e.g.,
Alexandrov et al. 1984)∣∣∣∣∣∣k2δij − kikj −

ω2

c2 εij

∣∣∣∣∣∣ = 0, (4)

where εij is the dielectric tensor and δij is the Kronecker delta.
For the parallel-propagating modes with kx = ky = 0, the compo-
nents of the dielectric tensor given by Alexandrov et al. (1984)
reduce to

εxx = εyy = 1 −
∑

s

(
ωPs

ω

)2 1
2

∑
n=±1

ξs,0

ξs,n
J+

(
ξs,n

)
;

εxy = −εyx = i
∑

s

(
ωPs

ω

)2 1
2

∑
n=±1

n
ξs,0

ξs,n
J+

(
ξs,n

)
;

εxz = εzx = εyz = εzy = 0;

εzz = 1 +
∑

s

(
ωPs

kzVTs

)2 [
1 − J+

(
ξs,0

)]
, (5)

where ξs,n = (ω − kzVs + nωBs) / (kzVTs), ωPs (ωBs) is the plasma
(cyclotron) frequency. Instead of the plasma dispersion function
W (x), we use the function

J+ (x) = −i
√
π

2
xW

(
x
√

2

)
= x exp

(
−

x2

2

) ∫ x

i∞
dt exp

(
t2

2

)
, (6)
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introduced by Alexandrov et al. (1984). It has the following
asymptotic expansions:

J+ (x) = x2 + O
(
x4

)
− i

√
π

2
x exp

(
−

x2

2

)
, |x| � 1; (7)

and

J+ (x) = 1 +
1
x2 + O

(
1
x4

)
− iη

√
π

2
x exp

(
−

x2

2

)
, |x| � 1, (8)

where η = 0 for Im x > 0, η = 1 for Im x = 0, and η = 2 for
Im x < 0.

In the case of parallel propagation, the dispersion Eq. (4)
splits into two independent equations,

εxx ± iεxy =

(
ckz

ω

)2

, (9)

describing left-hand (sign −) and right-hand (sign +) polar-
ized electromagnetic waves. In what follows we consider the
left-hand polarized Alfvén branch undergoing the compensated-
current instability. Taking into account quasi-neutrality (2) and
current compensation (1), Eq. (9) for Alfvén waves can be
written as(
ω

ωBi

)2

−
nb

n0
Ak,ω

ω

ωBi
−

(
kzVA

ωBi

)2

+
nb

n0
Ak,ω

kzVb

ωBi
= 0, (10)

where

Ak,ω = 1 +
ωBi

kzVTb

J+

(
ξb,−1

)
ξb,−1

.

In the following sections we consider important limits of (10)
typical for the reactive CCPI instability.

3. Dispersion relation for parallel-propagating
waves

As we are going to analyze the reactive non-resonant insta-
bility, we neglect the contribution of the imaginary part of
J+

(
ξb,−1

)
. Furthermore, we consider a low-frequency instability

with |ω/ωBi| smaller than other terms in ξb,−1, which allows us
to neglect the ω-dependent part in the argument of function J+.
In this case (10) reduces to the following quadratic equation with
respect to ω/ωBi:(
ω

ωBi

)2

−
nb

n0
Ak

ω

ωBi
−

(
kzVA

ωBi

)2

+
nb

n0
Ak

kzVb

ωBi
= 0, (11)

where

Ak ≡ Ak,0 = 1 +
1

kzρTb

ReJ+ (ζb)
ζb

, (12)

ζb = −Vb/VTb − 1/ (kzρTb), and ρTb = VTb/ωBi. To avoid misun-
derstanding, we note that although ρTb looks like the ion beam
gyroradius, it is defined by the parallel beam temperature rather
than the perpendicular one, and here it has a different physical
meaning.

Equation (11) is the second-order eigenmode equation for
Alfvén waves modified by the ion beam and return electron
current (second and fourth terms, respectively). Its solution is
straightforward:

ω

ωBi
=

nb

n0

Ak

2
+

√(
nb

n0

Ak

2

)2

+

(
kzVA

ωBi

)2

− 2
nb

n0

Ak

2
kzVb

ωBi
· (13)

From (13) it is obvious that the instability can be driven by the
last term under the square root when kzVb > 0. In what follows
we assume Vb > 0 considering potentially unstable waves with
kz > 0 (in the case of Vb < 0, the identical instability develops
for kz < 0 ). In the absence of the beam, Eq. (13) reduces to the
Alfvén wave dispersion, ω = kzVA at nb = 0.

The wave with dispersion (13) becomes unstable when the
last term under the square root dominates. This term represents
effects due to the electron current. The growth rate γ = Im[ω] of
the corresponding instability is

γk

ωBi
=

VA

VTb

√
2kzρTb

αbAk

2
− (kzρTb)2 −

(
VA

Vb

)2 (
αbAk

2

)2

· (14)

Here we introduce the cumulative destabilizing parameter

αb =
nb

n0

Vb

VA

VTb

VA
≡ j̄bV̄Tb (15)

that includes all beam parameters. One can think of it as of
product of the normalized current j̄b = nbVb/ (n0VA) and velocity
spread V̄Tb = VTb/VA of the beam ions. The growth rate (14) is
analyzed below analytically and numerically, and its scalings are
found in some important limits. It is interesting to note that the
right-hand polarized magnetosonic instability can be obtained
from the above equation by changing the sign of the first term
under the square root (the magnetosonic instability hence re-
quires kzVb < 0).

