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We compare a new spherical interpolation algorithm and 4D Var transport 
assimilation as cartography methods for the SAGE II aerosol data. The 
new interpolation algorithm is based on a new concept called a Multipoint 
Taylor (MT) series. A MT series represents a function from its function and 
spatial derivative values at an irregular sample grid. Spatial derivatives are 
estimated by a local thin plate fit, capturing the local trend of the data. 
This is a fast and versatile spatial mapping tool, but it ignores the temporal 
variation of the data and thus results in an asynoptic map. The assimilation 
uses the Adjoint Model (AM) approach and is based on a simple transport 
model, using given wind fields. An iterative process minimizes a cost function 
of the squared error between measurements and model predictions, with 
respect to the initial state. The converged initial state is then propagated 
in time to produce synoptic maps. An introduction to and assessment of 
both methods is given. Some examples of maps for the SAGE II, validated, 
level-2, aerosol extinction coefficient at 1.02/•rn, obtained by both methods, 
are presented. 

1. INTRODUCTION 

This paper presents two different tools for the pro- 
duction of aerosol optical extinction maps. The two 
approaches considered are: 

i. a newly developed spherical interpolation method; 

ii. 4D variational data assimilation, which produces 
a map that is consistent with the chosen atmo- 
spheric transport model and given wind fields. 

The specific features of both methods are discussed 
and compared. Both methods are applied to NASA's 
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Stratospheric Aerosol and Gas Experiment (SAGE) II, 
level-2, aerosol product. 

Carefully prepared visualization of satellite data can 
significantly improve the comprehensibility of the data 
and make them more accessible to a wider user commu- 

nity. In particular, maps of the aerosol load of the at- 
mosphere are helpful in interpreting dynamic transport 
features in the atmosphere. Further, various aerosol 
parameters influence the photochemical evolution and 
radiation equilibrium of the atmosphere. Maps are then 
an easy way to correlate the distribution of aerosol with 
Other species in the atmosphere. Also, interpolating 
irregular scattered data to a regular grid is necessary 
if one wants to compare data obtained from different 
experiments for cross-validation purposes. Finally, the 
aerosol content of the atmosphere is a disturbing factor 
for many Earth remote sensing applications and often 
corrections have to be made for the aerosol extinction 

at specific locations. 
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Global mapping of aerosol data obtained from satel- 
lite occultation experiments (such as SAGE II) is not 
evident for the following reasons. 

i. Sampling of the data is highly irregular and must 
first be transformed to a representation on a global 
regular grid. 

ii. The raw data have a limited coverage of the globe, 
depending on the length of the time window con- 
sidered. For example, for the SAGE II data, fairly 
global coverage is obtained only after about one 
month. 

iii. Depending on the time of the year and inclination 
of the orbit, the data set obtained by solar occul- 
tation measurements may show uncovered areas, 
where data is completely missing. 

iv. The data to be mapped are contaminated by both 
experimental errors and errors associated with the 
geometrical and spectral inversion schemes used 
to produce level-2 data. In addition, extinction 
data may be disturbed by the presence of high 
altitude cirrus clouds and/or Polar Stratospheric 
Clouds (PSC). In cases of high aerosol loading of 
the atmosphere (e.g. after a volcanic eruption), 
data in certain regions may be lacking because 
the atmosphere becomes too opaque for the in- 
strument to function properly. 

V. When assimilation is used as a mapping tool for 
aerosols, one needs particle number densities to 
propagate. For example in the case of the SAGE 
II data, the product consists of the optical extinc- 
tion coefficient/•(1/km), at the four wavelengths 
0.385, 0.453, 0.525 and 1.02 I•rn [Chu et al., 1989]. 
Therefore, one must make assumptions in deriving 
necessary additional properties. In practice, one 
usually assumes a simple physical aerosol model 
to make the conversion. 

A new interpolation algorithm was developed for di- 
rect interpolation on the sphere. The choice of algo- 
rithms that interpolate irregularly scattered data on 
the sphere is very limited [Dierckx, 1995]. The most 
commonly used spherical algorithm, for Lagrangian in- 
terpolation (i.e. using function values only), is the one 
described in [Renka, 1982; Renka and Cline, 1984] and 
implemented in e.g. Interactive Data Language (IDL). 
If the samples have substantial error bars, as is the case 
for the SAGE II data, interpolation is even a more diffi- 
cult task. It was found that the (IDL implementation) 

of the above algorithm, failed (due to sample points be- 
ing too close) or produced totally unacceptable maps 
(due to noise on the samples). 

