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A B S T R A C T

The characterization of droughts and their impacts is very dependent on the time scale that is involved. In order
to obtain an overall drought assessment, the cumulative effects of water deficits over different times need to be
examined together. For example, the recently developed joint deficit index (JDI) is based on multivariate
probabilities of precipitation over various time scales from 1- to 12-months, and was constructed from empirical
copulas. In this paper, we examine the Gaussian copula model for the JDI. We model the covariance across the
temporal scales with a two-parameter function that is commonly used in the specific context of spatial statistics
or geostatistics. The validity of the covariance models is demonstrated with long-term precipitation series.
Bootstrap experiments indicate that the Gaussian copula model has advantages over the empirical copula
method in the context of drought severity assessment: (i) it is able to quantify droughts outside the range of the
empirical copula, (ii) provides adequate drought quantification, and (iii) provides a better understanding of the
uncertainty in the estimation.

1. Introduction

Drought is a major natural hazard with a serious impact on human
societies and ecosystems. At least 11% of the European population and
17% of its territory have been affected by water shortage, and the total
cost of droughts in Europe over the past thirty years is estimated at EUR
100 billion (EEA, 2009). A review of drought definitions is given in
Wilhite and Glantz (1985), where four different drought types are
identified: meteorological, hydrological, agricultural, and socio-eco-
nomic drought. Drought severity can be assessed with indices that are
updated at regular times, and are based on present meteorological or
hydro-meteorological conditions. For example, the widely used Palmer
drought severity index (Palmer, 1965) uses available precipitation and
temperature data. Another example is the standardized precipitation
index (SPI) of McKee et al. (1993), which has been recommended by the
World Meteorological Organization (WMO, 1985) as the primary me-
teorological drought index to be used.

Because drought-related impacts can be complex, drought mon-
itoring based on a single variable or index may be inadequate. During
the past decades, a lot of attention has been paid to the combined use of
multiple drought-related variables and indices for overall drought as-
sessment. We refer to Hao and Singh (2015) for an exhaustive review.
For example, the U.S. drought monitor (Svoboda, 2002), produces maps
of the overall drought condition, and these are based on the integration
of multiple drought indices. The use of multivariate distributions for
drought risk assessment is a relatively new development (Beersma and

Buishand, 2004; Kao and Govindaraju, 2010). The joint deficit index
(JDI) of Kao and Govindaraju (2010) is a multivariate probability-based
drought index at time scales from 1- to 12-months.

In Kao and Govindaraju (2010), it was argued that empirical co-
pulas for the 12-dimensional structure are reliable when the record
lengths are quite large (say, more than 100 years). However, high
quality long-term series are scarce, and it would be advantageous to
have a flexible copula method at our disposal that extends consistently
to shorter series. This motivates us to investigate the performance of
parametric copula models. We use a Gaussian copula model for the JDI,
in which the covariance matrix is specified by a flexible two-parameter
function. We show that the dependence structure across the time scales
can be greatly simplified by reformulating the problem in terms of the
covariance functions from the methodology of spatial statistics.

2. Drought definitions

2.1. Standardized precipitation index (SPI)

The SPI was introduced by McKee et al. (1993), and is widely used
to characterize meteorological droughts over a range of time scales (e.g.
3-, 6-, 9-, 12-, 24-months). Let Di be the total precipitation of a certain
month, and the accumulated values
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present the w-monthly precipitation with respect to month m. The main
idea of McKee et al. (1993) is to express drought severity in terms of the
probability of the observed precipitation depth xw

m( ). Let the precipitation
depths be a realization of the random variable Xw, and FXw the cumu-
lative distribution function, i.e. = ⩽F x X x( ) Pr{ }X w

m
w w

m( ) ( )
w . As is well

known, =U F X( )w X ww is uniformly distributed on the interval [0,1].
Given the input variable xw

m( ), the SPI at time scale w is computed by:

= −ϕ uSPI ( ),w w
1 (2)

where =u F x( )w X w
m( )

w is the uniform transformed input variable, and ϕ is
the standard normal CDF. As suggested by McKee et al. (1993), FXw can
be modeled by a two-parameter Gamma distribution. The cases

> <SPI 0, SPI 0w w , and =SPI 0w indicate wet, dry, and normal condi-
tions, respectively, for the w-month window. The SPI can be applied in a
similar way to snowpack (Staudinger et al., 2014), streamflow (Nabaltis
and Tsakiris, 2009), soil moisture (Sims et al., 2002), and ground water
(Bloomfield and Marchant, 2013).