4. Compensated-current instability driven by hot
ion beams

By hot beams we mean the beams whose thermal velocity is
significantly larger than the bulk velocity, VTb � Vb. For such
beams, the growth rate (14) can be simplified by neglecting the
small term Vb/VTb in ξb,−1. The argument of J+ is then simpli-
fied to ξb,−1 ≈−1/ (kzρTb) ≡ ζb. In this case γk depends on the
normalized parallel wavenumber kzρTb and two dimensionless
bulk parameters, VA/Vb and αb. Then the (maximum) instability
growth rate γm = maxkγ appears to be a function of αb and VA/Vb
only, whereas the dependence on the general multiplier VA/VTb
is trivial and can be excluded by the renormalization of γm. We
note that the hot-beam condition VTb >Vb restricts the applicabil-
ity range of the analytical results obtained below, but in general
it does not restrict the instability range (see also Sect. 6).

4.1. Instability areas in the parameter space

Here we find the instability threshold and the instability area
in the parameter space (αb,VA/Vb). To this end, we present the
growth rate (14) in the following useful form:

γk

ωBi
=

Vb

VTb
kzρTb

√√
1 −

V2
A

V2
b

−

1 − V2
A

V2
b

αb

2
Ak

kzρTb

2

. (16)

From (16), the instability condition is obtained as

1 −
V2

A

V2
b

>

1 − V2
A

V2
b

αb

2
Ak

kzρTb

2

. (17)

Since the right-hand side of (17) is positive, it is obvious
that only super-Alfvén beams, Vb >VA, can trigger instabil-
ity. Therefore, the absolute threshold for the beam velocity is
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V thr
b = VA and the system is stable with respect to reactive CCPI

for all Vb < VA.
Using (17), it is also possible to find the threshold for αb ana-

lytically. First, solving (17) with respect to the kk-dependent term
Ak/ (kzρTb), we find that the unstable wavenumbers kz should
satisfy

2
αb

1

1 +

√
1 − V2

A
V2

b

<
Ak

kzρTb
<

2
αb

V2
b

V2
A

1 +

√
1 −

V2
A

V2
b

 . (18)

When the velocity threshold is exceeded, Vb >VA, the
right boundary of (18) is always larger than the left
boundary making the interval between them non-empty. As
the function Ak/ (kzρTb) is limited by the maximum value
maxk

[
Ak/ (kzρTb)

]
≈ 0.411 achieved at k∗zρTb ≈ 1.541, the condi-

tion (18) can only be satisfied for sufficiently large αb. From the
left-hand inequality, it immediately follows the instability con-
dition for αb and the corresponding threshold:

αb > α
thr
b =

2

maxk

[
Ak

kzρTb

] (
1 +

√
1 − V2

A
V2

b

) =
4.866

1 +

√
1 −

(
VA
Vb

)2
·

(19)

The instability condition αb >α
thr
b is satisfied above the

threshold curve defined by (19), which is shown in Fig. 1 by
the solid line. The unstable area above this curve in the param-
eter space (αb,VA/Vb) is shaded. The dependence of the thresh-
old αthr

b on VA/Vb is rather weak; it grows from the minimum
value αthr

b ≈ 2.43 at VA/Vb→ 0 to the maximum value αthr
b ≈ 4.87

at VA/Vb→ 1. The absolute threshold for αb below which the
system is stable is αthr

bmin ≈ 2.43. The meaning of the right bound-
ary in (18), shown in Fig. 1 by the dashed line, is clarified in the
following subsection.

In terms of the normalized beam current j̄b = nbVb/ (n0VA)
and thermal velocity V̄Tb = VTb/VA, (19) can be written as
j̄bV̄Tb > α

thr
b . Then the instability condition for the beam thermal

velocity reads as

V̄Tb > V̄ thr
Tb =

αthr
b

j̄b
· (20)

This threshold-like condition is an important new result quanti-
tatively demonstrating the destabilizing effect of the beam tem-
perature. It shows the threshold above which the velocity spread
of the beam ions triggers the instability even for weak beams.

Similarly, the threshold condition for the beam current can
be written as

j̄b > j̄thr
b ≈

αthr
b

V̄Tb
, (21)

which quantifies the range of unstable beam currents. Again, it
is seen that even a weak ion beam can activate CCPI if the beam
thermal velocity is sufficiently high. In particular, the beam cur-
rent required for the instability can be many orders of magnitude
smaller than the Alfvén current.

We note that αthr
b varies slowly for fast super-Alfv énic beams

and can be approximated as αthr
b ≈ 2.5 at Vb/VA > 3. For rough

estimations, in all velocity ranges αthr
b can be replaced by its

average value 3.5.