Our algorithm addresses the more general Hermite- 
Birkhoff interpolation problem (using given function 
and derivative values), for data randomly scattered on 
the sphere. As far as we are aware of, no robust and 
practical algorithm is available today to solve this prob- 
lem. Our solution to this problem consists in the con- 
struction of an interpolant that has the form of a trun- 
cated Multipoint Taylor (MT) representation. This rep- 
resentation uses both function and partial derivative 
values at the sample points and is a natural solution to 
the Hermite-Birkhoff interpolation problem. By solving 
this more general problem, the algorithm designer can 
control what values the derivatives of the interpolant at 
each sample point will have. In classical methods, these 
values are implicitly fixed by the choice of the repre- 
sentation, for example by using polynomials or spher- 
ical harmonics. We obtain the partial derivative val- 
ues, required by the MT representation, from a thin 
plate fitting procedure, applied to the neighborhood of 
each sample point. This fit captures the local trend 
of the data and also reduces the effect of the measure- 

ment errors on the interpolation result. The interpo- 
lation step is optionally followed by a smoothing oper- 
ation (low-pass spatial frequency filtering) in order to 
remove possible unphysical, fast variations in the result- 
ing maps. The end product is then a two-dimensional 
(global) map, showing, for instance, the aerosol extinc- 
tion coefficient at a certain altitude or the total column 

optical extinction of the whole atmosphere. 
Our second approach aims at the production of maps 

that are consistent with the dynamical behavior of the 
atmosphere. As basis for the assimilation, it is assumed 
that aerosol particles are inert tracers. In the case of 
aerosols under normal conditions, this is a good ap- 
proximation and we can take the atmosphere model to 
be a pure transport model. In perturbed conditions 
however, such as at PSC formation, volcanic eruptions, 
etc., the chemistry and microphysics of the aerosols 
should be considered also. In this article we restrict 

ourselves to normal conditions. More precisely, we as- 
sume that the aerosol particle number density is propor- 
tional to the extinction coefficient. The particle density 
field is then propagated through 3D space by numeri- 
cally solving the initial value transport problem. The 
model dynamics is based on wind field analyses from 
the European Centre for Medium-range Weather Fore- 
casts (ECMWF). The optimal initial number density 
field is sought that minimizes the total squared 
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between model predicted and measurement values in 
those space-time points where observations are avail- 
able. This is done, by minimizing in an iterative way, 
a cost function of the difference between observations 

and model predictions. Once the optimal initial field is 
found, propagating it in time yields the synoptic aerosol 
particle density map. 

2. THE INTERPOLATION METHOD 

The interpolation method has the following features. 

i. The surface of the sphere is decomposed by spher- 
ical Delaunay triangulation. 

ii. The interpolant is represented as a truncated MT 
series. 

iii. The local behavior of the data is estimated from 

a thin plate fitting procedure. 

iv. An optional, 2D spatial spectral filter can be ap- 
plied. 

The resulting interpolant is infinitely differentiable 
everywhere. The computational cost is linear with the 
number of sample points and the method was found to 
be always numerically stable. 

2.1. Domain Decomposition 

In order to have a computational cost that is linear 
in the number of sample points, it is necessary to have 
a local interpolation algorithm. This means that the 
value in an interpolation point should only depend on 
the nearest sample points. This is achieved by using 
compact support basis functions in the MT representa- 
tion. To this end, we decompose the surface of the globe 
into spherical Delaunay triangles. As compact support 
area for the basis functions we use the interior of the 

Voronoi polygon around each sample point. 

2.2. The Multipoint Taylor Series Interpolant 

The interpolant ](x), in a point x- (0, •o), is repre- 
sented as a truncated MT series, having the form 

N M• 

f(x) - • • f•" U•"(x) (1) 
n--1 k+l--O 

wherein the f•,• are the values of the partial derivatives 
at the sample points, 

= +'/(o,v,) (2) 
00•0qo t ,,=,,• 

and the U• 't (x) are basis functions. N is the number of 
sample points and M** the number of partial derivatives 
retained in the approximation at the n th point. Higher 
order basis functions U•'t(x), k +l > 0 are expressed 
in terms of zero order functions U•ø'ø(x) as 

(o - (v, - v2,O(x) (a) - t! 
The zero order basis functions U• ø'ø (x) are constructed 

in such a way that they satisfy 

-5.m, l_<n m_<N (4a) <o,o(x) [x=x , 

vo,o (o, 
X•Xm 

i + j > 0 (4b) -0, l<n,m<N 
In addition, to ensure convergence to the correct func- 
tion, the zero order functions U•ø'ø(x) must form a par- 
tition of unity over the sphere 

N 

y•. U•ø'ø(x)- I (5) 
**=1 

It is possible to construct basis function with the re- 
quired properties. In our implementation, each zero 
order basis function is constructed over its associated 

Voronoi polygon, in such a way that it equals one at 
the interior sample point and zero outside and on the 
boundary of the Voronoi polygon. In addition, it has 
all its partial derivatives zero at the interior point, as 
well as on the Voronoi boundary. For the explicit con- 
struction of the basis functions we refer to [Franssens, 
1999a,b]. 