2.2. Joint deficit index (JDI)

Kao and Govindaraju (2010) propose an overall characterization of
droughts by examining various temporal scales together by means of
multivariate probabilities. Given accumulated precipitation

…x x( , , )m m
1
( )

12
( ) with respect to a certain month, and over 12 different time

scales (1-, …, 12months), we need to estimate the multivariate prob-
ability ⩽ … ⩽X x X xPr{ , , }m m

1 1
( )

12 12
( ) . The influence of marginal aspects

on the dependence structure between Xw’s, can be removed
by transformation to uniform margins, i.e.

⩽ … ⩽ = ⩽ … ⩽X x X x U u U uPr{ , , } Pr{ , , }m m m m
1 1

( )
12 12

( )
1 1

( )
12 12

( ) , and obser-
ving that there is a unique function C such that:

⩽ … ⩽ = …U u U u C u uPr{ , , } ( , , ).m m m m
1 1

( )
12 12

( )
1
( )

12
( ) (3)

The function C is the copula (Nelsen, 2006); it contains complete in-
formation about the joint distribution, apart from the marginal dis-
tributions. The Kendall distribution function

= … ⩽K q C U U q( ) Pr{ ( , , ) },C 1 12 (4)

maps multivariate data into one single value. For a given
= …q C u u( , , )m m

1
( )

12
( ) , the JDI is defined as

= −ϕ K qJDI ( ( )).C
1 (5)

Kao and Govindaraju (2010) employed empirical copulas, which are
defined as follows. Given n transformed data points

= … = …u u i nu ( , , ), 1, ,i i i1, 12, , the corresponding empirical copula is de-
fined as (Nelsen, 2006):

�∑… = ⩽ … ⩽
=

C u u
n

u u u u( , , ) 1 ( , , ).n
i

n

i i1 12
1

1, 1 12, 12
(6)

However, extreme droughts, which are outside the observational range
cannot be quantified with empirical copulas. Examples of parametric
copulas, such as the Student t-copula and Gaussian copula, are provided
in the Appendix of Kao and Govindaraju (2010). Their results suggested
that both copulas perform similarly for precipitation JDIs. Since the
evaluation of t-Student copulas is time consuming, we selected the
Gaussian copula in our study.

3. The Gaussian copula model

The Gaussian copula CG can be expressed as

… = …− −C u u ϕ u ϕ u( , , |Σ) Φ ( ( ), , ( )),G 1 12 Σ
1

1
1

12 (7)

with ΦΣ, the multivariate Gaussian CDF with zero mean and positive
definite covariance matrix Σ. From Eq. (2), it follows that the Gaussian

copula model for the JDI is the joint probability for the SPIs at time
scales 1-, …, 12months.

The covariances can be estimated empirically from the data.
However, this does not ensure a positive definite resulting covariance
matrix (Renard and Lang, 2007). Furthermore, empirical estimations
can be physically inconsistent: it may happen that for some elements

′ρw w, of Σ, the estimations satisfy ̂ ̂<′ ″ρ ρw w w w, , for < ′ < ″w w w , in
particular for shorter series.

Our main aim is to overcome these issues by parameterizing the cov-
ariance matrix with a specified model. We accomplish this by using cov-
ariance functions that are known to be positive definite, and are commonly
used in spatial statistics and geostatistics (Cressie, 1993; Diggle and Ribeiro,
2007). We extend the random process = −Y ϕ F X( ( ))w X w

1
w , to a continuous

spatio-temporal random processY w t( , ) as a function of accumulation time
w, and accumulation end time t. Since w is expressed in months, and the
number of days differs from month to month, we define a month as a
30 day-period in the model derivation. To make the connection with spatial
statistics, we view Y w t( , ) as a random process at ‘location’ w. See Ap-
pendix A for a general description of random fields. A common simplifying
assumption for stationary spatial random fields is isotropicity, which means
that the spatial covariance structure depends only on the distance between
two locations. In practical applications, one mostly uses the Euclidean
distance, but this can never be suited for the present application. It seems a
reasonable assumption that the correlation between monthly and 2-
monthly totals, should be approximately equal to the correlation between
3-monthly and 6-monthly precipitation depths, and so forth. Therefore, we
propose the logarithmic distance between w and ′w :