Fig. 1. Instability threshold αthr
b in the parameter space (αb,VA/Vb)

(solid line); the CCPI develops at all αb > αthr
b . The dashed line shows

the split threshold αthr
b2 above which there are two separate ranges of

unstable wavenumbers kz

4.2. Unstable wavenumber ranges

Properties of CCPI are illustrated further by Figs. 2 and 3 show-
ing all three terms of the condition (18): the left and right bound-
aries, and the function (kzρTb)−1 Ak. The unstable ranges where
(18) is satisfied are shaded. A regular single-peak behavior of
the function (kzρTb)−1 Ak, as seen in Figs. 2 and 3, allows us to
investigate how the unstable wavenumber range evolves with αb.

When αb increases but is still smaller than αthr
b , the left

boundary of (18) decreases remaining above the maximum of
(kzρTb)−1 Ak. In this case there are no unstable wavenumbers and
the system is stable. Once αb rises above αthr

b , the decreasing left
boundary of (18 ) drops below the maximum of (kzρTb)−1 Ak and
the unstable wavenumber range kz1 < kz < kz2 appears, where kz1
and kz2 are the lower and upper roots of the equation

Ak

kzρTb
=

2
αb

1

1 +

√
1 − V2

A
V2

b

· (22)

As long as αb is not far from the threshold αthr
b , there

is a single unstable wavenumber interval surrounding
k∗zρTb ≈ 1.54. This situation is illustrated in Fig. 2, where
VA/Vb = 0.9, αthr

b ≈ 3.4, and αb = 6 > αthr
b . However, when αb

increases further, the right boundary of (18) also drops below
the maximum of (kzρTb)−1 Ak, which happens at

αb > α
split
b = 4.866

V2
b

V2
A

1 +

√
1 −

V2
A

V2
b

 . (23)

In this case, shown in Fig. 3 for αb = 9, the right-hand side in-
equality of (18) is not satisfied in the range k′z1 < kz < k′z2, where
k′z1 and k′z2 are the lower and upper roots of the equation

Ak

kzρTb
=

2
αb

V2
b

V2
A

1 +

√
1 −

V2
A

V2
b

 . (24)

Instead of unstable, we have now a prohibited wavenumber
range around k∗zρTb ≈ 1.54. As a result, the unstable wavenum-
ber range splits into two: the first unstable range is kz1 < kz < k′z1
and the second k′z2 < kz < kz2.
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Fig. 2. Illustration of the condition (18) for VA/Vb = 0.9 and αb = 6.
In this case αthr

b <αb <α
split
b and there is only one unstable wavenum-

ber range (shaded area).

Fig. 3. Illustration of the condition (18) for VA/Vb = 0.9 and αb = 10.
In this case αb >α

split
b and there two unstable wavenumber ranges pre-

sented by two shaded areas.

The split threshold αsplit
b (23) is shown in Fig. 1 by the dashed

line. For parameter values above this line, the instability devel-
ops in two wavenumber ranges, as mentioned above. These un-
stable ranges are shown in Fig. 3 by the shaded areas.

Furthermore, Fig. 4 shows the αb dependence of the unsta-
ble wavenumber ranges, where the outer and inner boundaries
are respectively defined by the left-hand and right-hand mar-
gins of (18). It is seen that below αthr

b there is no instability, at
αthr

b <αb <α
split
b there is a single unstable range of kz, and above

α
split
b there are two unstable ranges.

From Fig. 3 it is obvious that kz1ρTb and k′z1ρTb are
located between kzρTb ≈ 0.77, where (kzρTb)−1 Ak is zero, and
k∗zρTb ≈ 1.54, where (kzρTb)−1 Ak is maximum. This wavenumber
range corresponds to −1.3< ζb < − 0.65, where ReJ+ (ζb) can be
approximated by the liner numerical fit

ReJ+ (ζb) ≈ −0.275 − ζb. (25)

Using this in (22) and (24), we find kz1 and k′z1 as

kz1ρTb ≈
1

0.64 +

√
0.41 − 2

αb

(
1 +

√
1 − V2

A
V2

b

)−1
; (26)

Fig. 4. Unstable wavenumber ranges in the (αb, kz) plane for VA/Vb =
0.9. The outer boundary is defined by the left-hand side and the inner
boundary by the right-hand side of condition (18). It is seen that below
αthr

b there is no instability, at αthr
b < αb < α

split
b there is a single unstable

range of kz, and above αsplit
b there are two unstable ranges.

k′z1ρTb ≈
1

0.64 +

√
0.41 − 2

αb

V2
b

V2
A

(
1 +

√
1 − V2

A
V2

b

) · (27)

From these expressions we see that with increasing αb the differ-
ence between kz1 and k′z1 decreases, k′z1ρTb → kz1ρTb → 0.766,
and the first unstable range becomes very narrow.