2.3. Local Thin Plate Fit 

The general formula (1) requires partial derivative 
values, which are seldom available. There are various 
ways to (numerically) estimate derivatives. The most 
obvious one is using finite difference formulas. However, 
in practice function values are often contaminated by 
measurement errors, which makes this is a very error 
prone method. We use a more robust technique that 
circumvents the explicit calculation of the derivatives. 

We start with approximating the unknown function 
locally by a thin plate, bent in such a way that it passes 
through (or near) the sample values. By using the phys- 
ical model of an elastic, thin plate and determining its 
shape from the minimization of its potential energy, 
one is assured that no wild oscillations or overshoots 

will occur in the resulting interpolant. So, we 
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in the neighborhood of each sample point an optimal 
shape function s•(x), which minimizes the following 
functional 

e(,•) = •(,•) + XV(*•) (•) 
The first term is a weighted, least square cost function, 

I. 

- (7) 
i--1 

The summation runs over the considered sample point 
x• and its N• neighbors on the Voronoi boundary, so 
In = N• + 1. The numbers wi are weights, which can 
take into account the error on the function values fi. 
The second term in (6) is an approximation of the total 
curvature of the plate shape s• (x) 

v(s, ) 0 2 s. 002 + 2 000qoJ ( (•2 8n dfi 

(s) 
and A plays the role of fitting parameter. The larger this 
parameter, the larger the stiffness of the fitted shape 
becomes and rapid spatial variations are suppressed. 
The selected value usually depends on the quality of 
the data to be interpolated. Typical values are in the 
range 0 < A _• 1 for high quality data, to 1 < A < 5 for 
data with larger errors (above 5%). 

One part of the approximation in (8) lies in the pla- 
nar, instead of spherical, measure dfl - dOdqo, used 
in the integral. Since we use local basis function, this 
is justified because we only need that portion of the 
shape function over the interior of the Voronoi polygon, 
i.e. in the immediate neighborhood of the considered 
sample point. As a consequence of this approximation, 
it becomes possible to obtain the optimal shape func- 
tion s• (x) as a linear combination of simple analytical 
functions. The expansion coefficients are obtained by 
solving a small linear system (typically of size 10 x 10), 
at each sample point. 

We now use the derivatives of the found thin plate 
shape in (1) and by using (3) obtain the modified inter- 
polant 

N 
k,l k,l /(x) - Z (x) 

n=l k.+l--O 

N (0 - •,t (• - •o. o,o = v. (x) 
n--1 k+l--O 

N 

This final result shows that only the shape function it- 
self is needed. 

Because the support of the basis functions is limited 
to its Voronoi polygon, only a local portion of s•(x) 
around its sample point is used. Moreover, any inter- 
polated value is just a linear combination of only three 
thin plate shapes, associated with the three vertexes of 
the triangle in which the interpolation point is located. 
So, for any interpolation point x, the sum in (9) is re- 
duced to three terms. This is the implemented formula. 
A more detailed treatment can be found in [Franssens, 
1999b]. 

2.4. Final Filtering 

After interpolation, as computed by (9), an optional 
spectral filter can be applied. The main purpose is to 
remove unrealistic variations in the result, that have 
a higher spatial frequency than the Nyquist sampling 
frequency. The result is a smoothing effect. In the 
examples shown in section 4, a low-pass, spatial filter 
of Gaussian shape 

g(fx,fy) -- exp (- ((fx/fe,) 2 -I- (fy/fb)2)) (10) 

was used. Herein are f• and fb filter characteristics, de- 
termining the spectral width of the filter, and depending 
on the sampling characteristics of the data. 

3. THE ASSIMILATION METHOD 

Several methods have been developed for data assim- 
ilation. Sequential methods put a model in a state, 
which in general is not consistent with its dynamics 
and/or physics. This disturbs the model and it needs 
some time to reach consistency. To keep the distur- 
bance as small as possible, data are prepared and only 
a correction of the model state "in the direction" of the 

data takes place. Sequential methods such as Nudging, 
Successive Correction, Optimal Interpolation, Kalman 
Filtering, etc., differ in the degree of consistency the cor- 
rection has, with respect to the model dynamics and/or 
physics. 

In contrast, the Adjoint Method (AM) always guar- 
antees full consistency with the dynamics and/or physics 
[Giering, 1999]. By varying control variables, one ad- 
justs model trajectories to be as close as possible to 
the measured data. In data assimilation, the control 
variables are typically the initial conditions or the forc- 
ing for the model [Talagrand and Courtier, 1987]. To 
quantify the misfit of the model prediction, one 
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a cost function, which is then minimized with an iter- 
ative algorithm. Starting with a first guess, each it- 
eration step computes an improved vector of control 
variables. Thereby, the search direction is computed 
from the gradient of the cost function with respect to 
the control variables. The AM serves computing this 
gradient vector. 