= − ′h w w|log( ) log( )|, (8)

as a candidate model. In Section 6.1, the hypothesis that the covariance
′Y w t Y w tCov[ ( , ), ( , )] depends only on the logarithmic distance, is shown

to be statistically significant, at least for w-values within the practical range
(e.g. from 1- to 12months). This is equivalent to the assumption

′ = ′Y k w t Y k w t Y w t Y w tCov[ ( , ), ( , )] Cov[ ( , ), ( , )]. (9)

We denote by ≔ ′ρ h Y w t Y w t( ) Cov[ ( , ), ( , )], the covariance function. We
summarize the commonly used standard covariance functions (Cressie,
1993; Diggle and Ribeiro, 2007):

• The Matérn family:

= > >− −ρ h κ h σ K h σ σ κ( ) {2 Γ( )} ( / ) ( / ), 0, 0,κ κ
κ

1 1 (10)

in which K (.)κ denotes a modified κth-order Bessel function, σ is the
scale parameter, and κ is the shape parameter.

• The powered exponential family:

= − > < ⩽ρ h h σ σ κ( ) exp( ( / ) ), 0, 0 2,κ (11)

• The exponential family:

= − >ρ h h σ σ( ) exp( / ), 0, (12)

which is a particular case of the Matérn and powered exponential
family for =κ 0.5, and =κ 1, respectively.

4. Variogram-based estimation

The variogram of the stochastic process Y w t( , ) is

′ = − ′γ w w Y w t Y w t( , ) 1
2

Var[ ( , ) ( , )]. (13)

For the isotropic case, and given that =Y w tVar[ ( , )] 1, Eq. (13) sim-
plifies to

= −γ h ρ h( ) 1 ( ). (14)
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It can be seen that the variogram and the covariance function are
theoretically equivalent, but a variogram-based analysis offers a
number of advantages, especially when the data locations form an ir-
regular design, for details see Cressie (1993), Diggle and Ribeiro
(2007).

Given n transformed data points = … = …y y i ny ( , , ), 1, ,i i i1, 12, , the
empirical variogram is given by

̂ ∑′ ≔ −
=

′γ w w
n

y y( , ) 1
2

( ) ,
i

n

w i w i
1

, ,
2

(15)

which, for an isotropic model, results in

̂ ̂∑= ′
′ ∈

γ h
N

γ w w( ) 1
| |

( , ),
h w w N( , ) h (16)

where Nh denotes the set of pairs ′w w( , ) such that the distance equals h,
and N| |h is the number of pairs in the set Nh.

Parameter estimation of the correlation functions, Eqs. (10)–(12), is
performed with the ordinary least squares method. This estimates the
parameters θ to minimize the objective function

̂∑= −
=

∼

S θ γ h γ h θ( ) ( ( ) ( ; )) ,
k

n

k k
1

2

(17)

where γ h θ( ; ) is the theoretical variogram, and ∼n the number of dif-
ferent h-values.

Model selection criteria are needed to decide which covariance
model, Eqs. (10)–(12), should be preferred. We use the Akaike In-
formation Criterion (AIC), defined as:

̂= + ∼n n S θAIC 2 ln ( ),p (18)

where np is the number of model parameters. The best model has the
lowest AIC-value.

5. Data

We selected four high quality long-term daily precipitation series,
with at least 100 years of data. The stations are located in: Uccle
(Belgium), Marseille (France), Milan (Italy), and St. Petersburg (Russian
Federation). The Uccle series was collected by the Royal Meteorological
Institute of Belgium (RMI), and the other series were obtained from the
European Climate Assessment & Dataset (Klein Tank et al., 2002). We
summarize the station characteristics in Table 1.