On the other hand, the roots kz2ρTb and k′z2ρTb bounding the
second unstable range, are located above k∗zρTb ≈ 1.54, where
ζb >−0.65. Then, using the small argument expansion (7) for
ReJ+ (ζb), we find

k′z2ρTb =
αb

2
V2

A

V2
b

1 +

√
1 −

V2
A

V2
b


−1

−
2
αb

V2
b

V2
A

1 +

√
1 −

V2
A

V2
b

 ;

(28)

kz2ρTb =
αb

2

1 +

√
1 −

V2
A

V2
b

 − 2
αb

1 +

√
1 −

V2
A

V2
b


−1

. (29)

At large values of αb, both the width of the second unstable range
kz2ρTb − k′z2ρTb and the gap between the unstable ranges k′z2ρTb −

k′z1ρTb grow linearly with αb.
In summary, the most important analytical result obtained

here is the instability boundary αthr
b in the parameter space

(VA/Vb;αb), which can be used directly to analyze observa-
tional data. The compensated-current systems with VA/Vb < 1
and αb >α

thr
b are unstable. The unstable area in the parameter

space (VA/Vb;αb) is divided further by α
split
b into two unsta-

ble sub-areas: αthr
b <αb < α

split
b with one unstable wavenumber

range, and αb >α
split
b with two unstable wavenumber ranges.

4.3. Instability growth rate

Once αb rises above αthr
b , an unstable range between kz1 and

kz2 appears. The instability growth rate (14) as function of kz
is shown in Fig. 5. The plasma parameters αb and VA/Vb in this
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Fig. 5. Wavenumber dependence of the instability growth rate driven
by super-Alfvénic ion beams with VA/Vb = 0.9 for three values of αb:
αb = 6, 8, and 10. For larger αb, the unstable area and the maximum
growth rate extend to larger kzρTb.

figure are chosen in such a way as to illustrate the behavior of
CCPI in the unstable wavenumber ranges found above. So, the
case αb = 6 with one unstable wavenumber range is shown by the
dashed line and the case αb = 10 with two unstable wavenumber
ranges is shown by the solid lines. The dotted curve in Fig. 5 is
for the case αb = 8, which is close to the splitting threshold. It is
seen that when the right instability boundary in (18) approaches
the maximum of function (kzρTb)−1 Ak, the valley and the second
peak in γk appear. This happens at αb >α

pl
b , where

α
pl
b ≈

V2
b

V2
A

4.1 +

√
16− 15

V2
A

V2
b

 (30)

is the value of αb at which a local “plateau” in γk occurs
at the wavenumber where ∂γk/∂kz = 0 and ∂2γk/∂k2

z = 0. For
all αb >α

pl
b , the secondary peak of γk exists at kz < k∗z . Since

α
pl
b <α

split
b , the secondary peak arises before the interval of pro-

hibited wavenumbers k′z1 < kz < k′z2 appears.
It is seen that CCPI is stronger and the most unstable

wavenumbers are larger for larger αb. The secondary peak that
appears at αb > α

pl
b is lower than the main peak. These trends are

confirmed below analytically.
The most unstable wavenumber and the corresponding

maximum growth rate γmax can be found by maximizing (14)
with respect to kz, γmax = maxk (γk), which we call the CCPI
growth rate. The normalized CCPI growth rate γmax/ωBi as
a function of nb/n0 and Vb/VA is shown in Fig. 6 for hot
beam with VTb/VA = 102. It is seen that γmax increases rapidly,
roughly proportional to both nb/n0 and Vb/VA, which means
it is proportional to the current nbVb. This behavior agrees
with the current nature of CCPI confirmed below analytically by
(34) and (35).

The threshold for nb/n0 (Vb/VA) is lower for smaller Vb/VA
(nb/n0), in agreement with (19). In particular, the velocity thresh-
old V thr

b /VA decreases with nb/n0 and reaches the minimum
value V thr

b /VA→ 1 when nbVTb/ (n0VA) → 1.
Dependence of γmax on the thermal velocity VTb is somewhat

different (see Fig. 7). First, near the threshold, γmax increases
very rapidly with VTb. But this increase quickly slows down as
VTb departs further from the threshold. Already at VTb & 3V thr

Tb ,
γmax becomes virtually independent of VTb.

To understand this behavior, we proceed with the analyti-
cal analysis. Here we take into account that in the wavenumber

Fig. 6. Normalized growth rate γmax/ωBi as a function of nb/n0 and
Vb/VA for hot beam with VTb/VA = 102. γmax increases regularly with
both nb/n0 and Vb/VA once the threshold is exceeded.

Fig. 7. Normalized growth rate γmax/ωBi as a function of VTb/VA for
nbVb/ (n0VA) = 0.05 (solid curve), 0.1 (dotted curve), and 0.15 (dashed
curve). Starting from zero, the growth rate γmax increases rapidly with
VTb, but this increase is quickly saturated. Larger currents nbVb/ (n0VA)
result in larger γmax for all VTb.

range kzρTb > k∗zρTb ≈ 1.54, where the growth rate attains its max-
imum, the low-ζb approximation ReJ+ (ζb) ≈ −(kzρTb)−2 is valid.
Thus, using Ak = 1 + ReJ+ (ζb) ≈ 1 − (kzρTb)−2 in (16), we find
the following approximation for the maximum of γk:

γmax

ωBi
≈

1
2

nbVb

n0VA

√√√1 − V2
A

V2
b

 1 − αthr
b

αb

2. (31)

This maximum occurs at

km
z ρTb ≈

αb

2
+

Vb

VTb

2
αb

1 − 2
V2

A

V2
b

 . (32)

The last term in the square parentheses in (31) is adjusted by
replacing the approximate numerical value

√
8 by αthr

b to make it
compatible with the exact αb threshold (19). We verified numer-
ically that the approximation (31) is good for arbitrary αb, both
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near the threshold and far from it. In general, with the larger
beam velocity and/or temperature, the smaller beam density is
needed for instability.