3.1. The Adjoint Assimilation Method 

We give an introduction to the AM that parallels the 
one in [Fisher and Lary, 1995]. Consider a physical 
system and a model describing this system. Let yO be 
an M-dimensional vector of observations of the physi- 
cal system and y the M-dimensional vector computed 
by the model, at the position and time of these obser- 
vations. To quantify the misfit, define a scalar prod- 
uct (.,.) :R M x R M -• R, such that x,y • (x,y) = 

M 

• xiYi and a cost function 
i--1 

ja I yO _•(y_yO,y_ ) (11) 
In order to manipulate the model, we introduce an N- 
dimensional unknown control (also called state) vector 
x (in practice, the initial values of the initial value prob- 
lem). The dependence of y on x within the model 
will be given by a mapping h: R •v -• R M, such that 
x • y = h(x). In general, this mapping includes a 
model run to near the place and time of the observa- 
tions and also contains an interpolation to the exact 
measurement location. Then the cost function can be 

regarded as a mapping j: R •v -• R, such that x • j (x) 
with 

I yO j (x) - • (h(x) - , h(x) - yO) (12) 
The problem is to determine the (unique) value of x 
that minimizes j. When the number of observations is 
limited, there might not exist a unique global solution or 
uniqueness is only achieved in some neighborhood of the 
measurements points. Uniqueness of the global solution 
can be forced by the introduction of a background term 
(see next section). Effective minimization algorithms 
require the gradient Vj(x) of j with respect to x at a 
given point xo. To this end, we compute the first order 
variation 5j of the cost function with respect to the 
control vector at x - Xo. We have 

5j ' (Vj(y) lyo=h(xo), 5y) (13) 
To continue we need the linearization of the (in general 
non-linear) mapping h around Xo. Supposing h is reg- 
ular, it has a Taylor series expansion around Xo. The 

first order variation of y can be related to the first order 
variation in x by 

5y = H(xo)JX (14) 

wherein the linear operator (matrix) H(x): R •v -• R M, 
such that x • H(x) a_ •7h(x) denotes the linearization 
or Jacobian of h at x. Performing the differentiation in 
(13), using (11) and (14), we get for (13) 

5j = (h(xo) - yø, H(xo)JX) (15) 

Using the definition of the adjoint operator H*(x) : 
R M -• R •v, satisfying for any u • R •v, v • R M, 

(v, Hu) - (H'v, u) (16) 

equation (15) can be written as follows 

5j = (H* (Xo) (h(xo) - yO), 5x) (17) 

Consequently, according to (13), the gradient of the cost 
function with respect to the control variables must be 

Vj (x) - H* (x)(h(x) - yO) (18) 

at any point x where the mapping h is regular. The lin- 
ear operator H(x) represents the tangent linear model 
at x. Its adjoint linear operator H* (x) represents the 
adjoint linear model. Both operators depend on the 
point x at which the model is linearized. According to 
(18), the difference h(x) -yO can be interpreted as the 
forcing of the adjoint model. 

A detailed analysis of the required basic numerical op- 
erations yields that the computation of the cost function 
and its gradient, for a given vector of control variables, 
takes only 2-5 times the computation of the cost func- 
tion. Alternatively, the gradient vector Vj(x) could be 
approximated by finite differences, which needs at least 
N+I computations of the cost function. The use of the 
AM approach thus has two advantages. First, it saves a 
lot of run time, especially for large N, and secondly, the 
computed gradient, needed to minimize the cost func- 
tion, is exact. Notice that, from the definition of the 
inner product and the fact that the matrix H is a Ja- 
cobian matrix, always hold that H* = H T. 

3.2. Formulation of the JD Vat Algorithm 

Based on the previous theoretical framework, four- 
dimensional, variational data assimilation (4D Var) can 
now be formulated. 4D Var seeks to produce an analy- 
sis, which fits a set of observations taken over a 
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of time, subject to the strong constraint that the evolu- 
tion of the analyzed quantities is governed by a deter- 
ministic model. By imposing the equations of the model 
as strong constraints, the analysis problem is reduced 
to that of determining initial values for the model, such 
that the subsequent evolution minimizes a cost measure 
of the fit to the observations. 

The 4D Var uses the following cost function 

A. 
j =Jb + jm=o (19a) 

j0zx 1 - •(x0 - x0)Ts -1 (x0 -- x0) (19b) 
K 

1 

jm zX Z •(Yk -- Y•)T(Rk)-I(Y• -- Y•) (19c) 
k=m 

Herein is x0 the vector of initial concentrations, x• an 
independent estimate of the initial concentrations, and 
B the covariance matrix of expected errors in x•. The 
expression j• is usually called the 'background term' of 
the cost function, and x• 'the background'. The vector 
y• in j0, given by (19c) for m - 0, consists of all ob- 
servations which are considered valid at the timestep k, 
and y• is the vector of model predictions for these ob- 
servations. In the analysis presented here, y• is a linear 
function of concentrations, i.e. 

y• - Hkx• (20) 

Herein is x• the vector of concentrations at timestep 
k, and H•, which maps x• to model equivalents of ob- 
servational values, is sometimes called the 'observation 
operator'. As minimum aerosol model we assume that 
extinction is proportional to concentration, so the Hk 
are constant diagonal matrices. The matrix R• is the 
covariance matrix for the random errors in the term 

y• - y•, which would be expected given a perfect anal- 
ysis. With the random errors we mean the 'observa- 
tion errors' and 'representativeness errors' introduced 
in simulating the observations. 