As in Kao and Govindaraju (2010), when fitting the marginal dis-
tributions of Xw, the problem of auto-correlation and seasonal varia-
bility in the data can be resolved by collecting xw

m( ) annually for each
month. The 2-parameter Gamma distribution was fitted to xw

m( ) sepa-
rately for each w and each month. The goodness-of-fit was assessed with
the Cramer-von Mises test, the Anderson–Darling test and the Kolmo-
gorv-Smirnov test at the 5% significance level. It was found that the
Kolmogorv-Smirnov test only rejected two accumulated series ( =w 5
and =w 6 for the month September, station Uccle). Consequently, the
tests lend support to the 2-parameter Gamma model for the marginals.
Next, once a distribution F Xw

m( ) was fitted to xw
m( ), the application of the

transformation =u F x( )w
m

X w
m( ) ( )

w
m( ) , results in uniform transformed data

points = …u uu ( , , )i i i1, 12, , with = … ×i n1, , 12 y (ny: number of years).
Finally, normally transformed data = −ϕy u( )i i

1 was obtained.

6. Results and discussion

6.1. Isotropicity

As explained in Appendix A, to check the isotropicity of one-dimen-
sional random fields, it is sufficient to test for stationarity. We used the test
of Jun and Genton (2012) for stationarity of spatial or spatio-temporal
fields. They considered cases where the spatial domain is planar or sphe-
rical, but the results also apply to one-dimensional domains. The basic idea
is described in Appendix A, and consists of dividing the spatial domain into
two disjoint domains, and to use the test statistic that is based on the dif-
ferences between empirical estimators of covariances at given lags from the
sub-domains. The actual dataset consists of 12 series of normally trans-
formed accumulated precipitation depths (1-,…,12months), which, how-
ever, do not give a sufficient number of pairs whose points share the same
distance. Therefore, we extend the dataset to accumulation times

=w 25, 30, 35, …, 365 days, where accumulation end times correspond
with the end of a month. This gives rise to 69 series of normally trans-
formed accumulated precipitation depths. We consider 1000 randomly
sampled divisions of two disjoint domains. For each division, we search for
h-values for which there are a sufficient high number of pairs whose points
have distance h. In the terminology of Appendix A, this defines space–time
lags =k h u( , ). We only consider time lag =u 0, because we are only
concerned with spatial covariances. Next, we compute the test statistic lT ,
Eq. (A.3), where l refers to the number of lags. Jun and Genton (2012)
proved that lT is asymptotically χ2-distributed with degrees of freedom l,
under the null hypothesis that the random field is stationary. It turned out
that for the following percentage of the different divisions, stationarity was
accepted at the 5% significance level: 92.3% (Uccle), 93.7% (Marseille),
93.3% (Milan) and 91.7% (St. Petersburg).

6.2. Estimation and validation

The estimation results listed in Table 2 indicate that the powered
exponential covariance model is the best choice. The empirical and
theoretical variogram are shown in Fig. 1. The corresponding covar-
iance matrices are given in Tables B.6 and B.7 of Appendix B. It can be
seen that for Uccle and St. Petersburg, the precipitation marginals have
a comparable level of temporal correlation. On the other hand, in
Marseille, the correlation decays faster for increasing h-values. The case
of Milan tends to be in the middle of the two.

The goodness-of-fit was assessed by comparing the empirical
copula with the Gaussian copula, evaluated at the transformed data
points = … = …u u i nu ( , , ), 1, ,i i i,1 ,12 . Denote by ̂Σ the estimated covar-
iance matrix, and ̂≔C Cu u( ) ( |Σ)G i G i , the estimated Gaussian copula.
The goodness-of-fit can be visualized by plotting the empirical co-
pula C u( )n i against the Gaussian copula = …C i nu( ), 1, ,G i , see Fig. 2.
The model works well, because the points lie close to the unit diag-
onal. To have an idea of the overall performance, we used the fol-
lowing goodness-of-fit scores (Table 3): mean absolute error (MAE),
root mean squared error (RMSE), BIAS, and maximum error (MAX).
Kao and Govindaraju (2010) reported a RMSE of 0.0083 for the
Gaussian copula (with empirically estimated covariances), which is
of the same order of magnitude.