The explicit dependence of the instability growth rate on the
beam thermal velocity V̄Tb follows from (31):

γmax

ωBi
≈

j̄b
2

√√√1 − 1
V̄2

b

 1 −  αthr
b

j̄bV̄Tb

2. (33)

It is seen that γmax increases quickly with V̄Tb once the threshold
is overcome, V̄Tb & αthr

b / j̄b. The fast increase of γmax reflects
the instability response to the progressive demagnetization of the
beam ions as their velocity spread increases above the threshold.

However, when V̄Tb becomes large enough, V̄Tb & 3αthr
b / j̄b,

the term containing it becomes negligibly small and γmax be-
comes virtually independent of V̄Tb. In this high-temperature
regime the beam ions are fully demagnetized and the further in-
crease of V̄Tb no longer affects the instability. This regime cor-
responds to the asymptotic over-threshold limit

(
αthr

b /αb

)2
� 1,

where γmax simplifies to

γmax

ωBi
=

1
2

nbVb

n0VA

√
1 −

V2
A

V2
b

. (34)

The familiar threshold velocity of the beam, V thr
b = VA, is still

present in (34), but the temperature dependence is already
missed, as can be observed in Fig. 7 at large VTb.

The maximum growth rate (34) simplifies further for the fast
beams with Vb/VA > 3,

γmax

ωBi
≈

1
2

nbVb

n0VA
, (35)

with the most unstable parallel wavenumber km
z ρTb = αb/2. The

asymptotic scaling (35) recovers the scaling obtained by Bell
(2004). As is seen from Fig. 7, expressions (34) and (35) provide
good estimations for γmax at VTb > 3V thr

Tb , which also quantifies
the meaning of “asymptotic regime” in terms of VTb. It appears
that the expressions found by Bell are only valid in this asymp-
totic regime.

For αb >α
pl
b , the secondary peak arises at kzρTb < 1.54, where

we can use approximation (25). Then for this peak we obtain the
local maximum

γm2

ωBi
≈

VA

VTb
km2

z ρTb

√1 − V2
A

V2
b

 (36)

attained at

km2
z ρTb ≈ 0.765 +

2
α∗b
, (37)

where α∗b =
(

VA
Vb

)2
αb and we took into account that αb >α

pl
b . The

ratio of this peak to the main peak is

γm2

γmax
=

km2
z ρTb
1
2αb

=

(
VA

Vb

)2 (
0.765 +

2
α∗b

)
2
α∗b
· (38)

Taking into account that α∗b > min
[
α∗b

]
≈ 5.1 (at VA/Vb → 1),

we see that the peak γm2 is always significantly smaller than the
main peak γmax. The maximum ratio γm2/γmax ≈ 0.45 is achieved
at αb & α

pl
b and VA/Vb . 1.

We note that the unstable fluctuations also have a
small oscillatory part Re[ω] = 0.5 (nb/n0)ωBi. For most
unstable wavenumber km

z ρTb ∼αb/2, the real frequency
ωm = Re [ω] ∼ km

z VA (VA/Vb) is smaller than the frequency
of the normal Alfvén mode km

z VA. Since γmax ∼ km
z VA >ω

m, the
instability is aperiodic.

5. Parallel Alfvén instability in particular
compensated-current systems

Let us consider two feasible applications of CCPI. First we apply
our results to the solar wind upstream of the quasi-parallel terres-
trial shock where the plasma conditions are relatively well docu-
mented. Then we extend the analysis to the interstellar medium
around supernova remnants, assuming the similar scalings of the
beam parameters as in the terrestrial foreshock.

5.1. Quasi-parallel terrestrial foreshock

Hot ion beams with VTb > Vb > VA are regularly observed in the
solar wind upstream of the terrestrial bow shock where the shock
normal is quasi-parallel to the interplanetary magnetic field B0
(Paschmann et al. 1981; Tsurutani & Rodriguez 1981). This or-
dering of characteristic velocities suggests that CCPI driven by
hot ion beams can develop in the quasi-parallel foreshocks.