The strong constraints of the model equations are in- 
corporated into the analysis by regarding j as a function 
of the initial concentrations x0. Concentrations at sub- 
sequent times are determined by integrating the model 
equations forward in time. This procedure results in 
two major simplifications. First, it eliminates the need 
to use a minimization algorithm with constrains. Nu- 
merical algorithms for unconstrained minimization are 
considerably more efficient and less prone to problems 
of ill-conditioning, than are algorithms for constrained 

minimization. Secondly, the number of independent 
variables is reduced by a factor of K + 1. 

We use a descent algorithm to produce a convergent 
sequence of estimates of the vector x0 that minimizes 
the cost function. It requires the gradient of the cost 
function with respect to x0. This gradient is evaluated 
by integrating the adjoint model. This is done in the 
following way. 

Consider an infinitesimal variation, 5x0, in the initial 
concentrations in the partial cost function jm, given by 
(19c). At each timestep m _< k _< K, there will be cor- 
responding infinitesimal variations, 5Xm and 5jm in the 
concentrations and in the function jm. This jm depends 
only on concentrations at steps m <_ k <_ K. Since these 
concentrations are uniquely determined by the equa- 
tions of the model and those for any step 0 _< k • < m, 
it is legitimate to regard jm as a function of the den- 
sities at step k • only. By definition, the gradient of jm 
with respect to the concentrations at step k • satisfies 
the equation 

5jm -- (Vx k, jm ) r t•Xk, (21) 

Suppose that V'xmJm is known. We now want to cal- 
culate Vx .... •jm-1 by induction. First, from (19a) we 
have 

V xoJ - VxoJ0 + VxoJo 

From (19c), we can write 

(22) 

•7x .... lJm-1 -- •7x,•_• tin-1 q- Vx,•_•jm (23a) 

where we defined, 

t• -- •(y• - y,•)r (Rm)-I (Ym - yO•) (23b) 
The ease with which the first term in (23a) may be 

evaluated depends on the complexity of the model. To 
evaluate the second term in (23a), notice that for an 
arbitrary infinitesimal variation in xm-1, we have by 
(21) 

(•jrn --(VXm_•jm)T•Xm-1 (24) 
and by definition 

Hence, 

5jm -- (Vx.•jm ) T SXm (25) 

(Vx ... lJm)Tt•Xm-1 --(Vx,•jm)Tt•Xrn 
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If the equations of the (discretized) model are written 
in the form 

x. = h._• (x._•) (27) 

then, for infinitesimal variations, 

5x, = H•_: (x,_:)Sx,•_: (28) 

where Hm-1 (Xm-1) is the Jacobian containing the par- 
tial derivatives of the elements of hm-• (xm-•) with re- 
spect to the elements of xm-•. Subsituting (28) into 
(26) gives, after transposing 

{29) 

Hence, substituting (29) in (23a) yields 

This is the adjoint tangent linear (ATL) equation. Given 
Vx..j,, equation (30) allows Vx•_lj,-i and, by induc- 
tion, VxoJ0 to be calculated. Once VxoJ0 is known, the 
required gradient of the cost function with respect to 
the initial conditions is given by (22). Starting the in- 
duction at step K we have 

VxKj•: = VxK t•: (31) 

The algorithm used to minimize j is then as follows. 

i Start with an initial guess for x0. 

ii Integrate the model to give xk for k = 1,...,K. 

iii Evaluate j. If it is small enough, STOP. 

iv Iterate the ATL equations to calculate Vj(x0). 

v Use descent algorithm to find an x0, reducing j. 

vi GOTO (ii). 

3.3. Implementation of the JD Vat Algorithm 

The model behind the assimilation consists of two 

parts: 

i the pure advection transport model; 

ii the physical aerosol model. 

In the transport model we used a T21 horizontal 
resolution, 5 vertical stratospheric levels and a 6-hour 
time step. This 3-D grid uses the same coordinates 

as the low-resolution version of the ECMWF Numeri- 

cal Weather Prediction (NWP) model. The advection 
is implemented using the semi Lagrangian scheme of 
[Smolarkiewicz and Rasch, 1991]. The driving dynami- 
cal fields are either analyzed ECMWF fields or output 
from a T63 resolution run from ECWMF's NWP. Any 
aerosol parameter information, contained in the SAGE 
II data, is necessarily restricted due to the limited spec- 
tral coverage of the measurements. Since the optical 
extinction at 1.02 /•m is proportional to the specific 
surface area density [Thomasson et al., 1997], we have 
extrapolated this to aerosol total number density. Thus 
our aerosol model is very simple: total number density 
is taken to be proportional to the optical extinction co- 
efficient and aerosols are considered basically inert trac- 
ers. Events as thin cirrus clouds and PSC are not taken 

into account. In order to avoid contamination of the as- 

similation results by cirrus cloud or PSC, observations 
below the isentropic temperature level of 195 K were 
rejected. 