6.3. Sensitivity to sample size

The advantage of a parametric copula method is that it should
extend in a consistent way to shorter data series. Having confirmed
the validity of the new method for long-term series, we now evaluate
the effect of the data size on the estimation. Ideally, one needs at
least 20–30 years of monthly values for the SPI-calculation, with

Table 1
Long term precipitation stations. RMI: Royal Meteorological Institute of
Belgium. ECA&D: European Climate Assessment & Dataset (Klein Tank et al.,
2002).

Place Latitude Longitude Alt. (m
a.s.l.)

Years Provided by

Uccle 50°47′55″ 4°21′29″ 100 1898–2015 RMI
Marseille 43°18′18″ 5°23′48″ 75 1881–2004 ECA&D
Milan 45°28′18″ 9°11′21″ 150 1858–2008 ECA&D
St. Petersburg 59°58′00″ 30°18′00″ 3 1881–2013 ECA&D
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Table 2
Parameter estimation of the correlation functions, Eq. (10)–(12). Lowest AIC-values are indicated in bold.

Matérn Powered Exponential Exponential

̂σ ̂κ ̂ ̂S σ κ( , ) AIC ̂σ ̂κ ̂ ̂S σ κ( , ) AIC ̂σ ̂S σ( ) AIC

Uccle
1.981 0.553 1.8e−3 −281.13 2.141 1.063 1.6e−3 −285.13 2.215 5.0e−3 −236.27

Marseille
1.825 0.485 1.7e−3 −284.19 1.783 0.980 1.6e−3 −286.98 1.767 2.0e−3 −277.64

Milan
1.954 0.500 2.7e−3 −261.84 1.959 0.996 2.7e−3 −262.08 1.955 2.7e−3 −263.84

St. Petersburg
2.068 0.530 1.0e−3 −306.02 2.162 1.035 9.8e−4 −307.87 2.205 2.1e−3 −275.69
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Fig. 1. Variogram with standard normal marginals. Dots: empirical variogram. Solid line: theoretical variogram.
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50–60 years (or more) being optimal and preferred (WMO, 1985).
The two main sources of uncertainty in the new methodology are
estimation of (i) the margins, and (ii) the dependence structure be-
tween the margins. We applied a bootstrap procedure to calculate
measures of uncertainty associated with the correlation functions. A

bootstrap sample was obtained by resampling of the years (with re-
placement) from a subseries of the original dataset (e.g. the last
30 years, 40 years, …). For each sample, an estimate of the para-
meters, ̂σ and ̂κ , was computed. This process was repeated a large
number of times (typically 103 or 104 times), which provided a
sample distribution of the parameter estimates. Given a significance
level α, the −α(1 )-confidence bounds are then the α/2- and

−α(1 /2)-quantiles of the sample distribution. A commonly used level
is =α 0.05. In Fig. 3, we show the covariance parameter estimates as
a function of the number of years of data. In addition, the 0.95-
confidence intervals are plotted. The bootstrap methodology also
directly provided uncertainty estimates for the powered exponential
correlation function ρ h( ), see Fig. 4 for the case =h 2. It can be seen
that for time windows larger than 40–60 years, the estimations are
more or less stable.
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Fig. 2. Goodness-of-fit plots. Empirical copulas versus Gaussian copulas. Dash line: leading diagonal.

Table 3
Goodness-of-fit scores for the Gaussian copula model.

MAE RMSE BIAS MAX

Uccle 7.42e−3 1.04e−2 −4.15e−3 3.88e−2
Marseille 6.01e−3 8.30e−3 2.01e−3 4.66e−2
Milan 7.78e−3 1.15e−2 8.35e−5 4.78e−2
St. Petersburg 5.35e−3 7.52e−3 8.79e−4 3.50e−2
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Fig. 3. Parameter estimates ( ̂σ and ̂κ ) of the powered exponential correlation function, Eq. (11), as a function of the number of years of data. Vertical lines are the
0.95-confidence intervals.
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6.4. Drought category estimation: Empirical versus Gaussian copula