More specifically, we use the following scalings for charac-
teristic beam velocities, Vb . Vshock and VTb ∼ 3Vshock, where
the shock velocity is equal to the solar wind speed, Vshock = VSW.
These scalings are compatible with observations reported by
Paschmann et al. (1981) and Tsurutani & Rodriguez (1981). Yet
another beam parameter, number density nb, does not vary
much around nb = 0.1 cm−3 (Paschmann et al. 1981). In terms
of the background solar-wind density n0 ∼ 5–10 cm−3, this gives
nb/n0 ∼ 0.01–0.02. Taking the typical value of Alfvén veloc-
ity, VA ≈ 0.1VSW, we obtain the cumulative destabilizing pa-
rameter αb ∼ 2.5–5, which is slightly over-threshold depending
on the particular value of Vb. Such proximity of the system to
the CCPI threshold can be a signature of CCPI operating in
the foreshock and relaxing the beam parameters towards the
threshold.

On the other hand, as is seen from Fig. 6, even slight de-
viations of αb from the threshold can make CCPI strong. So,
for VA/Vb ∼ 0.1 and αb = 6 the maximum growth rate is al-
ready high, γmax ≈ 0.07ωBi, with the most unstable wavenumbers
kzmρTb & 2. Narita et al. (2006) and Hobara et al. (2007) ana-
lyzed properties of electromagnetic fluctuations observed around
terrestrial bow shock. Most straightforwardly, our results can be
compared with the wavenumber distribution of the fluctuations
in the quasi-parallel foreshocks shown in Fig. 9 by Narita et al.
(2006), where the measured wavenumbers are normalized by the
ion gyroradius. In terms of the background ion gyroradius ρTi,
with the typical temperature of the diffuse ions Tb/Ti = 4 × 102,
our most unstable wavenumbers kzmρTi ∼ kzmρTb/20∼ 0.1 map
upon the major peak observed at kzρTi = 0.1 (see upper panel of
Fig. 9 in Narita et al. 2006).

In the quasi-parallel foreshock region, Narita et al. ob-
served another, subdominant peak at kzρTi = 0.6. To explain this
peak by CCPI we need a significantly lower beam tempera-
ture, Tb/Ti ∼ 10, which is more typical for quasi-perpendicular
foreshocks. We can speculate that CCPI can also generate this
second peak. First, the CCP instability develops in the quasi-
perpendicular foreshock region where the beams have required
temperatures Tb/Ti ∼ 10, which is supported by the observed
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enhancement at kzρT i ≈ 0.4. Then the unstable fluctuations are
convected in the quasi-parallel foreshock region where their
observed wavenumbers are kzρT i ≈ 0.6.

The above estimations suggest that CCPI can contribute to
electromagnetic fluctuations observed in the quasi-parallel ter-
restrial foreshock and can impose limitations on the parameters
of the beams formed by reflected ions. Further direct confronta-
tions of observed values of αb with the stability diagram in Fig. 1
are needed to clarify the role of CCPI in the regulation of ion-
beam parameters in the foreshock.

5.2. Foreshock regions around supernova remnants

Supernova remnants expanding in the interstellar medium de-
velop bow shocks at their boundaries. These shocks propagate
with high velocities Vshock ∼ 2× 109 cms−1 providing a feasible
source of energy for the cosmic ray acceleration, and also for the
magnetic field amplification. By analogy with the terrestrial bow
shock, we assume that the reflected ions also occur in the super-
nova foreshocks setting up a compensated-current system. CCPI
can develop in supernova foreshocks if parameters of reflected
ions (subscript b) satisfy αb >α

thr
b , defined by (19).

For reasonable background density n0 = 10−2 − 1 cm−3 and
magnetic field B0 ∼ 10−7 − 10−5 G (Zweibel & Everett 2010), the
Alfvén velocity varies in the range VA = 2 × 104–2× 107cm/s.
Then the resulting Alfvén Mach number in supernova remnants
MA = Vshock/VA = 102–105 is much larger than in Earth’s bow
shock. For the similar scalings as in the terrestrial foreshocks,
nb/n0 ∼ 0.01, Vb ∼ 0.5Vshock, and VTb ∼ 2Vshock, even with the most
unfavorable Vshock/VA = 102 the destabilizing parameter αb ∼ 102

is much larger than the thresholdαthr
b ∼ 5. In this far over-threshold

range, the CCPI operates in the asymptotic regime (35) with very
high growth rate γmax/ωBi ∼ 0.5. We note that this value is already
at the edge of applicability of our low-frequency approximation.
Such a high growth rate suggests that the instability modifies the
beam parameters strongly, in particular reducing the beam veloc-
ity towards the local Alfvén velocity, Vb &VA.

Let us compare the instability driven by the reflected
ions with the similar instability driven by cosmic rays around
supernova remnants (Bell 2004; Zweibel & Everett 2010). Tak-
ing the background magnetic field B0 & 10−6 G and the cosmic-
rays flux nCRVb ∼ 104 cm−2 s−1 (Zweibel & Everett 2010), we
estimate the normalized current j̄CR

b ∼ 0.026 and the correspond-
ing growth rate γCR

max/ωBi = j̄CR
b /2∼ 0.01 around supernova rem-

nants. With ωBi ' 0.03 s−1, we get γCR
max ' 2.2× 10−4 s−1 in

absolute numbers.
The above estimations show that the CCPI instability driven

by reflected ions is much stronger than the instability driven by
cosmic rays. Therefore, the former instability can be a more ef-
ficient amplifier for magnetic fields around supernova remnants.
On the other hand, a fraction of the beam ions can be scattered
back to the shock by electromagnetic fluctuations generated by
CCPI, thus providing a seed population for the further Fermi ac-
celeration to high cosmic-ray energies.