The background term (19b) in the cost function en- 
sures the uniqueness of the solution of the minimiza- 
tion. In the presented case, the background term was 
constructed by the interpolation of the SAGE II 1.02 
/•m optical extinction data of December 1988 onto the 
model grid. The covariance matrix of the expected er- 
rors in the background term was derived from the vari- 
ability at each model grid point in the interpolated fields 
for the months December, January and February for 2 
consecutive winters, 1987-1988 and 1988-1989. 

The minimization process requires the explicit knowl- 
edge of the gradient vector of the cost function with 
respect to the model initial state. This gradient vec- 
tor was determined by backward integration of the ad- 
joint model. The adjoint model was constructed with 
the aid of an automatic differentiation tool [•iering, 
1997]. The quasi-Newton algorithm MIQN3 from IN- 
RIA [Gilbert and Lemardchal, 1989] has been used in 
the minimization of the cost function. 

4. EXAMPLES 

•. 1. Interpolation 

A test was devised to measure the self-consistency of 
the interpolant. It consisted of removing a single sample 
point from the set of samples and to let the interpolation 
algorithm reproduce the removed sample value from the 
remaining ones. This was done in succession for each 
sample point and the resulting errors were 
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Figure 1. SAGE II observation points for April 1992. 

The root mean square error between interpolated values 
f• and true values f• is defined as 

- 
•RMS -- N )2 

n--1 

(32) 

We applied this to a test function, being Gaussian in lat- 
itude and constant in longitude, sampled in 128 points, 
and found the following errors: 

Maximum relative error : 0.043 

Mean relative error : 0.016 

Root mean square error : 0.019 

This consistency error was found to be of the same order 
as the interpolation error, described below. The value 
of the fitting parameter A, introduced in (6), was found 
to have no major influence on the error values in this 
case. 

Figure 1 shows the SAGE II, aerosol extinction co- 
efficient, observations for April 1992, at an altitude of 
26.5 km, and for the 1.02/zm wavelength channel. From 

this data we obtain the interpolated map shown in Fig- 
ure 2, with 1 ø resolution in both directions. This map 
shows that aerosols are mainly found in an equatorial 
belt, which shows only little longitudinal variation. The 
SAGE II samples (measurements) in this example had 
the following errors: 

Maximum relative error : 

Mean relative error ß 

Root mean square error : 

0.989 

0.033 

0.081 

Since the interpolation is a linear operation on the 
samples, it is easy to compute the resulting error on 
the interpolation values. We obtained the following: 

Maximum relative error ß 

Mean relative error ß 

Root mean square error : 

0.958 

0.036 

0.070 

We see that the mean relative error of the interpo- 
lation values, (3.6%), is of the same order as the mean 
relative errors on the given samples, (3.3%). This in- 
dicates that the interpolation algorithm does not sig- 
nificantly increases the uncertainty of the interpolated 
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Figure 2. Contour map of aerosol extinction for April 1992. Plotted quantity is log10(fi). 

For certain periods (e.g. February, August) and in 
equatorial regions, the SAGE II instrument, being a so- 
lar occultation limb scanning device, shows a lack of lat- 
itudinal coverage, due to the inclination of the satellite 
orbit. An example of this situation is given in Figure 3, 
showing the observation points for February 1992. The 
equatorial aerosol reservoir is not adequately sampled 
during this period. Applying the interpolation algo- 
rithm to this data produces the map shown in Figure 
4. Despite the large under-sampled equatorial area, we 
still obtain a reasonable map. The algorithm extends 
the data trend, found at the edges of the data gap, and 
reproduces the expected aerosol reservoir at the trop- 
ics. This test shows that the new algorithm is capable 
of handling highly irregularly samplings and can fill in 
empty areas. However, we are aware that the result- 
ing map in Figure 4 is less trustworthy in those regions 
where data points are missing. The here considered 
month, February 1992, is an example of a data set that 
needs extra information (e.g. from assimilation), to fill 
in the gaps, in order to be mapped properly. To aid in 
interpreting a direct map like Figure 4, one could intro- 
duce a flag to display only interpolated values within 
some given proximity to the sample points. 

Finally, we show in Figures 5 and 6 another exam- 
ple of SAGE II measurement locations and interpolated 
aerosol map, respectively, for January 1989, at a pres- 
sure altitude of 50 mbar, and for the 1.02 pm wave- 
length channel. The map in Figure 6 is to be compared 
with the one shown in Figure 9, obtained by assimila- 
tion. 