We consider the categories used in the U.S. drought monitor
(Svoboda, 2002). This includes abnormally dry (D0), moderate drought
(D1), severe drought (D2), extreme drought (D3), and exceptional
drought (D4). Table 4 shows the range of SPI values along with their
probabilities of occurrence and corresponding drought conditions, see
also Kao and Govindaraju (2010). We assessed and compared the ability
of the copula models to categorize droughts as follows. According to the
usual practice, the dataset on which the copula model is fitted (i.e. the
training set), is different from the dataset on which the fitted model
calculates the JDI-values (i.e. the validation set). We considered the
entire long-term precipitation series (Table 1) as the validation set. The
resampled series, obtained in Section 6.3, were used here as training
sets. Finally, for each copula model, we counted how many JDI-values

fall into each drought category. We repeated this process 1000 times,
and we recorded the average occurrence of the JDI-values per drought
category (Fig. 5). The results are shown for 50-year training sets, but
other sample sizes (20,…, 100 years) gave nearly the same results. A
necessary condition for the copula models to be eligible for drought
quantification, is that these percentages correspond to the drought ca-
tegories D0-D4 (Table 1). Both copulas work sufficiently well for D0-
droughts. The more severe the drought, the worse the performance of
the empirical copula. In particular, several extreme droughts are out-
side the range of the resampled empirical copulas, giving rise to un-
defined JDI-values. To give an idea, a 50-year training set gives, on
average, 5–8% undefined JDI-values for the validation set. In contrast,
the Gaussian copula works better, but tends to slightly overestimate
extreme (D3) and exceptional droughts (D4).

Another important aspect to investigate is the standard error of the
JDI-estimations. We selected four drought events in Uccle, each be-
longing to a different drought category: November 1940 (D1),
September 1973 (D2), October 1911 (D3), and September 1959 (D4).
The confidence intervals of the corresponding JDI-estimations were
obtained through the foregoing resampling procedure. In Fig. 6, we
plotted the JDI-estimations as a function of the number of observation
years, together with the 0.95-confidence intervals. For series with
40 years of data, or longer, the JDI-estimations appear to be relatively
stable. For cases where the drought event was outside the range of the
empirical copula, the JDI could not be computed. The greater the
drought, or the smaller the dataset, the greater the probability that this

20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uccle

Number of years of data

ρ̂(
2)

20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marseille

Number of years of data

ρ̂(
2)

20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Milan

Number of years of data

ρ̂(
2)

20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

St. Petersburg

Number of years of data

ρ̂(
2)

Fig. 4. Estimates of the powered exponential correlation function ρ h( ), Eq. (11), for =h 2, as a function of the number of years of data. Vertical lines are the 0.95-
confidence intervals.

Table 4
Drought monitor classification of Svoboda (2002).

Category Drought condition Probability of
occurrence (%)

Normal quantiles

D0 Abnormally dry 20–30 −0.84 to −0.52
D1 Moderate drought 10–20 −1.28 to −0.84
D2 Severe drought 5–10 −1.64 to −1.28
D3 Extreme drought 2–5 −2.05 to −1.64
D4 Exceptional drought 2 −2.05
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will happen. For this reason, it was not always possible to obtain the
confidence intervals of the empirical copula-based JDI. In such a case,
we tried to gain insight in the degree of uncertainty by using the fol-
lowing criterion: the confidence interval is computed only if less than
10% of the total number of JDI-samples are undefined. The choice of
10% is not motivated by theoretical issues, and is rather arbitrary. In
spite of this rule, assessment of uncertainty of the estimation of D0-D1
droughts could only be made for series of moderate length (say 50 year,
or longer). For greater droughts, D2-D4, confidence intervals could not
be determined. For the Gaussian copula, we can produce confidence
intervals without difficulty. Confidence intervals of JDI-estimations are
not often entirely contained within one drought category, which may
complicate the drought severity assessment. For more than 60 years of
data, the confidence intervals are covered by two adjacent drought
categories, and sometimes, by a negligible fraction of a third category.
Although uncertainties of this order of magnitude are unavoidable, they
do not greatly affect the assessment of drought severity.