6. Discussion

A number of competing electrostatic and electromagnetic in-
stabilities may arise when different plasma species move with
respect to each other (see Gary 2005; Bret 2009, and refer-
ences therein). The hierarchical structure of these instabilities
depends on many parameters and remains an open question

Fig. 8. Contribution of the reactive CCPI growth rate (dashed curve) to
the total growth rate (dotted curve) for VTi/VA = Te/Ti = 1, Vb/VA = 10,
VTb/VA = 25, and nb/n0 = 0.02.̇ It is seen that the reactive destabilizing
effects dominate the instability growth rate for this set of parameters.
The wave frequency is shown by the solid line.

(see further discussions in Bret et al. 2010; Brown et al. 2013;
Marcowith et al. 2016).

In our setting with hot ion beams, the fast two-stream/
Buneman instabilities are quenched by the large thermal
velocities, which are larger than the streaming velocities.
Inspection of Fig. 3.20 by Gary (2005) shows that the thresh-
olds of electrostatic ion-acoustic and ion-cyclotron instabil-
ities are significantly higher than the Alfvénic threshold for
VT i/VA ∼Te/Ti ∼ 1 typical in the terrestrial foreshock. Among
them, the electron/ion cyclotron instability has the lowest
threshold velocity, which is still very high, V IC

b > 102VA for
nb < 0.1ne. The ion/ion acoustic instability is suppressed further
by large beam temperatures, as is seen from Fig. 3.15 by Gary
(2005). Therefore, these high-frequency electrostatic instabilities
cannot compete with CCPI in the wide range of beam velocities
1<Vb/VA < 102. At higher beam velocities, Vb/VA > 102, the
ion-acoustic and ion-cyclotron harmonic waves can be generated
by the electron-ion relative motion. However, even in this
velocity range CCPI can develop independently as long as the
mean parameters reside in the unstable area (Fig. 1), whereas the
kinetic instabilities are quickly saturated by the local quasi-linear
plateaus.

Parallel-propagating left-hand and right-hand polarized
instabilities have been studied by Gary et al. (1984) and Gary
(1985). Using numerical solutions of the dispersion equation, it
has been observed that the left-hand polarized Alfvénic instabil-
ity becomes competitive or even dominant when the beam ions
are sufficiently hot (see Fig. 8 by Gary et al. 1984). The condi-
tion

∣∣∣ξb,−1
∣∣∣ < 1 was used by Gary et al. to categorize this instabil-

ity as ion-beam resonant, i.e., resulting from the direct resonant
coupling of the unstable mode with the beam ions. However, ki-
netic and reactive effects have not been distinguished for this
mode, which did not allow us to realize that above threshold (19)
the instability transforms from kinetic resonant to reactive non-
resonant (see Fig. 8 and related discussions below). In the reac-
tive regime, the meaning of the condition

∣∣∣ξb,−1
∣∣∣ ≈ |kzρTb|

−1 < 1
is reversed: here it indicates that the unstable perturbations are
on small enough scales to decouple from the beam ions by the
demagnetization effect. The resulting Alfvén instability is then
driven not by the resonant interactions with the beam ions, but
by the bulk return current of the magnetized electrons. The cur-
rent nature of this instability is similar to the nature of related
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current instability (Malovichko & Iukhimuk 1992) that can de-
velop in the absence of any beams.

Interplay of the reactive and resonant left-hand Alfvénic in-
stabilities also needs further investigations. Our preliminary esti-
mations indicate that the relative importance of the reactive ver-
sus kinetic destabilizing effects increases quickly once αb rises
above the threshold αthr

b . In Fig. 8. we show the contribution of
the reactive CCPI to the total growth rate for reference plasma
parameters that may occur in foreshocks: VT i/VA = Te/Ti = 1,
Vb/VA = 10, VTb/VA = 25, and nb/n0 = 0.02. The correspond-
ing total growth rate in Fig. 8 is given by Eq. (14) with the imag-
inary part of J+ taken into account. It therefore includes both the
reactive effects due to the bulk currents and the resonant wave-
particle interactions. It is seen that the destabilizing reactive
response becomes stronger than the resonant wave response
when αb is still not far from the threshold αthr

b (αb = 5≈ 2αthr
b

in Fig. 8). The instability is thus driven mainly by the reactive
effects and can be analyzed ignoring kinetic resonant effects, as
we did in the present study. The same approach can also be ap-
plied in the immediate vicinity of the reactive threshold if the
quasi-linear plateaus or other local deformations of the veloc-
ity distributions weaken destabilizing kinetic effects. Analytical
treatment becomes more tangled when reactive and kinetic
effects are of comparable efficiency and have to be accounted
for simultaneously, in which case the evolution of the system
becomes more complex (cf. Yoon & Sarfraz 2017).