•.2. Assimilation 

Some cases were selected to test the implementation 
of the aerosol model and the behavior of the assimilation 
process. The assimilation parameters were determined 
for a period with a low aerosol load for two assimilation 
periods, 10 days and 20 days, starting on January 10, 
1989. 

Figure 7 shows a comparison between model calcu- 
lated optical extinction and observations, as a function 
of altitude for one particular event on January 22, 1989, 
06:00 UTC at 47øN and 22øW. The SAGE II observa- 
tions are represented by the symbols with the (horizon- 
tal) error estimates. The solid line shows the assimila- 
tion result at this position with all observations taken 
into account. The dashed line is the result when 
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Figure 3. SAGE II observation points for February 1992, showing lack of coverage in the equatorial 
region. 
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Figure 4. Contour map of aerosol extinction for February 1992, with interpolation over the equatorial 
region, based on the data trend at mid-latitudes. Plotted quantity is log•0(/3 
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Figure 5. SAGE II observation points for January 1989, used for interpolation and assimilation. 
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Figure 7. Comparison of model calculated extinction and 
observations as a function of altitude on January 22, 1989, 
06:00 UTC at 47øN and 22øW (see text for details). 

eighth observation for each hemisphere was not taken 
into account in the assimilation (the here considered 
position being one of them). Both cases are for the 
same period and use the same first guess. The model is 
able to reliably reproduce the observations left out, as 
is shown by the dashed line. 

As already mentioned, the SAGE II data can be con- 
taminated by thin cirrus clouds in the tropical regions. 
The aerosol model is not able to take into account these 

events when occurring. Several observations in the trop- 
ics are found difficult to reproduce. Figure 8 shows an 
example of an aerosol extinction profile, for the event 
on January 11, 1989, 06:00 UTC at 2.7øN and 28.1øE., 
where the assimilation is not able to reproduce the ob- 
servations at pressure heights 70 and 100 mbar. We 
applied the statistical model of [Kent et al., 1993] to 
these observations. The extinction ratio at 0.525 and 

1.02/•rn for these heights is 1.33 and 0.67, respectively. 
This indicates that the extinction must be attributed 

to a mixture of cirrus clouds and aerosols. In this way, 
assimilation could aid in the detection of non-aerosol 

events. On the other hand, the presence of cirrus cloud 
disturbs the accuracy of the assimilation results. This 
highlights the shortcomings of the simple aerosol model 
used. It should also be clear that the assimilation, as 
implemented here, will not be able to reproduce tran- 
sient effects like a major volcanic eruption. 

Unlike the Kalman filter technique, 4D Var assimi- 
lation does not provide an error estimate of the analy- 
sis. Due to the limited latitude coverage of the SAGE 

II data, the assimilation affects only a limited space 
region. With the aid of a second model aerosol vari- 
able, this limited region can be indicated. This artifi- 
cial model aerosol variable is assimilated independently 
from the original model variable, but with a first guess 
increased by 50%. The difference between both model 
variables is indicative of the influenced regions by the 
observations. The regions, where the two model vari- 
ables differ by 50%, are solely determined by the first 
guess of the assimilation. 

Figure 9 shows the assimilated aerosol extinction for 
January 20, 1989, 00:00 UTC, at 1.02/•m and pressure 
altitude of 50 mbar. It is to be compared with Figure 
6, showing a monthly mean for January 1989. Both 
figures use the same contour scale. It is found that the 
assimilation method can bring out details and features, 
which can not be resolved by interpolation alone. 

5. CONCLUSIONS 

5.1. Interpolation 

The new algorithm has been applied to numerous 
tests, including sparse data situations, uniform back- 
ground aerosol mode and high volcanic aerosol mode. 
The algorithm proved to be numerically very stable and 
robust. Tests were done with the number of sample 
points varying from a few tens up to 10,000 and highly 

lOOO 

10000 

Figure 8. Comparison of model calculated extinction and 
observations as a function of altitude on January 11, 1989, 
06:00 UTC at 3øN and 28øE (see text for 
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irregular samplings never caused the algorithm to fail. 
Also the local trend estimation, based on a local thin 
plate shape modeling of the variation of the data, never 
showed signs of ill-conditioning. As compared to assim- 
ilation, it is a very fast numerical method. 

The limitations of a cartography, based on interpola- 
tion alone, are rather due to the lack of coverage of the 
data, than to the algorithm itself. Even in cases where 
no data is available over large areas of the globe, an 
estimate is produced by the algorithm in these areas, 
based on the trend of the data at the boundary of these 
areas. Data sets showing limited coverage however, are 
better not mapped by interpolation alone and require 
assimilation to more accurately fill in the gaps. 

An obvious limitation of interpolating time sequen- 
tial data, is the time skew error. The interpolation al- 
gorithm as it stands, does not take the distance-in-time 
into account of neighbor samples, when computing the 
thin plate fit. 