6.5. A case study for Uccle precipitation

An illustration of the copula-based JDI for the Uccle precipitation
series is shown in Fig. 7. We added the normal quantiles of the drought
categories to the JDI-plots. We considered both the empirical and Gaussian
copulas. The gaps in the graphs (in year 1921, 1986, 1997 and 2007) are
associated with undefined empirical copula-based JDI-values. Note that
the copulas are fitted on the whole series, so that the training set is equal
to the validation set, a situation which is different from the foregoing
experiments (an underestimation of severe drought by the empirical

copula is thus not to be expected). Here, we investigated whether the D4-
droughts agree with major European drought events. Past European
drought events from the 1950s to present are discussed in Spinoni et al.
(2015). Also, an overview of major European drought events (1959–2007)
is contained in the European Drought Reference (EDR) database, which is
hosted by the website of the virtual European Drought Centre (EDC,
see:www.geo.uio.no/edc). In Table 5, we list the year and JDI-peaks of the
D4-drought events (1950–present), and the associated major European
droughts. The low JDI-value of April 2007 deserves particular attention.
Because the year 2007 was generally a wet year, it could not be related to
the 2007-drought of Eastern Europe (see EDR database). The low JDI-
value is solely due to the fact that there was, remarkably enough, no
precipitation observed during that month. Some major droughts, included
in the EDR database, correspond with a less severe classification for Bel-
gium (in terms of the JDI). The summer of 2003, for example, was clas-
sified as D1, and thus does not stand out as particularly dry. For the first
part of the twentieth century, few authors have examined European
drought incidence because instrumental data at high spatial resolution are
not available. In van der Schrier et al. (2016), maps of the monthly Palmer
drought severity index (PDSI) have been calculated for the period of
1901–2002 for Europe, but they focused on summer moisture variability.
For a comparative study, we selected the historical SPI-values of Lloyd-
Hughes and Saunders (2002) at various time scales. The driest years, and
peak JDI-values (in parenthesis) are: 1899 (−2.66), 1921–1922 (−4.19),
1929 (−2.62), 1933–1934 (−2.25), 1944 (−2.14), 1949 (−2.66), and
these dry periods agree well with the low SPI-values of South Dalton,
Yorkshire, UK, see Fig. 5 in Lloyd-Hughes and Saunders (2002).
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the given drought category (see Table 4).
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7. Conclusion

In this paper, we investigated the possibility to model the JDI for
drought characterization by the Gaussian copula model. We developed a
parametric model for the covariance matrix of the Gaussian copula. Unlike
the sample covariance matrices, the parameterized covariance matrices are
consistent and positive definite by construction in our approach. This allows
us to apply the model to shorter time series in a consistent way. More
specifically, we were able to describe the complex dependence of accu-
mulated precipitation across different temporal scales by a simple and
parsimonious model. The main idea is to reformulate the problem as a
spatial statistics problem by (i) defining the ‘location’ of an accumulated
rainfall process as the accumulation time, and (ii) considering a suitable
‘distance’ measure between two accumulation times. We considered a sui-
table set of covariance functions, with the appropriate properties of being
positive definite and monotonically decreasing with the distance. A vario-
gram-based analysis shows an excellent fit of the two-parameter powered
exponential (Matérn) family to long-term precipitation data. The compu-
tation of Gaussian copulas is cheap, and the new estimation procedure is

easy to implement. Sensitivity studies suggest that one needs at least
40–60 years of monthly values for a reliable copula-based JDI-computation.

There are a number of reasons to prefer the Gaussian copula over
the empirical copula. First, extreme droughts that are outside the range
of the empirical copula cannot be assessed. The greater the drought, or
the smaller the dataset, the greater the probability that this will happen.
Consequently, bootstrap confidence intervals for JDI-estimations
cannot be computed in many situations. Even if 100 year of data were
available, confidence intervals for D3-D4 droughts are nearly im-
possible to define. On the other hand, the parametric Gaussian copula
model is able to do so. Secondly, the bootstrap experiments reveal that
the empirical copula significantly underestimates the number of oc-
currences of JDI-values in the drought categories D1-D4. In particular,
the most severe droughts (D4) are reproduced exceptionally poorly. The
Gaussian copula performs much better for all drought categories, but
slightly overestimates D3-D4 droughts.