There are also left- and right-hand polarized instabilities
driven by cold ion beams in the ion-cyclotron frequency range
(Mecheri & Marsch 2007). These instabilities are strong when
the velocity spread of the beam ions is so small that all the beam
ions (and hence the beam as a whole) are resonant. In our settings
with hot ion beams these instabilities are quenched similarly to
the two-stream/Buneman instabilities.

In the considered case of hot ion beams, Vb/VTb < 1, the an-
alytical treatment of wavenumbers kzρTb < VTb/Vb is simplified
by neglecting the term ∼Vb/VTb in ξb,−1. As the most unstable
wavenumber scales as kzρTb ≈ αb/2 ( 32), this restriction is not
stringent:

nb

n0

(
Vb

VA

)2

< 2. (39)

This condition is the opposite of the firehose instability con-
dition (see Eq. (14) by Malovichko et al. 2014), which means
that the CCPI can operate in a wide range of parameters below
the firehose threshold. For cooler beams, where the condition
Vb/VTb < 1 is violated (e.g., in the quasi-perpendicular foreshock
regions), the analysis should be extended by accounting for cor-
responding terms.

The compensated-current parallel instability can also af-
fect other processes in space. For example, it can limit
the field-aligned currents generated by Alfvén-wave fluxes in
the inner magnetosphere and plasma sheet boundary layer
(Artemyev et al. 2016). In the solar wind, CCPI can contribute
to the regulation of relative motion of different plasma species.
It was found that many states of beaming structures in the so-
lar wind are close to the thresholds of magnetosonic and Alfvén
instabilities (Marsch & Livi 1987; Gary et al. 2000) and the fire-
hose instability (Chen et al. 2016). Since CCPI can operate close
to these thresholds (and sometimes below them), a refined anal-
ysis is needed to decide its role in the solar wind, as compared
to the magnetosonic and firehose instabilities. These are subjects
for future studies.

7. Conclusions

We investigated reactive non-resonant compensated-current par-
allel instability (CCPI) of left-hand polarized Alfvén waves
in compensated-current systems established by hot diluted ion
beams. Ion-beam demagnetization due to finite kzρTb is crucial
for CCPI (ρTb is based on the parallel beam temperature, and
thus does not represent the beam ion gyroradius). New analyti-
cal expressions for the instability growth rate (31) and threshold
(19) are found and analyzed.

The most important new properties of CCPI can be summa-
rized as follows:

1. Reactive non-resonant CCPI depends on all bulk param-
eters of the beam: beam density nb, bulk velocity Vb, and ther-
mal velocity VTb. These parameters all increase the instability
growth rate and can be combined in the single destabilizing pa-
rameter αb = (nb/n0) (Vb/VA) (VTb/VA). The instability develops
at αb > αthr

b , where the instability threshold (19) varies from
αthr

b = 2.43 at VA/Vb→ 0 to αthr
b = 4.87 at VA/Vb → 1. The an-

alytical threshold (19) can be directly compared with satellite
data to analyze the stability of beam-plasma systems in space.

2. CCPI is strongly affected by the velocity spread of the
beam ions VTb. It defines the range of unstable beam currents,
j̄b ≥ j̄thr

b , with the current threshold varying in the range j̄thr
b =(

2.4–4.9
)
/V̄Tb.

3. The instability growth rate γmax (33) increases sharply
with VTb once the threshold V thr

Tb ( 20) is overcome (Fig. 7). This
fast increase is caused by the fast demagnetization of the beam
ions, in which case they cannot compensate for the perturbed
currents of fully magnetized electrons. In a more distant over-
threshold range αb > 3αthr

b the temperature dependence weakens
because of the nearly saturated demagnetization.

4. From the growth rate γmax (31) it follows that the instabil-
ity can be strong, γmax & 0.1ωBi, even for modest αb . 2αthr

b not
far from the threshold. The most unstable wavenumber kzρTb &
1.54 near the threshold αb & α

thr
b , but increases with αb quickly

approaching the asymptotic scaling kzρTb ∼ αb/2. In this asymp-
totic regime, our growth rate reduces to (35), the same as was
obtained by Bell (2004).

5. Two particular applications to the terrestrial foreshocks
and supernova remnants show that the reactive CCPI can op-
erate there. An analysis of Sect. 5.2 suggests that the ions re-
flected from the shocks around supernova remnants can drive
stronger instability than the cosmic rays. In the terrestrial fore-
shock, CCPI can regulate beam parameters generating electro-
magnetic fluctuations observed at kzρTi ≈ 0.1.

Our results complement and extend previous studies on
electromagnetic instabilities and their role in space and astro-
physical plasmas. CCPI can develop around supernova rem-
nants expanding into interstellar medium, participating in the
braking process, and heating and redistributing energy in the
supernova shocks. The same concerns the solar-wind regions
upstream of the terrestrial bow shock, and other heliospheric
shocks, where CCPI can bound the beam parameters and
contribute to the low-frequency electromagnetic turbulence.
Similarly, CCPI can affect other space and astrophysical en-
vironments containing super-Alfvénic ion beams and return
currents.
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