5.2. Assimilation 

4D Var assimilation has proven to be a valuable tool 
to reconstruct locally, missing spatial and temporal in- 
formation of stratospheric aerosol density, from su•- 
ciently close observation points. The presented im- 
plementation is sufficiently general that it allows easy 
extensions. One could use multi-wavelength informa- 
tion, as well as a more complex microphysics model for 
aerosols, including the assimilation of chemical species 
and their chemical transformations. This way the as- 
similation method would also be useful for mapping 
aerosols under non-normal conditions (e.g. volcanic 
eruptions). 

The spatial validity of the assimilation is determined 
by the coverage of the measurements and the winds 
in the stratosphere, which back trace the influence. If 
the first guess initial condition is not the solution, the 
gradient of the cost function, with respect to the first 
guess, determines the domain that will be covered by 
the assimilation. It was found that the satellite cov- 

erage strongly limits the spatial domain in which the 
analyzed fields are influenced by the observations. In 
addition, one finds that little exchange takes place be- 
tween the Northern Hemisphere, equatorial region, and 
the Southern Hemisphere, within the time window of 
the assimilation. This zonal separation reflects the dy- 
namic behavior of the stratosphere. This means that 
assimilation is also limited to fill in equatorial gaps, un- 
less the assimilation can be run over a sufficiently long 
time period. Two factors limit however the length of 
this assimilation period: computational resources and 

the physical model used for the aerosol evolution. Be- 
cause of the limited spectral content of the available 
data, only a very simple physical aerosol model could 
be used. It was found that the temporal validity, ob- 
tained with the current model, is limited to less than 
10 days when ran on a Cray parallel computer. 

5.3. Comparison of Both Methods 

Cartography by interpolation alone is fast and justi- 
fied when the temporal variation of the species to be 
mapped is low over the considered time frame. In the 
case of the SAGE II data, it would be the preferred 
tool to produce a climatology or studies of long-term 
evolution (order of a season). It is an isotropic method 
and the dynamics of the atmosphere are not taken into 
account. 

Assimilation enhanced cartography does takes the de- 
tailed dynamical evolution of the species into account. 
Due to present limitations in computer resources and in 
the physical model used, it is limited to short-time evo- 
lution (typical 10 days). Because wind dynamics in the 
stratosphere is largely anisotropic (transport takes place 
mainly parallel with the equator), also this method has 
difficulties filling in observational gaps in latitude. Both 
methods thus fail to produce a reliable map for sparse 
sampled periods (e.g. February). For data with a bet- 
ter observational coverage (e.g. January), assimilation 
produces a more detailed map and can bring out short- 
term temporal variations. 

As cross checking between both methods, tempo- 
ral mean values were calculated at each model grid 
point from the assimilation analysis. These mean values 
agreed very well with the interpolated field for the con- 
cerning period. This originates from the fact that the 
assimilated aerosol fields exhibit the dynamical variabil- 
ity superimposed on the interpolated fields. 

When one has the necessary computational resources 
available, assimilation is without doubt the preferred 
cartography method. 

x = v) 

Xn 

?(x) 

NOTATION 

An arbitrary point on the sphere 
(interpolation). 
The location of sample point n. 
Truncated MT series interpolant. 
Partial derivatives of order k,l at sample 
point xn. 
General MT basis functions at sample 
point Xn. 
Zero order MT basis function at sample 
point 
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Figure 9. Assimilated aerosol extinction at 1.02 ftm and 50 mbar, on January 20 1989, 00:00 UTC. 
Plotted quantity is log•o(• ). 

yO 

•(x) 

I-I*(:,,:) 

sn(x) Shape function in the neighborhood of x0 
sample point Xn. 
Lagrangian fitting parameter. 
Longitudinal and latitudinal spatial 
frequencies. 
Longitudinal and latitudinal spatial filter 
cut-off frequencies. 
M-dimensional vector of observations of 

the physical system. 
M-dimensional vector of predictions com- 
puted by the model. 
N-dimensional unknown control (state) 
vector of the model (assimilation). 
Scalar (inner) product defined on R M. 
Mapping giving the dependence of y on 
X. 

Cost function, a functional depending on 
X. 

Linearization of the mapping h around x, 
(Jacobian). 
Adjoint linearization of h around x, with 
respect to the scalar product. 

Xb 

y• 

Yk 

Sk 

hrrt- 1 

ERMS 

Initial control (state) vector, (initial 
concentrations). 
Background control (state) vector. 
Covariance matrix of the expected errors 
in xb. 
Vector of all observations considered valid 

at the timestep k. 
Vector of model predictions for the y•. 
Covariance matrix of the expected errors 
in yk - y•. 
In our application, the linear map from 
xk to y• (observation operator). 
Discretized model operator mapping 
Xrn--1 into Xm. 
Root mean square error. 
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