A case study for Uccle precipitation showed that the D4-droughts, as
identified by the JDI, agree well with the major European drought
events.
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Finally, the study was restricted to precipitation. Future research
should indicate if the method can be extended to other variables such as
streamflow, precipitation deficit, soil moisture, or snowpack.
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Appendix A. A stationarity test for spatio-temporal random fields

We denote a random field as Z x( ). For a spatial random field we have = ∈ Dx s , with D the spatial domain, and for a spatio-temporal random
field �= ∈ ×t Dx s( , ) . In spatial statistics, for example, observations are taken over a 2-dimensional space �⊂D 2 of integer lattice points. Spatio-
temporal random field can be used to model spatial data recorded at regular times.

The spatial random field Z s( ) is stationary if the mean is constant across the spatial domain, and the covariance is translation invariant. That is
�= ∈Z μsE[ ( )] for all ∈ Ds , and + = =Z Z Z Z ρs s h 0 h hCov[ ( ), ( )] Cov[ ( ), ( )] : ( ) for all spatial lags h. A stationary spatial random field is isotropic

if the covariance depends on the distance alone, i.e. =ρ ρh h( ) (| |), where |. | denotes the distance.
A formal test for stationarity of spatio-temporal random fields was proposed by Jun and Genton (2012). They do not require distributional

assumptions for the random fields. We briefly discuss the basic idea. For a stationary spatial random field, an estimator of the covariance ρ h( ) is

∑= +
∈

A D
S D

Z Zh
h

s s h( ; ) 1
| ( ; )|

( ) ( ),
S Ds h( ; )


(A.1)

with = ∈ + ∈S D D Dh s s s h( ; ) { : , }. Similarly, one can extend Eq. (A.1) for stationary spatio-temporal random field Z x( ). For a given space–time
lag = uk h( , ), and n observations in time, we get

∑ ∑=
−

+
∈ =

−

A D
S D n u

Z Zk
h

x x k( ; ) 1
| ( ; )|( )

( ) ( ).
S D t

n u

x h( ; ) 1


(A.2)

Let D1 and D2 be non-empty subsets of D with = ∪D D D1 2. The null hypothesis of stationarity of the random field, is written as
=A D A Dk k( ; ) ( ; )1 2  . Consider a set Λ of time space-lags, with = l|Λ| , and compute the vectors (i) ̂ ̂ ̂=G G G( , )n n n

T
,1 ,2 with

̂ = ∈ =A D iG k k{ ( ; ): Λ}, 1, 2n i i,  , and (ii) = ∈ρG k k{ ( ), Λ}. Under fairly mild conditions, the covariance matrix ̂= →∞n GΣ lim Var( )n n exists and is
finite. For sufficiently large n, we may assume ̂≈ n GΣ Var( )n , so that Σ can be estimated using subsampling. Next, compute the vector
� ̂= −n G G G( ( , ) )n

T , and define an ×l l2 matrix = −X I I( , )l l . Finally, the test statistic for the null hypothesis is

� �= −X X Σ X X( ) ( ) ,l
T T 1T (A.3)

which is asymptotically χ2-distributed with degrees of freedom l.

Table 5
D4-drought events (1950–present) detected by the JDI (Uccle precipitation), and corresponding major European drought.

Year JDI at peak Mentioned by

1953–1954 −2.75 EDR database, Spinoni et al. (2015): Pan-Europe.
1959 −2.70 EDR database, Spinoni et al. (2015): 1959–1960,

North-Central-Eastern Europe.
1964 −2.33 Spinoni et al. (2015): North-Central-Eastern Europe.
1969 −2.39 Spinoni et al. (2015): UK-Scandinavia.
1976 −3.11 EDR database, Spinoni et al. (2015): Europe.
1986 −2.37 Spinoni et al. (2015): 1985, South Europe.
1989 −2.09 EDR database, Spinoni et al. (2015): 1989–1991,

South Europe.
1993 −2.23 Spinoni et al. (2015): 1992, Central Europe.
1996–1997 −3.45 EDR database, Spinoni et al. (2015): Central and

North Europe.
2007 −2.12
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Appendix B. Covariance matrices

Table B.6
Correlation coefficient ′ρww between precipitation marginals yw and ′yw . Correlation function: powered exponential family. Upper triangle:
Uccle. Lower triangle: Marseille.

Table B.7
Correlation coefficient ′ρww between precipitation marginals yw and ′yw . Correlation function: powered exponential family. Upper
triangle: Milan. Lower triangle: St-Petersburg.
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